22.08.2013 Views

Power Allocation and User Satisfaction-Based Switching Method in ...

Power Allocation and User Satisfaction-Based Switching Method in ...

Power Allocation and User Satisfaction-Based Switching Method in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Power</strong> <strong>Allocation</strong> <strong>and</strong> <strong>User</strong> <strong>Satisfaction</strong>-<strong>Based</strong><br />

<strong>Switch<strong>in</strong>g</strong> <strong>Method</strong> <strong>in</strong> Cognitive Radio MIMO System<br />

Jaebum Cho, Sungjeen Jang, Wonsik Jung, Jaemoung Kim<br />

INHA-WiTLAB, INHA University<br />

253 Yonghyun-dong, Nam-gu, Incheon, Korea<br />

{jaebum.cho, sungjeen.jang, wonsik}@witlab.kr, jaekim@<strong>in</strong>ha.ac.kr<br />

Abstract—Secondary users (SUs) should have power constra<strong>in</strong>ts<br />

because primary users (PUs) should not be <strong>in</strong>terfered by SUs <strong>in</strong><br />

cognitive radio (CR) network. Therefore it is important for SUs<br />

to maximize throughput <strong>and</strong> ensure quality of service (QoS) on<br />

the premise of generat<strong>in</strong>g no <strong>in</strong>terference to PUs. In this paper,<br />

SUs are equipped with multiple antennas. Multiple-<strong>in</strong>put<br />

multiple-output (MIMO) wireless communication systems can<br />

offer high data rate or reliability through spatial multiplex<strong>in</strong>g or<br />

diversity. Therefore we present a method which user satisfactionbased<br />

on switch<strong>in</strong>g between spatial multiplex<strong>in</strong>g <strong>and</strong> transmit<br />

diversity to maximize total user satisfaction. When we use spatial<br />

multiplex<strong>in</strong>g, user satisfaction is formulated as a function with<br />

data rate <strong>and</strong> power consumed. In case we use transmit diversity,<br />

user satisfaction is formulated as a function with reliability <strong>and</strong><br />

power consumed. For estimat<strong>in</strong>g reliability, we provide a novel<br />

bit error rate (BER) equation. And we use different power<br />

allocation method <strong>in</strong> each case. We apply capped water-fill<strong>in</strong>g<br />

method for spatial multiplex<strong>in</strong>g <strong>and</strong> Lagrangian method for<br />

transmit diversity. Simulation results show that proposed<br />

switch<strong>in</strong>g scheme <strong>in</strong>crease user satisfaction. And we study the<br />

effect of <strong>in</strong>terference of PU on the performance<br />

Keywords: cognitive radio, MIMO, power allocation, switch<strong>in</strong>g<br />

I. INTRODUCTION<br />

In recently years, with the rapid development of various<br />

wireless systems, the dem<strong>and</strong> of radio spectrum has <strong>in</strong>creased.<br />

But this dem<strong>and</strong> is not satisfied because resource of radio<br />

spectrum is limited. To ensure future growth of wireless<br />

system, it is necessary to <strong>in</strong>crease the spectrum efficiency. For<br />

this, CR system is proposed as a new technique [1], [2]. CR<br />

system is designed to improve spectrum efficiency by<br />

allow<strong>in</strong>g opportunistic spectrum access to SUs, on the premise<br />

of generat<strong>in</strong>g no <strong>in</strong>terference to PUs while tak<strong>in</strong>g advantage of<br />

the available spectrum resources. As the PUs have higher<br />

priority <strong>in</strong> us<strong>in</strong>g the spectrum <strong>and</strong> should not be <strong>in</strong>terfered by<br />

SUs, SUs are subject to constra<strong>in</strong>ts. So it is hard for SUs to<br />

maximize the throughput or to ensure the QoS with power<br />

constra<strong>in</strong>t.<br />

One of the techniques which improve throughput or QoS<br />

This work was supported by the National Research Foundation of Korea<br />

(NRF) grant funded by the Korea government M<strong>in</strong>istry of Education, Science<br />

<strong>and</strong> Technology (MEST) (No. 2010-0008000). And this research was also<br />

supported by the M<strong>in</strong>istry of Knowledge Economy (MKE), Korea, under the<br />

Information Technology Research Center (ITRC) support program supervised<br />

by the National IT Industry Promotion Agency (NIPA), (NIPA-2010-C1090-<br />

111-0007).<br />

of SUs is to employ multiple antennas at transmitter <strong>and</strong><br />

receiver. So we can improve quality, capacity <strong>and</strong> reliability of<br />

SUs by employ<strong>in</strong>g MIMO technique. In recent years, there are<br />

some works to improve performance of SUs with a s<strong>in</strong>gle<br />

antenna or multiple antennas. For <strong>in</strong>stance, weighted sum rate<br />

maximization problem for the SUs MIMO broadcast channel<br />

(BC) has been studied under the multi-constra<strong>in</strong>t [3]. In [4],<br />

the ergodic capacity of a s<strong>in</strong>gle SU l<strong>in</strong>k was considered under<br />

the <strong>in</strong>stantaneous or average power constra<strong>in</strong>t. Other works for<br />

power load<strong>in</strong>g <strong>and</strong> jo<strong>in</strong>t beamform<strong>in</strong>g can be founded [5], [6].<br />

In this paper, switch<strong>in</strong>g between spatial multiplex<strong>in</strong>g <strong>and</strong><br />

transmit diversity is proposed because it is clear that there is a<br />

tradeoff between multiplex<strong>in</strong>g <strong>and</strong> diversity <strong>in</strong> MIMO system.<br />

To combat the impact of fad<strong>in</strong>g on the error rate, diversity or<br />

transmit diversity techniques are employed. The pr<strong>in</strong>ciple of<br />

diversity is to transmit same <strong>in</strong>formation over multiple<br />

antennas, <strong>and</strong> then the received signals on all antennas are<br />

comb<strong>in</strong>ed to <strong>in</strong>crease the signal quality [7]. On the other h<strong>and</strong>,<br />

to <strong>in</strong>crease transmission rate or capacity of the communication<br />

system, spatial multiplex<strong>in</strong>g is employed. The pr<strong>in</strong>ciple of<br />

multiplex<strong>in</strong>g is to divide data stream <strong>in</strong>to multiple antennas,<br />

<strong>and</strong> each substream is transmitted <strong>and</strong> received over a<br />

different antenna to <strong>in</strong>crease the capacity [8]. The scheme<br />

proposed <strong>in</strong> [10] uses the m<strong>in</strong>imum Euclidean distance, which<br />

can be used to estimate the BER, to switch between<br />

multiplex<strong>in</strong>g <strong>and</strong> diversity <strong>in</strong> MIMO system <strong>and</strong> the scheme<br />

proposed <strong>in</strong> [11] uses received signal-to-<strong>in</strong>terference-plusnoise<br />

ratio (SINR), which can be used to estimate the<br />

throughput, to switch between multiplex<strong>in</strong>g <strong>and</strong> diversity <strong>in</strong><br />

MIMO system. Similarly, conventional switch<strong>in</strong>g schemes<br />

consider just one term as criterion. We consider comb<strong>in</strong>ation<br />

with power consumption. Thus we have to use different<br />

switch<strong>in</strong>g criterion. We propose a user satisfaction-based<br />

switch<strong>in</strong>g scheme. It is expected that the proposed user<br />

satisfaction-based switch<strong>in</strong>g scheme can <strong>in</strong>crease user<br />

satisfaction than a scheme with spatial multiplex<strong>in</strong>g or<br />

transmit diversity that is solely employed.<br />

New metric of user satisfaction is <strong>in</strong> the form of numerical<br />

value which represents comb<strong>in</strong>ation of power consumption<br />

<strong>and</strong> achievable data rate, reliability. For example, if users<br />

prefer high data rate, power efficiency is lower, whereas if<br />

users prefer high power efficiency, data rate is lower. Previous<br />

user satisfaction has two terms, data rate satisfaction <strong>and</strong><br />

power consumption satisfaction [9]. However the <strong>in</strong>fluence of<br />

channel fad<strong>in</strong>g <strong>and</strong> <strong>in</strong>terference from PUs <strong>in</strong> CR networks


don’t guarantee reliability of SUs l<strong>in</strong>k. Therefore, we consider<br />

reliability as well as data rate <strong>and</strong> power consumption. In other<br />

words, we consider target data rate <strong>and</strong> target BER related to<br />

reliability satisfaction. In case we use transmit diversity, we<br />

provide a new BER equation of Space-Time Block Cod<strong>in</strong>g<br />

(STBC), <strong>and</strong> then estimate BER for reliability.<br />

We apply two difference power allocation methods to<br />

maximize user satisfaction <strong>in</strong> each case, data rate <strong>and</strong><br />

reliability satisfaction. For data rate, allocated power is set by<br />

water-fill<strong>in</strong>g method <strong>and</strong> optimal power level of water-fill<strong>in</strong>g<br />

is updated by an iterative algorithm. For reliability,<br />

Lagrangian function <strong>and</strong> Karush-Kuhn-Tucker (KKT)<br />

conditions are applied.<br />

The rema<strong>in</strong>der of paper is organized as follows. CR system<br />

model <strong>and</strong> formulate optimization problem with power<br />

constra<strong>in</strong>t <strong>and</strong> channel allocated power constra<strong>in</strong>t are<br />

presented <strong>in</strong> Section II. In Section III, we consider data rate<br />

problem, BER equation expression <strong>in</strong> STBC-MIMO system<br />

<strong>and</strong> power allocation algorithm for orthogonal transmission.<br />

Simulation results of proposed system are given <strong>in</strong> Section IV.<br />

Conclusions are given <strong>in</strong> the last section.<br />

A. System Model<br />

II. SYSTEM MODEL<br />

Consider a CR-MIMO system where K SUs coexist with L<br />

PUs. And we assume the availability of a set of N channels.<br />

SUs can receive <strong>and</strong> transmit over multiple channels. SUs are<br />

equipped with Nr receive antennas <strong>and</strong> Nt transmit antennas.<br />

The transmit-receive signal model from the SU to another SU<br />

can be represented as:<br />

y=Hx+H x +z (1)<br />

where y denotes received signal vector. H = [h11, …, hij]<br />

denotes the channel matrix with hij be<strong>in</strong>g the channel response<br />

from SUi to the SUj. x is the transmit signal vector. The<br />

channel ga<strong>in</strong> is represented by hij=aijbij/(1+dij 2 ). dij denote the<br />

distance between SUi’s transmitter <strong>and</strong> SUj’s receiver. aij 2<br />

follows the lognormal distribution with mean 1 <strong>and</strong> bij follows<br />

the complex Gaussian distribution with zero mean <strong>and</strong> unit<br />

variance. H =[h 1, …, h L] denotes channel matrix where h L is<br />

the channel response from PUs’s transmitter to the SU, x is<br />

transmit signal vector from PUs. Channel ga<strong>in</strong> is h l=(d ij/d l) 2 α l,<br />

dl denotes the distance between PU’s transmitter <strong>and</strong> SU’s<br />

receiver. And we assume that all SUs are at the same distance<br />

dl. α l is modeled as circularly symmetric complex Gaussian<br />

(CSCG) r<strong>and</strong>om variables (RVs) with mean zero <strong>and</strong> variance<br />

1. z is the Gaussian noise vector whose entries are assumed to<br />

be <strong>in</strong>dependent Gaussian RVs with mean zero <strong>and</strong> variance σ 2 .<br />

Similar to [9], K SUs are r<strong>and</strong>omly deployed <strong>in</strong> a unit<br />

area <strong>and</strong> are try<strong>in</strong>g to access the vacant channels. Each user<br />

has a power constra<strong>in</strong>t P k max , k = 1, …, K. There is also a<br />

constra<strong>in</strong>t on the amount of power that can be allocated <strong>in</strong><br />

each channel, P n mask , n = 1, …, N.<br />

We consider the case with a s<strong>in</strong>gle PU. And we assume<br />

block fad<strong>in</strong>g channel model, i.e., channel matrix H, H are<br />

fixed dur<strong>in</strong>g each transmission block <strong>and</strong> change<br />

<strong>in</strong>dependently from one block to another accord<strong>in</strong>g to ergodic<br />

r<strong>and</strong>om process.<br />

B. Problem Formulation<br />

In this paper, we consider the problem of switch<strong>in</strong>g<br />

between multiplex<strong>in</strong>g <strong>and</strong> diversity. So we def<strong>in</strong>e two user<br />

satisfactions equations.<br />

tar<br />

max<br />

S f ( R , R ) ( 1<br />

) g(<br />

P , P )<br />

<br />

k,<br />

mul k mul k k<br />

k k k<br />

tar<br />

max<br />

S f ( B , B ) ( 1<br />

) g(<br />

P , P )<br />

<br />

k,<br />

div k div k k<br />

k k k<br />

In [9], it considers data rate <strong>and</strong> power consumption terms,<br />

i.e. (2). However the phenomena of channel fad<strong>in</strong>g <strong>and</strong><br />

<strong>in</strong>terference from PUs <strong>in</strong> CR networks don’t guarantee<br />

reliability of SUs l<strong>in</strong>k. Therefore, we consider reliability as<br />

well as data rate <strong>and</strong> power consumption. (2) is applied when<br />

multiplex<strong>in</strong>g is selected, (3) is applied when diversity is<br />

selected.<br />

We assume kth SU has an expected target data rate, Rk tar ,<br />

expected target BER, Bk tar . Where γ k is a weighted factor for<br />

control between power consumption satisfaction <strong>and</strong> other two<br />

satisfactions. Small γ k implies that users focus on sav<strong>in</strong>g its<br />

battery energy while accept<strong>in</strong>g a lower data rate or reliability.<br />

On other h<strong>and</strong>, large γ k means that users focus on enhanc<strong>in</strong>g<br />

its data rate or reliability with a short high battery life. Data<br />

rate satisfaction fmul(Rk, Rk tar ), BER satisfaction fdiv(Bk, Bk tar )<br />

<strong>and</strong> power consumption satisfaction g(Pk, Pk max ) are def<strong>in</strong>ed<br />

as:<br />

f<br />

f<br />

mul<br />

div<br />

tar<br />

1<br />

Rk<br />

Rk<br />

tar <br />

( Rk<br />

, Rk<br />

) R<br />

<br />

k<br />

tar<br />

0 Rk<br />

R<br />

tar<br />

k<br />

R<br />

k<br />

( B , B<br />

k<br />

tar<br />

k<br />

1<br />

<br />

) log( Bk<br />

)<br />

tar<br />

log(<br />

Bk<br />

)<br />

B<br />

k<br />

B<br />

B<br />

tar<br />

k<br />

tar<br />

k<br />

B<br />

k<br />

<br />

1<br />

max P<br />

max<br />

<br />

k<br />

g( Pk<br />

, Pk<br />

) 1<br />

0 P<br />

max<br />

k P<br />

<br />

k<br />

P<br />

k<br />

First term of user satisfaction (2), (3) can be conventional<br />

data rate satisfaction (


Fig. 1. <strong>Switch<strong>in</strong>g</strong> between sprtial multiplex<strong>in</strong>g <strong>and</strong> transmit diversity<br />

based on user satisfaction<br />

<br />

s.<br />

t.<br />

max S(<br />

P)<br />

K<br />

k 1<br />

N<br />

P<br />

<br />

<br />

n1<br />

P<br />

P<br />

kn<br />

kn<br />

P<br />

P<br />

mask<br />

n<br />

max<br />

k<br />

We consider orthogonal transmission, one channel can be<br />

occupied by only one user, to allocate channel. Next section,<br />

we show appropriated power allocation method for data rate<br />

<strong>and</strong> reliability.<br />

III. TRANSMIT POWER ALLOCATION<br />

In this section, we consider power allocation methods for<br />

data rate problem <strong>and</strong> reliability problem to improve total user<br />

satisfaction. <strong>Power</strong> allocation method for data rate is similar to<br />

[9]. In case reliability problem, STBC for transmit diversity is<br />

applied <strong>and</strong> we estimate BER related to reliability by<br />

formulat<strong>in</strong>g a new equation.<br />

A. Data rate Problem<br />

Data rate problem is expla<strong>in</strong>ed <strong>in</strong> detail <strong>in</strong> [9]. So we<br />

simply expla<strong>in</strong> this part. First, the achievable data rate of SUk<br />

with multiple antennas is<br />

R<br />

k<br />

<br />

N<br />

<br />

mk<br />

kn<br />

n1<br />

t1<br />

<br />

2 <br />

t Pknt<br />

log <br />

<br />

1<br />

<br />

2 <br />

<br />

A={α kn} is channel allocation matrix. P knt= 0 if α kn= 0.<br />

After we apply s<strong>in</strong>gular value decomposition (SVD) on Hkn,<br />

i.e, Hkn=U V, then take power allocation on mt = m<strong>in</strong>(Nt, Nr)<br />

parallel subchannels. The channel ga<strong>in</strong>s are the diagonal<br />

elements of , λ t, t=1,…,mk.<br />

Performance of SUs can be affected by <strong>in</strong>terference from<br />

PUs. Thus, we additionally consider <strong>in</strong>terference from PUs to<br />

ensure QoS of SUs. Apply<strong>in</strong>g the QR decomposition to the<br />

channel matrix H of SUs, <strong>and</strong> we can write H=QR, where Q =<br />

[q1, …, qM] has orthogonal columns, <strong>and</strong> def<strong>in</strong>e M as the rank<br />

2 2 L H H of H. ςi =ς + l=1 p lqi (h lh l )qi is the <strong>in</strong>terference-plus<br />

noise power [6].<br />

We use capped water-fill<strong>in</strong>g method to allocate power each<br />

users. Allocated power is Pknt=m<strong>in</strong> max Lk- ς2 2 mask λt ,0 ,Pnt .<br />

If SUs are equipped with two transmit-receive antennas,<br />

power constra<strong>in</strong>t for first antenna is same as the case of s<strong>in</strong>gle<br />

antenna. However power constra<strong>in</strong>t for second antenna is<br />

Pn mask m<strong>in</strong>us allocated power at first antenna.<br />

Optimal power level Lk satisfy<strong>in</strong>g all constra<strong>in</strong>ts is<br />

Lk=m<strong>in</strong>([Lk P ,Lk R ,Lk o ]).<br />

1) Lk o : if the condition holds that when Pk max is used, the<br />

achievable data rate Rk Rk tar .<br />

Total user satisfaction<br />

2) Lk P : when allocat<strong>in</strong>g all power Pk max<br />

3) Lk R : achieves Rk tar<br />

We propose a channel-by-channel optimization (CBCO)<br />

method [12]. We outl<strong>in</strong>e the algorithm to maximize total user<br />

satisfaction. First, set l = 0 <strong>and</strong> we choose an <strong>in</strong>itial channel<br />

allocation matrix Al, <strong>and</strong> then power allocation matrix Pl is<br />

found to maximize each user satisfaction based on the optimal<br />

power level Lk. the achieved total user satisfaction is denote<br />

by Sl. The process repeats until the algorithm converges Sl −<br />

Sl−1


equipped with 2 2 antennas. PU’s transmit power is p l=10dB<br />

<strong>and</strong> distance ratio is dij/dl=0.5. We can also know performance<br />

degradation by effect of PU <strong>in</strong>terference. If a channel is<br />

allocated to the user with the smallest noise floor, then largest<br />

contribution can be obta<strong>in</strong>ed towards total user satisfaction.<br />

On the other h<strong>and</strong>, if channel is allocated to the user with the<br />

largest noise floor, then smallest contribution can be obta<strong>in</strong>ed<br />

towards total user satisfaction.<br />

B. Reliability Problem<br />

For MPSK digital demodulation, we assume that<br />

wireless channel is flat Rayleigh fad<strong>in</strong>g environment. The<br />

conditional probability density function (pdf) of STBC-<br />

MIMO system is presented as [13] :<br />

<br />

m n<br />

STBC 2<br />

( <br />

n,<br />

R | X ) Q 2C<br />

n R K M b<br />

x<br />

c<br />

, <br />

k <br />

j1<br />

i1<br />

Pe c<br />

<br />

where k=log2M, KM=ks<strong>in</strong> 2 ( π<br />

M ), X={x1,1,…,xn,m}, xij=αi,j <strong>and</strong> αij is path ga<strong>in</strong> from <strong>in</strong>dependent complex Gaussian<br />

r<strong>and</strong>om variables. Specially, for x≥0, we approximate Qfunction<br />

as [14].<br />

Q proposed<br />

approx<br />

i,<br />

j<br />

1<br />

2 1<br />

2<br />

( x,<br />

1, 2 ) : exp( 1x<br />

) exp( <br />

2 x ) <br />

12<br />

4<br />

In STBC-MIMO system, estimated BER can be expressed<br />

through substitut<strong>in</strong>g (9) <strong>in</strong>to (10).<br />

<br />

<br />

<br />

<br />

2<br />

B ( 1<br />

2 ) <br />

k<br />

k<br />

where Φ1= 1<br />

12 exp -2ρ1Cn,Rc K Pk 2 2<br />

M<br />

ς<br />

2 λ1+λ2 ,<br />

i<br />

Φ2= 1<br />

4 exp -2ρ2Cn,Rc K Pk 2 2<br />

M<br />

ς<br />

2 (λ1+λ2) .<br />

i<br />

We also def<strong>in</strong>e the <strong>in</strong>terference-plus noise power,<br />

2 2 L H H ςi =ς + l=1 p lqi h lh l qi [6]. We substitute (11) <strong>in</strong>to (3),<br />

<strong>and</strong> then <strong>in</strong>to (7). The Lagrangian function of the equation is<br />

given by.<br />

<br />

k<br />

L(<br />

P,<br />

,<br />

v)<br />

<br />

log( B<br />

tar<br />

(<br />

P<br />

2<br />

log (<br />

) <br />

<br />

k<br />

max<br />

1<br />

P ) v(<br />

P<br />

k<br />

<br />

2<br />

<br />

)<br />

<br />

<br />

mask<br />

P )<br />

k<br />

2<br />

<br />

Where <strong>and</strong> v are Lagrangian coefficients. The KKT<br />

conditions are listed as:<br />

<br />

1<br />

3 3<br />

3 exp<br />

<br />

<br />

) 6k<br />

1<br />

3exp<br />

v 0<br />

( 2 1Pk<br />

3)<br />

<br />

( P ) <br />

k<br />

tar<br />

log( B 2 1 k 3<br />

<br />

<br />

<br />

<br />

<br />

( ) 0<br />

max<br />

P P <br />

Total user satisfaction<br />

3.8<br />

3.6<br />

3.4<br />

3.2<br />

3<br />

2.8<br />

2.6<br />

2.4<br />

k<br />

mask<br />

Pk<br />

v( P ) 0 <br />

where Φ3 = −2Cn ,R c KM (λ<br />

2<br />

1+λ2 2<br />

)<br />

ς<br />

2 .<br />

i<br />

We rearrange Eq. (13) for Pk. allocated power to each SUs<br />

is given by (16). Each antenna can be allocated same power<br />

Pk/2.<br />

<br />

P k<br />

Y <br />

ln<br />

<br />

3{<br />

(<br />

2 1)<br />

3<br />

Y}<br />

<br />

where Y= λ+v+ (1-γ k)<br />

Pmax log(Btar )<br />

γk 2x2 diversity no PU <strong>in</strong>terference<br />

2x2 diversity with PU <strong>in</strong>terference<br />

2.2<br />

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0<br />

Noise power[dB]<br />

2<br />

1<br />

<br />

2(<br />

) <br />

+ ρ1Φ3<br />

6k .<br />

2<br />

1<br />

3<br />

<br />

The parameter λ <strong>and</strong> v can be obta<strong>in</strong>ed through<br />

substitut<strong>in</strong>g (16) <strong>in</strong>to (14) <strong>and</strong> (15). Without loss of generality,<br />

we can assume v=0. Please note the denot<strong>in</strong>g difference<br />

between Lagrangian multiplier (λ) <strong>and</strong> channel ga<strong>in</strong> λ 1, λ 2 .<br />

Calculated λ is given by<br />

( 2<br />

1)<br />

3<br />

1 3 1<br />

k<br />

max<br />

3exp<br />

( ) 6k<br />

k 3exp<br />

<br />

tar <br />

log( B ) (<br />

2<br />

1)<br />

3<br />

2 1 3 P<br />

<br />

Fig. 3. show total user satisfaction by us<strong>in</strong>g Lagrangian<br />

method with diversity for reliability satisfaction. SUs are<br />

equipped with 2 2 antennas. PU’s transmit power is p l=<br />

10dB <strong>and</strong> distance ratio is dij/dl = 0.5. We can also know<br />

performance degradation by effect of PU <strong>in</strong>terference. Two<br />

cases between data rate <strong>and</strong> reliability have similar graph<br />

pattern. However <strong>User</strong> satisfaction curve for reliability is<br />

gentler than data rate case.<br />

Fig. 3. Comparison of total user satisfaction with diversity


IV. SIMULATION RESULTS OF SWITCHING<br />

In this section, we test the performance of switch<strong>in</strong>g<br />

between multiplex<strong>in</strong>g <strong>and</strong> diversity to improve performance of<br />

SUs communication l<strong>in</strong>k. We use prior user satisfaction value<br />

as switch<strong>in</strong>g criterion. To evaluate the efficiency of proposed<br />

method, we simulate K=4 SUs r<strong>and</strong>omly deployed <strong>in</strong> unit area<br />

<strong>and</strong> N = 7, L = 1, Pn mask = 0.5, Pk max = 2, Rk tar = 8, Bk tar = 0.001,<br />

γ k= 0.5, Nt = Nr = 2. When diversity is selected by switch<strong>in</strong>g<br />

with BPSK modulation, ρ 1,ρ 2 =(0.48, 0.79) [14]. Lower<br />

bound is achievable when no power is allocated. S<strong>in</strong>ce γ k=<br />

0.5, lower bound is 0.5 <strong>and</strong> upper bound is 1 for each users.<br />

We obta<strong>in</strong>ed all results us<strong>in</strong>g Monte Carlo simulations.<br />

The performance improvements of the proposed switch<strong>in</strong>g<br />

system are provided <strong>in</strong> Fig. 4. Fig. 5. First, we consider the<br />

case which ignores the <strong>in</strong>terference from the PU to the SUs.<br />

Fig. 4. shows three curves <strong>in</strong>dicat<strong>in</strong>g multiplex<strong>in</strong>g, diversity<br />

<strong>and</strong> switch<strong>in</strong>g results. The spatial multiplex<strong>in</strong>g <strong>and</strong> transmit<br />

diversity curves cross at approximately noise power = -13dB.<br />

Spatial multiplex<strong>in</strong>g is preferred for noise power < -13dB<br />

while transmit diversity is preferred for noise power > -13dB.<br />

And proposed switch<strong>in</strong>g scheme performs follow<strong>in</strong>g better<br />

one or better than two cases around cross po<strong>in</strong>t.<br />

We next evaluate the effect of the <strong>in</strong>terference from the PU<br />

on the switch<strong>in</strong>g scheme. Fig. 5. shows also three curves.<br />

Aga<strong>in</strong> we consider p l = 10dB <strong>and</strong> dij/dl = 1/2. As expected,<br />

the overall performance is degraded. The spatial multiplex<strong>in</strong>g<br />

<strong>and</strong> transmit diversity curves cross at approximately noise<br />

power = -15dB. The multiplex<strong>in</strong>g curve performs better one at<br />

noise power is smaller than cross po<strong>in</strong>t. However diversity<br />

curve is better at high noise power. Performance of <strong>Switch<strong>in</strong>g</strong><br />

is similar to Fig. 4.<br />

In fact, if two approaches <strong>in</strong> the MIMO channel have same<br />

transmit power, spatial multiplex<strong>in</strong>g performance is better than<br />

transmit diversity one <strong>in</strong> high noise power, s<strong>in</strong>ce spatial<br />

multiplex<strong>in</strong>g has diversity ga<strong>in</strong> on the order of the number of<br />

receive antenna, <strong>in</strong> this case second order, while transmit<br />

diversity has diversity ga<strong>in</strong> on the order of the product of the<br />

number of transmit <strong>and</strong> receive antennas, <strong>in</strong> this case forth<br />

order. But we consider comb<strong>in</strong>ation with power consumption.<br />

So these results are achievable.<br />

We also have to consider <strong>in</strong>terference plus noise power to<br />

PU s<strong>in</strong>ce PU have higher priority <strong>in</strong> CR system. Fig. 6. Show<br />

<strong>in</strong>terference plus noise power to PU <strong>in</strong> each case. We can see<br />

all of cases have same value <strong>in</strong> high noise power <strong>and</strong> little<br />

different value <strong>in</strong> low noise power. But <strong>in</strong> generally, it is<br />

<strong>in</strong>dicated similar value <strong>in</strong> overall noise power. So we can<br />

improve performance of SUs without <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terference<br />

to PU.<br />

V. CONCLUSTION<br />

In this paper, we consider K SUs who have two<br />

constra<strong>in</strong>ts to m<strong>in</strong>imize or no <strong>in</strong>terference to PU <strong>in</strong> an ad hoc<br />

manner, try<strong>in</strong>g to access N available channel. We propose<br />

power allocation methods <strong>and</strong> a user satisfaction-based<br />

switch<strong>in</strong>g between spatial multiplex<strong>in</strong>g <strong>and</strong> transmit diversity<br />

<strong>in</strong> CR-MIMO system.<br />

If the multiplex<strong>in</strong>g is selected by switch<strong>in</strong>g, we formulate<br />

Total user satisfaction<br />

Total user satisfaction<br />

4<br />

3.8<br />

3.6<br />

3.4<br />

3.2<br />

3<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2x2 multiplex<strong>in</strong>g no pu <strong>in</strong>terference<br />

2x2 diversity with no <strong>in</strong>terference<br />

2x2 switch<strong>in</strong>g with no <strong>in</strong>terference<br />

2<br />

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0<br />

Noise power[dB]<br />

Fig. 4. <strong>Switch<strong>in</strong>g</strong> result of multiplex<strong>in</strong>g <strong>and</strong> diversity with no PU<br />

<strong>in</strong>terference<br />

3.8<br />

3.6<br />

3.4<br />

3.2<br />

3<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2x2 multiplex<strong>in</strong>g with pu <strong>in</strong>terference<br />

2x2 diversity with with <strong>in</strong>terference<br />

2x2 switch<strong>in</strong>g with with <strong>in</strong>terference<br />

2<br />

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0<br />

Noise power[dB]<br />

Fig. 5. <strong>Switch<strong>in</strong>g</strong> result of multiplex<strong>in</strong>g <strong>and</strong> diversity with PU<br />

<strong>in</strong>terference<br />

<strong>in</strong>terference plus noise power to PU<br />

15<br />

10<br />

5<br />

multiplex<strong>in</strong>g<br />

diversity<br />

proposed switch<strong>in</strong>g method<br />

0<br />

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0<br />

Noise power[dB]<br />

Fig. 6. Interference plus noise power to PU


user satisfaction <strong>in</strong> both data rate <strong>and</strong> power consumption. The<br />

otherwise, diversity is selected; we formulate user satisfaction<br />

<strong>in</strong> both reliability <strong>and</strong> power consumption. Then s<strong>in</strong>ce tradeoff<br />

between diversity <strong>and</strong> multiplex<strong>in</strong>g, switch<strong>in</strong>g scheme should<br />

be an effective approach to enhance the systems.<br />

As power allocation methods, we use capped water-fill<strong>in</strong>g<br />

method <strong>and</strong> CBCO algorithm for data rate satisfaction. On the<br />

other h<strong>and</strong>, for reliability satisfaction, Lagrangian method <strong>and</strong><br />

KKT conditions are applied. For reliability representation, we<br />

estimate BER by us<strong>in</strong>g Q-function <strong>in</strong> STBC-MIMO system.<br />

The performance improvement of proposed switch<strong>in</strong>g scheme<br />

<strong>and</strong> performance comparisons are demonstrated through<br />

simulations.<br />

REFERENCES<br />

[1] Federal Communications Commission, “Facilitat<strong>in</strong>g opportunities for<br />

flexible, efficient, <strong>and</strong> reliable spectrum use employ<strong>in</strong>g cognitive radio<br />

technologies, notice of proposed rule mak<strong>in</strong>g <strong>and</strong> order, FCC 03-022,”<br />

Dec. 2003.<br />

[2] S. Hayk<strong>in</strong>, Cognitive Radio: bra<strong>in</strong>-empowerd wireless communications.<br />

Selected Areas <strong>in</strong> Communications, IEEE Journal on, 23(2):201-220, Feb.<br />

2005.<br />

[3] Lan Zhang, Yan X<strong>in</strong>, <strong>and</strong> Y<strong>in</strong>g-Chang Liang, “Weighted Sum Rate<br />

Optimization for Cognitive Radio MIMO Broadcast Channels,” IEEE<br />

Trans. on Wireless Commun., vol. 8, no. 6, pp. 2950-2959, June 2009<br />

[4] A. Ghasemi <strong>and</strong> E. S. Sousa, “Fundamental limits of spectrum-shar<strong>in</strong>g <strong>in</strong><br />

fad<strong>in</strong>g environment,” IEEE Trans. Wireless Commun, vol. 6, no. 2, pp.<br />

649-658, Feb. 2007.<br />

[5] Gaurav Bansal, Md. Jahangir Hossa<strong>in</strong>, <strong>and</strong> Vijay K. Bhargava, ”Adaptive<br />

<strong>Power</strong> Load<strong>in</strong>g for OFDM-based Cognitive Radio Systems,”<br />

Communications, 2007. ICC '07. IEEE International Conference on, pp.<br />

5137-5142, Aug 2007<br />

[6] Lan Zhang, Y<strong>in</strong>g-Chang Liang, <strong>and</strong> Yan X<strong>in</strong>, “Jo<strong>in</strong>t Beamform<strong>in</strong>g <strong>and</strong><br />

<strong>Power</strong> <strong>Allocation</strong> for Multiple Access Channel <strong>in</strong> Cognitive Radio<br />

Networks,” IEEE Journal. Sel. Areas Commun, pp. 38-51, Jan 2008<br />

[7] S. M. Alamouti, “A simple transmit diversity technique for wireless<br />

communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp.<br />

1451–1458, Oct. 1998.<br />

[8] G. J. Fosch<strong>in</strong>i, “Layered space-time architecture for wireless<br />

communication <strong>in</strong> a fad<strong>in</strong>g environment when us<strong>in</strong>g multiple antennas,”<br />

Bell Labs. Tech. J., vol. 1, no. 2, pp. 41–59, 1996.<br />

[9] Qi Cheng <strong>and</strong> Bhargav Kollimarla, “Jo<strong>in</strong>t Channel <strong>and</strong> <strong>Power</strong> <strong>Allocation</strong><br />

based on <strong>User</strong> <strong>Satisfaction</strong> for Cognitive Radio,” CISS, pp. 579-584, June<br />

2009.<br />

[10] Robert W. Heath, Jr. <strong>and</strong> Arogyaswami J. Paulraj, “<strong>Switch<strong>in</strong>g</strong> Between<br />

Diversity <strong>and</strong> Multiplex<strong>in</strong>g <strong>in</strong> MIMO Systems,” IEEE Trans. on<br />

Commun, pp. 962-968, June 2005.<br />

[11] Jui Teng Wang, “Throughput-<strong>Based</strong> <strong>Switch<strong>in</strong>g</strong> Between Diversity <strong>and</strong><br />

Multiplex<strong>in</strong>g <strong>in</strong> MIMO Systems With Cochannel Interference,” IEEE<br />

Trans. on Veh Technol, pp. 3850-3855, Aug 2009<br />

[12] P. K. Varshney, Distributed Detection <strong>and</strong> Data Fusion, New York:<br />

Spr<strong>in</strong>ger-Verlag, 1997.<br />

[13] M<strong>in</strong>gjie Zhuang <strong>and</strong> Donghui Guo, “BER Expression of MPSK <strong>in</strong><br />

Rayleigh Fad<strong>in</strong>g Channels with STBC,” IEEE International Workshop,<br />

June 2007.<br />

[14] M<strong>in</strong>Chul Ju, Hyoung-Kyu Song <strong>and</strong> Il-M<strong>in</strong> Kim, “Exact BER Analysis<br />

of Distributed Alamouti’s Code for Cooperative Diversity Networks,”<br />

IEEE Trans. on Commun, vol. 57, no. 8, pp. 3280-2390, Aug 2009.<br />

[15] S. Boyd <strong>and</strong> L. V<strong>and</strong>enberghe, Convex Optimization. Cambridge, UK:<br />

Cambridge University Press, 2004.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!