22.08.2013 Views

飞秒激光产生与控制

飞秒激光产生与控制

飞秒激光产生与控制

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Management of femtosecond laser pulse<br />

--Generation, synchronization, phase control and<br />

amplification<br />

Zhiyi Wei<br />

Institute of Physics<br />

Chinese Academy of Sciences<br />

Beijing 100080, China


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Outline<br />

Femtosecond generation<br />

Synchronization<br />

Carrier-envelope phase control<br />

Amplification<br />

Route toward attosecond world<br />

Summary<br />

2


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Outline<br />

Femtosecond generation<br />

Synchronization<br />

Carrier-envelope phase control<br />

Amplification<br />

Route toward attosecond world<br />

Summary<br />

3


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

A history of pursue time limit<br />

Toward Monocycles pulse (


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Mechanism:<br />

Type:<br />

Starting:<br />

Activity:<br />

Parameters<br />

How to get very short pulse<br />

--- Advanced mode locking techniques<br />

Kerr Lens Mode<br />

Locking<br />

Passive<br />

Non self starting<br />

Push or tap<br />

mirror<br />

< 10 fs, >100 nm<br />

Active mode<br />

locking by AOM<br />

Active<br />

Modulator<br />

Modulator<br />

always on<br />

< 100 fs<br />

Saturable bragg<br />

reflectors (SBR)<br />

Passive<br />

Self starting<br />

SBR as cavity<br />

mirror<br />

< 20 fs, > 40 nm<br />

Large bandwidth: with Fourier Transform limit: Δν Δτ < 0.314<br />

laser medium should has a wider gain band. Dye, Ti:sapphire.<br />

Dispersion compensation: consider high order dispersion.<br />

the large bandwidth, the difficult for compensation<br />

5


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Kerr Lens Mode-locking laser<br />

D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42, 1991<br />

6


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Dispersion control in Ti:sapphire laser<br />

8.5fs<br />

Jianping Zhou et al, Opt Lett, Vol. 19, 1149( 1194)<br />

Lin Xu et al, Opt Lett, Vol. 21, 1259(1996)<br />

controlled by prism pair controlled by chirped mirrors<br />

Thin crystal and accurate dispersion compensation result the very short pulse.<br />

7


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

What is chirped mirror<br />

the perfect source for negative GDD<br />

8


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Prism controlled Ti:sapphire laser<br />

600mm<br />

Size:600mm×200mm×150mm<br />

200mm<br />

Stability 1W<br />

Pulse duration 15~30fs<br />

Peak Power ~1MW<br />

Tunable range 760nm~850nm<br />

Repetition rate 50~100MHz<br />

9


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Intensity<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Pulse duration and stability<br />

Ultralasers<br />

0<br />

-40 -20 0 20 40<br />

Time delay (fs)<br />


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Chirped mirror Ti:sapphire laser<br />

M3<br />

5W 532nm Millennia<br />

f=10 cm M1 M2<br />

Ti:sa<br />

OC T=10%<br />

M1-M3: Chirped mirrors, F≈ 160 MHz<br />

11


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Dispersion of Ti:S crystal and chirped mirror<br />

Dispersion of Ti:sapphire (1mm)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

-25<br />

-50<br />

GDD, fs 2<br />

TOD, fs 3<br />

-75<br />

0.6 0.7 0.8 0.9 1.0<br />

wavelength /μm<br />

FOD, fs 4<br />

Dispersion /fs 2<br />

-100<br />

-150<br />

-200<br />

650 700 750 800 850 900 950 10001050<br />

Ti:sapphire crystal Chirped mirror<br />

100<br />

50<br />

0<br />

-50<br />

wavelength /nm<br />

12


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Refractive index and dispersion of air<br />

Refractive index of air<br />

1.000279<br />

1.000278<br />

1.000277<br />

1.000276<br />

1.000275<br />

0.5 0.6 0.7 0.8 0.9 1.0<br />

wavelength /μm<br />

Dispersion of air<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Dispersion of 1m air<br />

0<br />

0.6 0.7 0.8 0.9 1.0<br />

wavelength /μm<br />

The dispersion of air is 21.3 fs2 per 1meter at wavelength of<br />

800nm, it enables us to accurately adjust dispersion by air<br />

GDD, fs 2<br />

TOD, fs 3<br />

FOD, fs 4<br />

13


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Spot size /μm<br />

M3<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Spectra with SPM effect<br />

F M1 X M2<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

Z /mm<br />

f = Infty<br />

f = 30cm<br />

f = 20cm<br />

OC<br />

Intensity<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

532 nm<br />

x=0.3 mm<br />

x=0.2<br />

x=0.1<br />

1064 nm<br />

0.0<br />

500 600 700 800 900 1000 1100<br />

wavelength /nm<br />

We calculate the waist size inside<br />

the Ti:Sa crystal is 10.9 μm, Moving<br />

M2 will lead to the change of SPM<br />

14


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Optimized ultrabroaden spectrum<br />

Spectral intensity<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

532 nm<br />

0.0<br />

500 600 700 800 900 1000 1100<br />

wavelength /nm<br />

1064 nm<br />

Directly output from the oscillator, covered from 550~1050nm<br />

We generated the quasi-octave spanning spectrum with the<br />

simplest laser configuration<br />

15


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Measurement of laser pulse<br />

Sub-10fs oscillator<br />

autocorrelator<br />

Wedges<br />

Chirped<br />

mirror<br />

Ag mirror<br />

Ag mirror<br />

Chirped<br />

mirror<br />

Layout Interferometer autocorrelator<br />

16


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Intensity (arb.units)<br />

8<br />

6<br />

4<br />

2<br />

Pulse duration and spectrum<br />

7fs<br />

0<br />

-30 -20 -10 0 10 20 30<br />

Time(fs)<br />

Intensity(a.u)<br />

600 700 800 900 1000<br />

One of the shortest pulse generated with the simplest laser<br />

configuration in the world. 7fs/300mW/160MHz<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Wavelength(nm)<br />

17


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Compare to the similar<br />

experiment<br />

18


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Generation fs pulse with other media<br />

Cr:forsterite, Cr:YAG, Yb:YAG….<br />

Ti:Sapphire Cr:Forsterite Cr:YAG<br />

800 nm 1300 nm<br />

1500 nm<br />

Emission spectra of typical tunable laser crystals<br />

Some progresses:<br />

Nd:glass and Yb:glass, produce 60 fs Opt Lett.22, 307,1997<br />

Yb:glass produce 60 fs Optics Lett. 23, 126, 1998<br />

Cr:LiSAF produce 45 fs Optics Lett. 22, 621, 1997<br />

19


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Experiment of fs Cr:forsterite laser<br />

M1~M3:100mm ROC Reflector<br />

M4&M5: Chirped mirrors.<br />

Cr:forsterite:Gain medium in 10mm length<br />

Larger interval<br />

1030 1064<br />

Lasing region<br />

1100 1400<br />

照片<br />

20


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Specifications<br />

Pulse duration: 29fs<br />

Output power: 105mW<br />

Central wavelength: 1285nm<br />

Bandwidth: 60nm<br />

Repetition rate: 82.6MHz<br />

Stability:


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Advantage and disadvantage of Ti:S laser<br />

Short pulse: ≈ 5 fs,<br />

High gain<br />

Low energy and average power: ~10nJ, 500mW<br />

Indirectly pump: Large size and low efficiency<br />

Today, diode pump femtosecond laser show a new direction in future.<br />

Yb:YAG thin-disk laser: 60 W average output power<br />

Picosecond regime: 6-24 ps, 34 MHz, 1.8 µJ, < 280 kW<br />

Femtosecond regime: 720 fs, 34 MHz, 1.7 µJ, 2.1 MW<br />

Yb:KYW thin disk laser: 22 W average output power<br />

240 fs, 25 MHz, 0.9 µJ, 3.3 MW, focusable intensity:2 x 1014 W/cm2 Yb:YAG thin disk laser + pulse compression:<br />

24 fs, 0.56 µJ, 57 MHz, Opt. Lett. 28, 1951, 2003<br />

22


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Next generations of femtosecond lasers<br />

Diode directly pumped fs solid-state laser<br />

High average power: up to 100W<br />

High efficiency: up to 40%<br />

Compact size<br />

Longer pulse: ~100fs<br />

Femtosecond fiber laser<br />

Average power: up to 200mW<br />

Ultra-compact size.<br />

Long pulse: 100fs~200fs<br />

Er: fiber laser: 1570nm/200fs/150mW<br />

SHG: 785nm/100fs/20mW<br />

An ideal seeding for Ti:S laser amplifier with 100fs pulse<br />

Yb:fiber: 1030nm/200fs/200mW<br />

Directly amplification by diode laser pump<br />

23


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Outline<br />

Femtosecond generation<br />

Synchronization<br />

Carrier-envelope phase control<br />

Amplification<br />

Route toward attosecond world<br />

Summary<br />

24


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Motivation of synchronizing fs laser<br />

In many applications, femtosecond laser with single<br />

wavelength is not enough. For the researches on pumpprobe<br />

spectroscopy, generation of difference frequency,<br />

fast ignition laser fusion etc, synchronization between<br />

different lasers is necessary.<br />

λ2<br />

Probe laser<br />

λ1<br />

Detector<br />

Pump laser<br />

A.Leitensdorfer et al; Opt Lett, Vol. 20, 916(1995)<br />

25


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

PZT<br />

Passively synchronize two fs laser<br />

HR<br />

P2<br />

PZT Driver<br />

F2<br />

S-P T-40Z-106C<br />

P1<br />

Cr:F<br />

M5<br />

M7 SESAM<br />

M4<br />

M2<br />

M6<br />

Ti:S<br />

M1<br />

S-P Millennia Xs<br />

P3<br />

M3F1<br />

Opt Lett, Lett,<br />

Vol.26,1806 (2001),<br />

Appl Phys B, Vol74.S171, (2002)<br />

P4<br />

T1<br />

T2<br />

RG<br />

PD<br />

To AC<br />

and CC<br />

For the first we realized the<br />

synchronized femtosecond laser<br />

with different gain media, the<br />

timing jitter is less than 1fs<br />

PD<br />

f rep (75,761***Hz)<br />

300<br />

250<br />

200<br />

150<br />

Ti:sapphire laser<br />

600mW/18fs/820nm<br />

Cr:forsterite laser<br />

200mW/42fs/1300nm<br />

0 1 2 3 4 5 6 7<br />

350<br />

26


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Stable synchronized fs Ti:sapphire laser<br />

Average power: >1W<br />

Pulse duration: 30~70fs<br />

Tunable range: 740~850nm<br />

Timing jitter: 10μm<br />

Opt Lett, Vol.26,1806 (2001), Opt Lett,Vol.30, 2121 (2005),<br />

27


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

1250nm/65fs<br />

Cr:forsterite laser<br />

820nm/54fs<br />

B.S<br />

Ti:sapphire laser<br />

Measurement of timing jitter<br />

PZT<br />

Driver<br />

PZT<br />

BBO<br />

Oscilloscope<br />

Grating<br />

PMT<br />

The layout of the configuration for measurement of the cross correlation<br />

traces. B.S: Metal beam splitter. The signals of cross-correlation and two<br />

autocorrelations were dispersed with the grating for easy observation.<br />

28


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Timing jitter of synchronized Ti:S and Cr:F laser<br />

Normalized Intensity<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

FWHM:<br />

74± 2fs<br />

0.0<br />

-150 -100 -50 0 50 100 150<br />

0<br />

0 1 2 3 4 5<br />

Time Delay (fs)<br />

Time(s)<br />

The SFG of Ti:sapphire and Cr:forsterite lasers. FWHM corresponding to<br />

the SFG cross correlation trace is 74± 2fs.<br />

Intensity of SFG(a.u)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

V=41.424( average)<br />

ΔV = 0.494438 (standard deviation )<br />

ΔΚ ⇔ Δ V/V<br />

Intensity fluctuation at half maximum of cross correlated trace between two<br />

lasers can be taken as linearly proportional to the timing jitter. We deduced<br />

the timing jitter is 0.7fs at 1kHz bandwidth over 5s.<br />

29


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Timing jitter of synchronized Ti:Sa lasers<br />

Cross-correlation trace (left) and the intensity fluctuation at half amplitude (right)<br />

The measured cross-correlation trace shows a typical FWHM of about 60 fs,<br />

We deduced the timing jitter is 0.4fs at 1kHz bandwidth over 5s.<br />

Jinrong.Tian, Zhiyi Wei et al, OL, Aug 15. (2005).<br />

30


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Active Synchronized two different lasers<br />

1064nm ML Nd:YVO4<br />

Laser, 1W/7ps<br />

ML Ti:S Laser,<br />

700mW/50fs<br />

Cavity length<br />

Control<br />

816MHz<br />

PLL<br />

68MHz<br />

PLL<br />

Spectrometer<br />

Poster<br />

BBO<br />

length<br />

adjustment<br />

Sum frequency<br />

laser<br />

Oscilloscope<br />

ps laser:1064nm/488ps/10W, fs laser: 800nm/50fs/600mW<br />

31


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Sum frequency generation<br />

spots distribution<br />

through a triple<br />

prism<br />

The 1064nm technique 810nmopen 532nm a new way 460nm to generate stable 405nm<br />

femtosecond laser pulse at new wavelength.<br />

32


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Outline<br />

Femtosecond generation<br />

Synchronization<br />

Carrier-envelope phase control<br />

Amplification<br />

Route toward attosecond world<br />

Summary<br />

33


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Carrier-envelope phase of fs laser<br />

Control the carrier envelope phase<br />

offset (CEO) is a very important<br />

topics in ultrafast science and<br />

frequency metrology.<br />

E(ω,t) =E0(t)exp(iω t+φ)<br />

CEO lead to the comb shift<br />

Δφ =2πδ /F<br />

F<br />

Repetition rate<br />

f=c /2nl<br />

Longitudinal mode frequency<br />

fn=δ + nF<br />

f 2n –2f n = δ + 2nF - 2( δ + nF )=-δ<br />

⎯D.J.Jones et al., Science 288, 635(2000)<br />

F<br />

F<br />

δ<br />

Δφ<br />

f n =nF+δ f 2n =2nF+δ<br />

f<br />

34


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

λ/2<br />

f =nF + δ<br />

Self-reference technique<br />

Fiber<br />

λ/2<br />

Home-made fs<br />

Ti:sapphire laser<br />

λ/2<br />

APD<br />

KTP APD<br />

Grating<br />

Stabilizing laser cavity length for locking frep Modulating pump power for locking δ<br />

35


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Layout of experiment for CEP control<br />

PLL<br />

for CEP<br />

Grating<br />

PLL<br />

for frep TV-Rb clcok<br />

10MHz<br />

PCF<br />

antenna<br />

36


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Intensity / a.u.<br />

1<br />

0.1<br />

0.01<br />

White continuum with<br />

photonic crystal fiber<br />

200 400 600 800 1000 1200<br />

Wavelength / nm<br />

Intensity(arb.units)<br />

10 3<br />

10 2<br />

10 1<br />

400 500 600 700 800 900 1000 1100<br />

Wavelength(nm)<br />

37


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Locking of repetition rate<br />

Without Locking<br />

Locking<br />

38


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Comparison<br />

Before locking:~10 -7 After locking:~10 -12<br />

The uncertain of repetition rate: ΔF=10MHz×10-12 ~10mHz<br />

We need more high precision clock<br />

39


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Increasing of beat frequency signal<br />

S/N dB<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

0.0 20.0 40.0 60.0 80.0 100.0 120.0<br />

Frequency(MHz)<br />

About 50 dB<br />

40


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Locking of CE phase with TV-Rb clock<br />

RF frequency(MHz)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

f rep<br />

Without Locking<br />

f ceo<br />

RF frequency(MHz)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

Without locking<br />

Locking<br />

0 50 100 150 200 250 300 350<br />

Time(s)<br />

Locking<br />

0<br />

0 50 100 150 200 250 300 350<br />

Time(s)<br />

41


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Performance of beat frequency with PCF<br />

Ultrabroaden spectrum, cover from blue to<br />

infrared range.<br />

No special need for laser power and pulse<br />

duration.<br />

Very sensitive for beam point direction, any slight<br />

shift will lead to the CEP control unstable.<br />

The surface of fiber easily to be damaged, can<br />

not running for long time.<br />

Larger transmission loss lead to the lower output<br />

power.<br />

A complicate electronics is necessary to control<br />

the repetition rate and CEP frequency<br />

42


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

DFG: Difference frequency generation:<br />

fDFG = f1 -f2 = (δ+mfrep )-(δ+nfrep )= (m-n)frep f − f DFG = [( m − n)<br />

f rep + δ ) − ( m − n)<br />

f rep = δ<br />

I (f)<br />

Optical frequency comb with DFG<br />

f 2 =δ+nf rep<br />

δ<br />

f 1 =δ+mf rep<br />

fDFG = (m-n)frep frep frep Beat signal<br />

DFG of the ultra-broaden band<br />

laser spectrum will generate a<br />

self-stabilized femtosecond<br />

frequency comb at wavelength<br />

around 1.5micrometer.<br />

f<br />

DFG: 627-1000nm⇒1680nm(ω)<br />

Free CE phase, f1 = nfrep SHG: 1680nm ⇒840nm(2ω)<br />

Free CE phase, f2 = 2nfrep M. Zimmermann et al., MPQ; T. Fuji et al., TUW; S. M. Foreman et al., JILA&MIT<br />

43


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Experimental layout for dispersion adjust<br />

M3<br />

W<br />

Auto-Correlator<br />

F M1 X M2<br />

M4<br />

M5<br />

W<br />

OC<br />

Ag<br />

Dispersion<br />

compensation<br />

M1~M5:Chirped Mirrors; W: wedges; OC: 10% Output coupler<br />

X: 2mm Ti:sapphire crystal; F: 50mm focus lens.<br />

44


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Pump laser<br />

Experimental of DFG<br />

AOM<br />

7fs Ti:s Oscillator<br />

CM<br />

PD<br />

W<br />

PP-MgO:LN<br />

CM: Chirped Mirrors, W:Wedges, LF: Long pass filter,<br />

PD: Photo diode for infrared, AOM: AO modulator<br />

LF<br />

Ag Mirror<br />

Ag Mirror<br />

45


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Intensity(arb.unit)<br />

1<br />

0.1<br />

0.01<br />

1E-3<br />

Beat frequency spectrum<br />

1100 1200 1300 1400 1500 1600 1700<br />

Wavelength(nm)<br />

Spectrum of DF laser<br />

Power spectrum(dBm)<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

0 40 80 120 160 200<br />

Frequency(MHz)<br />

Beat frequency (fceo: 30dB)<br />

46


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Control Cs clock with<br />

GPS receiver<br />

GPS receiver<br />

Cs clock<br />

10MHz<br />

Function<br />

generator~<br />

20GHz<br />

10MHz<br />

Control F<br />

Control fceo<br />

47


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Electronics system for frequency locking<br />

Cs clock<br />

Function<br />

generator<br />

Fs laser<br />

To PZT<br />

8GHz<br />

electrical<br />

pulse<br />

160MHz<br />

signal<br />

8GHz<br />

Band filter<br />

8GHz<br />

Band filter<br />

GPS receiver<br />

Low pass<br />

amplifier<br />

Low pass<br />

filter<br />

Low pass<br />

filter<br />

comparator<br />

48


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Stability of Cs clock<br />

49


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Locking repetition rate with high accuracy<br />

Locking the 50th<br />

harmonic of repetition<br />

rate 8GHz with the<br />

function generator, It<br />

leads to an accuracy<br />

of μHz<br />

Frequency(uHz)<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

0 200 400 600 800<br />

Time(s)<br />

We design and made the PLL electronics to control cavity length by PZT<br />

50


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

CEO Frequency(MHz)<br />

20.4<br />

20.2<br />

20.0<br />

19.8<br />

19.6<br />

Locking CEP by control the AOM<br />

Before locking:<br />

The fluctuation of fceo<br />

within 5min is about 3MHz<br />

0 200 400 600 800 1000<br />

Time(s)<br />

After locking:<br />

The fluctuation of fceo<br />

within 17min is only 2Hz<br />

23000000<br />

22500000<br />

22000000<br />

21500000<br />

21000000<br />

20500000<br />

20000000<br />

19500000<br />

19000000<br />

18500000<br />

18000000<br />

00:00:00.0<br />

00:00:25.1<br />

20000021.5<br />

20000021<br />

20000020.5<br />

20000020<br />

20000019.5<br />

20000019<br />

20000018.5<br />

20000018<br />

00:00:50.3<br />

00:01:15.4<br />

00:01:40.9<br />

00:02:06.2<br />

00:02:31.5<br />

00:02:56.8<br />

00:03:22.1<br />

00:03:47.4<br />

00:04:12.6<br />

00:04:37.9<br />

00:05:03.0<br />

00:05:28.1<br />

21:59:22.0<br />

22:00:33.0<br />

22:01:43.0<br />

22:02:53.0<br />

22:04:04.0<br />

22:05:14.0<br />

22:06:25.0<br />

22:07:35.0<br />

22:08:46.0<br />

22:09:56.0<br />

22:11:07.0<br />

22:12:17.0<br />

22:13:27.0<br />

22:14:38.0<br />

22:15:48.0<br />

22:16:59.0<br />

We use the Menlo Inc electronics to control the CEP frequency by AOM<br />

系列1<br />

51<br />

系列1


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Fluctuations after optimized locking<br />

Frequency(mHz)<br />

180<br />

150<br />

120<br />

90<br />

60<br />

30<br />

0<br />

B<br />

-30<br />

0 100 200 300 400 500 600<br />

A<br />

Time(s)<br />

A. The fluctuation of locked repetition rate<br />

B. The fluctuation of locking fceo 52


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Outline<br />

Femtosecond generation<br />

Synchronization<br />

Carrier-envelope phase control<br />

Amplification<br />

Route toward attosecond world<br />

Summary<br />

53


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Chirped Pulse Amplification<br />

D. Strickland and G. Mourou, Optics Commun. 56, 219 (1985)<br />

54<br />

t


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Development of laser power<br />

P<br />

th<br />

hν<br />

= Δν<br />

g<br />

σ<br />

55


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

TW laser facilities at IOP<br />

Extreme Light-I(1999)<br />

Pulse Energy:36mJ<br />

Duration:25fs<br />

Peak Power:>1.4TW<br />

Extreme Light-II (2001)<br />

Pulse Energy: 640mJ<br />

Duration:31fs<br />

Peak Power: ~20TW<br />

56


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Solid State Amplifier Desires<br />

High Efficiency in Final Amplifier<br />

Run above the saturation fluency<br />

J sat<br />

Produce the shortest duration pulses<br />

Run near the fluorescence limit<br />

No Damage<br />

Run below the dielectric breakdown limit< 5x10 9 W/cm 2<br />

57


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Maximum Intensity at Saturation<br />

Material<br />

Jsat<br />

(J/cm2 )<br />

Δtmin<br />

(fs)<br />

Maximum output intensity = J sat / Δt min<br />

Imax<br />

(W/cm2 )<br />

Nd:Silicate 6 60 10 14<br />

Yb:Silicate 32 20 1.6x10 15<br />

Ti:Sapphire 1 3 3.3x10 14<br />

However, damage threshold


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

General Chirped Pulse Amplification<br />

Short pulse<br />

oscillator<br />

t<br />

Dispersive delay line<br />

Solid state amplifiers<br />

Saturation is Reached Safely<br />

Δt stretch = J sat /I damage<br />

Nd:Glass ~ 1 ns<br />

Ti:Al2O3 ~ 200 ps<br />

Peak Power Increase Proportional to<br />

Δtstretch > 1000<br />

t<br />

t<br />

Inverse delay line<br />

t 59


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Martinez Stretcher<br />

Classification of stretcher<br />

aberration, can not<br />

compress pulse shorter<br />

than 50fs<br />

Öffner Stretcher<br />

free aberration, most widely<br />

use<br />

Material Stretcher<br />

Use high dispersion material,<br />

suit for 10fs⇒ ~10ps<br />

Graing1<br />

Red<br />

L1(f) L2(f)<br />

Blue<br />

L 2f<br />

L<br />

SF57<br />

Graing2<br />

O<br />

60


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

⎡ω<br />

ω ⎢ χ<br />

⎣<br />

' ' L<br />

G(<br />

) exp<br />

c<br />

= ⎜<br />

⎛<br />

⎟<br />

⎞ ω ⎝ ⎠<br />

Gain narrowing effect<br />

⎤<br />

⎥<br />


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Approaches to Gain Narrowing Control<br />

Minimize systems losses<br />

Multi-pass amplifiers with high gain per pass<br />

Seed to the RED of the line center<br />

Regen or multi-pass<br />

Play off saturation pulling against gain shifting<br />

Mix amplifier materials<br />

Different center frequency yields higher overall gain<br />

bandwidth<br />

Regenerative pulse shaping<br />

Correct for the gain narrowing on each pass trip<br />

OPCPA (Optical Parametric CPA)<br />

Large gain bandwidth in parametric amplification<br />

62


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

HR<br />

Spectral Fliter<br />

c<br />

T( ω)=<br />

G( ω )<br />

Regenerative Pulse Shaping<br />

Thin Film Polarizer<br />

Amplified Pulse<br />


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Polarizer<br />

Pockels cell<br />

Periscope<br />

10 pass preamplifier<br />

Polarizer<br />

Berek<br />

Z.Cheng ,F.Krausz, Ch.Spielmann, Opt. Commun 201, 145 (2002)


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Seed<br />

pulse<br />

Optical Parametric CPA(OPCPA)<br />

Stretching,<br />

shaping,<br />

timing<br />

BBO, LBO, CLBO, RTP, KTA, KDP, DKDP,YCOB…<br />

Pump<br />

pulse<br />

OPA<br />

Compressor<br />

Laser amplifier is replaced by OPA<br />

Output<br />

pulse<br />

from 100 fs to 10 ns<br />

A.Dubietis, G.Jonušauskas, A.Piskarskas, Opt. Commun, 88, 437 (1992)<br />

65


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

OPCPA VS. CPA BASED ON A GAIN MEDIUM<br />

OPCPA CPA based on Ti:Sa crystal<br />

Gain bandwidth >100THz ~ 30 THz<br />

Single-pass gain ~ 10 6 < 10<br />

B-integral Low < 1.0 High > 1.0<br />

Thermal load Negligible (-> high repetition rate)<br />

Non-thermal lensing effect<br />

Storage of energy Instantaneous<br />

(Strict synchronization ~ ps)<br />

Huge (-> low repetition rate)<br />

Thermal lensing effect<br />

~ µs<br />

( Relaxed synchronization ~ ns)<br />

Pedestal Amplified superfluorescence Amplified spontaneous emission<br />

Gain wavelength Variable Fixed<br />

ADVANTAGES:<br />

Extremely broad gain bandwidth<br />

High gain in single pass<br />

Low thermooptics (high output beam<br />

quality)<br />

High contrast ratio (reduced ASE)<br />

DISADVANTAGES:<br />

No pump energy accumulation (high intensity<br />

pump required)<br />

Losses introduced by idler wave<br />

Limited aperture of nonlinear crystals<br />

Precise pump/signal synch. required


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Shortest pulses from OPCPA by year<br />

[1] A. Dubietis et al, Opt.<br />

Commun. 88, 437 (1992)<br />

[2] V.V. Yakovlev et al,<br />

Opt. Lett. 19, 2000 (1994)<br />

[3] G. Cerullo et al, Appl.<br />

Phys. Lett. 71, 3616 (1997)<br />

[4] A. Shirakawa et al, Opt.<br />

Lett. 23, 1292 (1998)<br />

[5] A. Shirakawa et al,<br />

Appl. Phys. Lett. 74, 2268<br />

(1999)<br />

[6] A. Baltuška et al, Opt.<br />

Lett. 27, 306 (2002)<br />

OPA crystal<br />

– BBO only<br />

67


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

General design of multi-100TW laser<br />

Oscillator<br />

20fs/5nJ/80MHz<br />

Stretcher<br />

>600ps<br />

Compressor<br />

20J/40fs/500TW<br />

Deformable mirror<br />

1.5DF/3×10 20<br />

1nJ<br />

φ2<br />

φ160<br />

200mJ/cm 2<br />

500 mJ/ 532nm/10Hz<br />

Single frequency laser<br />

500MW/cm 2<br />

OPCPA,<br />

2mJ/10 Hz<br />

φ60<br />

10 6<br />

φ14/7<br />

Power amplification<br />

>30 J/single shot<br />

J p =2J/cm 2<br />

~100J/ 532nm pump laser<br />

Single shot/about 20 min<br />

3J /532nm/1Hz<br />

J p =2J/cm 2<br />

Second stage<br />

~1J/800nm, 1Hz<br />

φ40<br />

68


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Arrangement for multi-100TW laser<br />

50J/527nm<br />

Pump laser<br />

50J/527nm<br />

pump laser<br />

CW 532nm<br />

pump laser<br />

fs oscillator<br />

500mW/20fs<br />

Offern<br />

Stretcher<br />

3J/532nm/1Hz<br />

Amplifier II<br />

Amplifier I<br />

500mJ/10Hz<br />

532nm SF Laser<br />

1m<br />

Final amplifier<br />

~30J/800nm/20min<br />

600mJ/30fs<br />

~20TW<br />

Compressor I Target<br />

Chamber I<br />

Area for power supply, 1X6 meters Control Platform<br />

Room size:<br />

14X8 meters<br />

Compressor II<br />

Pre-pulse<br />

Generator<br />

20J/40fs<br />

~500TW<br />

Target<br />

Chamber II<br />

Door<br />

Clear<br />

door 69


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Doubled trip stretcher<br />

70


71<br />

Calculation on the stretcher dispersion<br />

2<br />

2<br />

2<br />

3<br />

0<br />

0 )<br />

sin<br />

(<br />

1<br />

'<br />

2<br />

/<br />

2<br />

68<br />

.<br />

7<br />

'<br />

'<br />

)<br />

2<br />

ln<br />

4<br />

(<br />

γ<br />

λ<br />

π<br />

λ<br />

−<br />

−<br />

−<br />

•<br />

=<br />

Φ<br />

=<br />

d<br />

L<br />

R<br />

d<br />

c<br />

t<br />

t<br />

t out<br />

Phase and pulse duration<br />

after stretcher<br />

)<br />

sin(<br />

sin<br />

)<br />

sin<br />

sin<br />

(<br />

2<br />

))<br />

cos(<br />

arcsin(<br />

)<br />

sin(<br />

sin<br />

)<br />

sin<br />

sin<br />

(<br />

)<br />

sin(<br />

sin<br />

)<br />

sin<br />

sin<br />

(<br />

sin<br />

)<br />

sin(<br />

sin<br />

)<br />

sin(<br />

2<br />

sin<br />

)<br />

sin(<br />

(<br />

5<br />

0<br />

5<br />

5<br />

4<br />

5<br />

0<br />

5<br />

0<br />

5<br />

5<br />

4<br />

5<br />

0<br />

0<br />

5<br />

4<br />

51<br />

5<br />

4<br />

3<br />

2<br />

3<br />

1<br />

2<br />

1<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

π<br />

θ<br />

θ<br />

λ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

θ<br />

ω<br />

ω<br />

+<br />

+<br />

−<br />

−<br />

+<br />

−<br />

+<br />

+<br />

−<br />

+<br />

+<br />

+<br />

−<br />

−<br />

+<br />

+<br />

−<br />

+<br />

−<br />

=<br />

Φ<br />

+<br />

=<br />

Φ<br />

R<br />

l<br />

R<br />

d<br />

d<br />

R<br />

l<br />

R<br />

R<br />

l<br />

R<br />

R<br />

R<br />

R<br />

c<br />

c<br />

P<br />

c<br />

国家自然科学基金委员会<br />

数理学部实验物理讲习班


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

72


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Nd:YAG laser<br />

5ns/0.1J/532nm<br />

DG535<br />

Ti:S laser<br />

20fs/5nJ/800nm<br />

E-O Gate<br />

Stretcher: 0.6ns<br />

Design and experiment of OPCPA<br />

100mJ<br />

Telescopy×0.18<br />

Telescopy×0.01<br />

0.4J<br />

Delay Dealy<br />

Telescopy×0.3<br />

DM1 DM2 DM3 DM4<br />

LBO<br />

OPAI<br />

After OPAI<br />

~60μJ<br />

Telescope×3.8<br />

LBO<br />

OPAII<br />

compressor<br />

Problems: 1.Stable single frequency operation<br />

2.High energy necessary because of low efficiency<br />

?<br />

800nm<br />

73


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

A new design with high efficiency<br />

Mode-Locking<br />

Nd:YVO4 laser, 100nJ<br />

500ps/1064nm/80MHz<br />

PLL Circuit for<br />

synchronized ps<br />

and fs laser<br />

Circuit for control<br />

cavity length<br />

Ti:S laser,5nJ<br />

20fs/800nm/80MHz<br />

under construction<br />

Regenerative<br />

amplifier pump<br />

with DL<br />

TV-Rb clock<br />

10MHz<br />

stretcher~ 500ps<br />

2mJ<br />

1kHz<br />

PC Dazzler<br />

Multi<br />

pass amp<br />

100mJ<br />

10Hz<br />

SHG<br />

50mJ<br />

532nm<br />

2mJ/10Hz<br />

800nm<br />

74


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

M 1<br />

LD pumped actively mode-locking<br />

PZT<br />

The locked<br />

phase loop<br />

circuit<br />

Nd:YAG AOM OC<br />

1746mm<br />

Nd:YAG laser<br />

pin<br />

82MHz referred<br />

frequency<br />

Diagram of the all solid state<br />

active-mode locking Nd:YAG<br />

laser. The frequency is 82MHz<br />

strength coefficient<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-1000 -500 0 500 1000<br />

d l i ( )<br />

The autocorrelation trace<br />

of mode locked pulse. The<br />

full width is about 488 psec.<br />

75


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

PC1 TFP<br />

From Stretcher<br />

λ/2<br />

MR4<br />

H<br />

MR3<br />

MR7<br />

Pump: 30mJ/532nm<br />

Output:~2mJ/800nm<br />

Regenerative amplifier<br />

To oscilloscope for monitor<br />

the amplified train trace From 1kHz pump laser<br />

PH3<br />

MP1 MR8 F3<br />

Ti:S<br />

PH4<br />

λ/4<br />

F1<br />

F2<br />

FI2<br />

MP3<br />

Glan Prism<br />

MP2<br />

MR2<br />

.H<br />

MR6<br />

PIN MR5 To Main Amp<br />

MR1<br />

76


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Spectrum Shaping Control with AOPDF<br />

Fa st Axis<br />

(mode 1)<br />

Acoustic<br />

wave<br />

Slow Axis (mode 2)<br />

Acoustic-Optic Programmable Dispersive Filter for spectral<br />

amplitude and phase control<br />

77


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Spectra with shaping technique<br />

Seeding pulse<br />

Amplified pulse without<br />

AOPDF work<br />

Amplified pulse with<br />

AOPDF work<br />

78


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Multi-pass amplifier<br />

From Reg.<br />

1Hz Nd:YAG<br />

2.6J@532nm<br />

Glan prism<br />

PC 3 PC 4<br />

Glan prism<br />

With 2.6J pump laser energy, amplified laser of 700mJ<br />

was obtained, corresponding to the efficiency of 27%<br />

λ/2<br />

79


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Layout of 100J pump laser system<br />

80


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

81


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

~<br />

0.2<br />

7米<br />

~<br />

0.2 0.1<br />

1<br />

米<br />

~<br />

0.3<br />

9米<br />

IR5<br />

MP1<br />

M7<br />

M4<br />

M11<br />

IR2<br />

晶体φ85×20mm<br />

MP3<br />

MP7<br />

MP2<br />

MP6<br />

M3<br />

M8<br />

M12<br />

IR4<br />

Design of final amplifier<br />

~2.16米<br />

MP4<br />

MP5<br />

PC<br />

The lower efficiency of amplification infer to the possible ASE 82<br />

IR3<br />

~2.6米<br />

~2.0米<br />

~2.16米<br />

M10<br />

<br />

Pumped the final amplifier with 80J laser at 527nm, laser<br />

energy only 5J was obtained at initial experiment.<br />

M9<br />

M2<br />

MP9<br />

M6<br />

MP10<br />

M5<br />

~ ~<br />

0.5 0.6<br />

米 米<br />

~<br />

0.7<br />


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Eliminate ASE and PL with index match material<br />

Transverse Gain<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

3<br />

4 5<br />

Beam Diameter /cm<br />

N = N = 1.76 N = N = 1<br />

1 Ti: sapphire 2 air<br />

( N − N )<br />

= = 7.6% = 1/ = 13<br />

R<br />

2<br />

1 2<br />

2<br />

( N1+ N2)<br />

G R<br />

Using thermoplastic (Cargille Laboratories, Inc.) material<br />

can well eliminate the effect.<br />

Amplified energy of 20J was obtained finally<br />

6<br />

7<br />

8<br />

83


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Layout of vacuum compressor<br />

Vacuum pumps<br />

Space size of the chamber:900×700mm,<br />

Incident angle: 24 degree,diffractive angle: 51degree<br />

84


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

85


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Gratings of compressor<br />

86


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

The record works on TW laser<br />

The highest peak power—850W<br />

JAERI, Japan, K.Yamakawa et al,<br />

The highest power density— 0.8X1022W/cm2 Michigan University, USA, S.Bahk et al, CLEO2004<br />

The highest peak power from OPCPA—500TW<br />

Institute of Applied Physics, Russian<br />

The highest contrast ratio— 10-11 French, USA (Michigan PW)<br />

The shortest pulse duration— 1TW/10fs,10TW/12fs<br />

AIST Japan, H.Takada et al<br />

87


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

88


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Optimize CPA laser with new techniques<br />

Improved beam quality for higher focusable intensity<br />

correct wave-front distortion, adaptive optics system.<br />

Spectrum shaping for shorter pulse duration<br />

SLM (spatial liquid crystal modulator)<br />

Acoustic-optics modulator<br />

Phase controlling for stronger nonlinear interaction<br />

Carrier Envelope Phase control.<br />

Eliminate the ASE for a higher contrast ratio.<br />

Spatial filter, Pockels Cells.<br />

OPCPA-Optical Parametric Chirped Pulse Amplification<br />

DCPA,Absorber<br />

Contrast ratio: 10<br />

89<br />

-10 ~10-11 CLEO: 2005


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Outline<br />

Femtosecond generation<br />

Synchronization<br />

Carrier-envelope phase control<br />

Amplification<br />

Route toward attosecond world<br />

Summary<br />

90


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

91


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Compression laser pulse to 5fs<br />

1kHz amplifier<br />

Femtolaser Inc<br />

25 fs<br />

1.8 mJ<br />

Ag mirror Chirped<br />

mirror<br />

Ne gas<br />

Wedge pair<br />

Chirped<br />

mirror<br />

5 - 7 fs<br />

0.9 mJ<br />

Ag mirror Ag mirror<br />

92


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Generation of attosecond HHG X ray laser<br />

Drescher et al. Science 291 1923 (2001)<br />

93


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Generation of fs sub-harmonic waves<br />

Harmonic Wave<br />

Order<br />

Waves Relation<br />

Wavelength (nm)<br />

Pulse Duration<br />

(fs)<br />

Single Max<br />

Power (mW)<br />

Multi-Waves<br />

Power (mW)<br />

Multi-Waves<br />

Power (mW)<br />

ω<br />

2580<br />

2ω<br />

Cr:Mg2 SiO4 1290<br />

20<br />

500<br />

200<br />

100<br />

3ω<br />

Ti:Al2 O3 860<br />

10<br />

1000<br />

400<br />

200<br />

4ω<br />

2ω +<br />

2ω<br />

645<br />

50<br />

200<br />

200<br />

100<br />

5ω<br />

3ω +<br />

2ω<br />

516<br />

50<br />

300<br />

300<br />

300<br />

6ω<br />

3ω<br />

+3ω<br />

430<br />

20<br />

400<br />

400<br />

200<br />

7ω<br />

3ω<br />

+4ω<br />

2ω<br />

+5ω<br />

370<br />

80<br />

100<br />

100<br />

8ω<br />

2ω<br />

+6ω<br />

3ω<br />

+5ω<br />

323<br />

80<br />

200<br />

100<br />

94


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Coherent synthesization for sub-fs pulse<br />

1200nm<br />

2ω<br />

800nm<br />

3ω<br />

600nm<br />

4ω<br />

480nm<br />

5ω<br />

400nm<br />

6ω<br />

Assump the duration is 5fs for each pulse,<br />

the coherent synthesization will lead to sub-1fs<br />

laser pulse.<br />

95


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Summary<br />

Novel technologies for femtosecond laser<br />

generation, synchronization, phase control and<br />

amplification are reviewed.<br />

We developed an oscillator with CM technique,<br />

pulse of as short as 7fs was directly generated.<br />

As our best knowledge, this is the simplest laser<br />

configuration for sub-10fs laser pulse.<br />

Passive and active synchronization with low<br />

timing jitter were developed, a feasiable new<br />

way to generate femtosecond laser pulse by sum<br />

frequency was proposed<br />

96


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Difference frequency the ultrabroaden<br />

spectrum with a PP-MgO:LN crystal, we obtained<br />

a beat frequency with S/N ratio of about 30dB.<br />

Locking the signal and repetition rate to a Cs<br />

clock with GPS receiver, we demonstrated a<br />

frequency comb with uncertainty of 2×10-15 Base on our previous works on TW Ti:sapphire<br />

lasers, a new facility (Extreme III) was designed.<br />

With the home-designed pump laser, the system<br />

will be capable of peak power of multi-100TW.<br />

97


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Acknowledgement for Collaborators<br />

Jie Zhang, Professor of IOP<br />

Staffs:<br />

Prof Yuxin Nie, Naicheng Shen,<br />

Dr Hao Teng, Mr Dehua Li, Prof Zhiguo Zhang<br />

Post-doctor,<br />

Zhaohua Wang, Qiang Du<br />

Graduated Ph D Students:<br />

Hainian Han (TsingHua Uni), Weijun Ling(Xian IOPM)<br />

Jinrong Tian(BTU, Beijing), Yulei Jia (Shang Dong Uni)<br />

Ph Students:<br />

Peng Wang, Yanying Zhao, Jiangfeng Zhu, Huan Zhao,<br />

Wei Zhang, Binbin Zhou, Xin Zhong and Changwen Xu<br />

98


国家自然科学基金委员会<br />

数理学部实验物理讲习班<br />

Thank You for your attention!<br />

99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!