21.08.2013 Views

75 Years of experience with high dosed blast furnace slag cement ...

75 Years of experience with high dosed blast furnace slag cement ...

75 Years of experience with high dosed blast furnace slag cement ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> Mario de Rooij<br />

<strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

TNO | Innovation for Life<br />

10-12 November 2010, Holmes Beach, FL, USA


2<br />

TNO in brief<br />

The Netherlands Organization for Applied Scientific Research<br />

• Owner: Dutch Government<br />

• Mission:<br />

TNO connects people and knowledge to create innovations that boost<br />

the sustainable competitiveness <strong>of</strong> industry and well-being <strong>of</strong> society<br />

• 4,400 people p p<br />

• 576 M€ turn over in 2009; ± 30 % through government funding<br />

• Active in 7 areas:<br />

• Safety, y security y and defense<br />

• Healthy living<br />

• Energy from solar roads<br />

• Industrial innovation<br />

• Energy<br />

• Investment rather than repair<br />

• Mobility<br />

• Binders from municipal waste<br />

• Built Environment<br />

• Information society Cement Fly ash Municipal waste<br />

Slag ash<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


3<br />

Content<br />

• Slag as product<br />

• No waste product, but quality control tool<br />

• Long history<br />

• Standard for <strong>slag</strong><br />

• Slag as binder material<br />

• Properties <strong>of</strong> <strong>slag</strong> based concrete<br />

• Low heat <strong>of</strong> hydration, strength development, freeze-thaw,<br />

resistance against chloride and ASR<br />

• Sales and use<br />

• Conclusions<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


4<br />

What is <strong>slag</strong>?<br />

The production process<br />

Table: Composition range <strong>of</strong> main<br />

components in <strong>slag</strong> (mass %)<br />

Component Europe NL<br />

CaO<br />

SiO2 Al2O3 M O<br />

30 – 45<br />

30 – 44<br />

5 – 16<br />

4 17<br />

~ 37<br />

~ 33<br />

~ 15<br />

MgO 4 – 17 ~ 11<br />

Production:<br />

100 ton pig iron results in<br />

20 – 25 ton <strong>slag</strong>g<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

Iron ore, ore<br />

Coal,<br />

…<br />

Pipes for<br />

11 hot air<br />

Rapid Skimmer<br />

granulation<br />

Slag<br />

Pig iron<br />

Molten iron<br />

and <strong>slag</strong><br />

Fig.: Schematic <strong>of</strong> a <strong>blast</strong> <strong>furnace</strong><br />

November 2010, Holmes Beach, FL, USA<br />

Top filling<br />

system<br />

Water<br />

cooled<br />

pipes<br />

Hot<br />

air


5<br />

Slag: Not a waste product!<br />

But a quality control tool<br />

Quality demand to produce steel:<br />

Low sulfur content in pig iron (< 00.035%) 035%)<br />

• Achieved by moving sulfur to the <strong>slag</strong><br />

• Controlled by chemical composition <strong>of</strong> <strong>slag</strong><br />

CaO MgO<br />

Alkalinity NL: ~ 1.48<br />

SiO<br />

2<br />

• Slag solidifies sooner than iron<br />

• Solidification in <strong>blast</strong> <strong>furnace</strong> ruins process<br />

• Controlling liquidus temperature <strong>of</strong> <strong>slag</strong><br />

• Liquidus q temperature p depends p on CaO, , MgO, g , Al2O 2 3 and SiO 2<br />

• Same components as first point, but work in opposite direction<br />

• Blast <strong>furnace</strong> process is controlled via above two points<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


6<br />

Distinctive blue colour <strong>of</strong> <strong>slag</strong> <strong>cement</strong><br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

• A main purpose <strong>of</strong> <strong>slag</strong> is to<br />

remove sulfur (S) from iron<br />

• In <strong>cement</strong> reaction the S reacts<br />

<strong>with</strong> present Fe and Mg to form<br />

FeS2 and MgS, both blue<br />

coloured products<br />

• Upon reaction <strong>with</strong> oxygen<br />

reaction continuous to form<br />

FFeSO SO4and dMMgSO SO4, which hi h are<br />

both colourless<br />

November 2010, Holmes Beach, FL, USA


7<br />

History line<br />

From <strong>slag</strong> to binder<br />

• 384 – 322 BC Aristotle first notes on making and using <strong>slag</strong><br />

• 1728 Patent <strong>of</strong> John Payne (UK); cast <strong>slag</strong> to produce blocks to<br />

build chimneys<br />

• 1737 Bélidor (France) suggest using <strong>slag</strong> aggregates in ‘concrete’<br />

• 1824 Patent Portland <strong>cement</strong> by Joseph Aspdin<br />

Germany:<br />

• 1853 ‘Discovery’ <strong>of</strong> latent hydraulic action <strong>of</strong> <strong>slag</strong> by a<br />

German <strong>blast</strong> <strong>furnace</strong> process p operator p ( (water cooling) g)<br />

• 1862 Emil Langen has first results to activate <strong>slag</strong><br />

• 1888 Opening <strong>of</strong> first <strong>blast</strong> <strong>furnace</strong> <strong>cement</strong> works<br />

• 1901 Request q for <strong>cement</strong> standard <strong>with</strong> up p to 30% <strong>slag</strong> g<br />

• 1907 Request for <strong>cement</strong> standard <strong>with</strong> up to 85% <strong>slag</strong><br />

• 1909 Cement standard <strong>with</strong> up to 30% <strong>slag</strong><br />

• 1917 Cement standard <strong>with</strong> up to 85% <strong>slag</strong><br />

• 1917 Blast <strong>furnace</strong>-<strong>cement</strong> has equal q pperformance<br />

to Portland<br />

<strong>cement</strong><br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


8<br />

Slag history in the Netherlands<br />

From <strong>slag</strong> to binder<br />

• 1921 - 1929Noordersluis IJmuiden using German <strong>blast</strong> <strong>furnace</strong> <strong>cement</strong><br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


9<br />

Locks <strong>of</strong> IJmuiden<br />

Building periods<br />

- 1876<br />

- 1896<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

1921 - 1929<br />

November 2010, Holmes Beach, FL, USA


10<br />

Typical Mix Design<br />

Constituents<br />

Lock head Chamber walls and floors<br />

Liters Ratio (V/V) Liters Ratio (V/V)<br />

OPC (CEM ( I) )<br />

225 1<br />

Tras (pozzolanic) 56 ¼<br />

GGBFS (CEM III) -- -- 240 1 1/8<br />

Fine sand 193 0,85 193 0,9<br />

Coarse sand 387 17 1,7 387 18 1,8<br />

Gravel<br />

Water<br />

- 1896<br />

700<br />

??<br />

3,1<br />

??<br />

700<br />

??<br />

3,3<br />

??<br />

Northern lock <strong>of</strong> IJmuiden<br />

400 x 50 m<br />

- 1876<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

1921 - 1929<br />

November 2010, Holmes Beach, FL, USA


11<br />

Slag history in the Netherlands<br />

From <strong>slag</strong> to binder<br />

• 1921 - 1929Noordersluis IJmuiden using German <strong>blast</strong> <strong>furnace</strong> <strong>cement</strong><br />

• 1924 Production <strong>of</strong> steel in Netherlands using <strong>blast</strong> <strong>furnace</strong><br />

• 1931 Production <strong>of</strong> first <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong> in Netherlands<br />

IJmuiden (CEMIJ) ( )<br />

• 1966 Opening <strong>of</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong> plant Rozenburg<br />

(ROBUR)<br />

• 1970s Blast <strong>furnace</strong> <strong>slag</strong> > 50% <strong>of</strong> <strong>cement</strong> market in Netherland<br />

• 1996 IIntroduction t d ti CEM III/A 52,5 52 5 for f faster f t strength t th development<br />

d l t<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


12<br />

European standard for <strong>slag</strong>: EN 15167 (2006)<br />

‘Ground granulated <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> for use in concrete, mortar and grout’<br />

Main requirements:<br />

Table: Chemical requirements <strong>slag</strong> Table: Physical requirements <strong>slag</strong><br />

Component Requirement<br />

CaO + MgO + SiO2 (CaO + MgO)/ SiO2 MgO<br />

Sulfide<br />

SSulfate lf t<br />

LOI<br />

Moisture content<br />

2/3<br />

1.0<br />

18 % (m/m)<br />

2.0 % (m/m)<br />

25%( 2.5 % (m/m) / )<br />

3.0 % (m/m)<br />

1.0 % (m/m)<br />

Blast <strong>furnace</strong> controlled on:<br />

NL: ~ 1.48<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

Component Requirement<br />

Blaine 2<strong>75</strong> m2 /kg<br />

Start binding Twice <strong>of</strong><br />

ref <strong>cement</strong><br />

A ti it ffi i t *<br />

Activity coefficient *<br />

• 7 days<br />

• 28 days<br />

45 %<br />

70 %<br />

* Activity coefficient based on<br />

50% ref <strong>cement</strong> and 50% <strong>slag</strong><br />

November 2010, Holmes Beach, FL, USA


13<br />

Effect <strong>of</strong> glass phase<br />

on strength development (Dölber, 1961)<br />

3 3 days days (M<br />

MPa)<br />

Com mpressive s trength at<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Concrete <strong>with</strong> 67% <strong>slag</strong><br />

2<br />

x10 CaO Al2O<br />

SiO 10 Al O<br />

2<br />

3<br />

3<br />

1.26<br />

1.18<br />

0 20 40 60 80 100<br />

Gl Glass amount t (%)<br />

(%)<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


14<br />

Activation <strong>of</strong> <strong>slag</strong> reaction<br />

Two principle routes<br />

• Increase pH<br />

• Dependency on<br />

dissolution<br />

<strong>of</strong> the<br />

glass phase<br />

• Sulphate<br />

• Reaction <strong>of</strong> sulphate p <strong>with</strong> aluminum fraction to form needle<br />

structures like ettringite;<br />

• Build up structure quickly<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


15<br />

Properties: ‘Heat <strong>of</strong> hydration’<br />

Compared to Portland <strong>cement</strong> low heat <strong>of</strong> hydration<br />

Thermal Power P (mW/gg)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Portland <strong>cement</strong><br />

<strong>cement</strong><br />

Blast <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

0<br />

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

Time (Hour)<br />

November 2010, Holmes Beach, FL, USA


16<br />

(MPa)<br />

Norm strength s<br />

Properties: ‘Strength development’<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

2 days<br />

28 days<br />

CEM I 32,5 R<br />

CEM I 52,5 R<br />

365 days<br />

CEM III/B 42,5 N LH HS<br />

CEM III/A 42,5 42 5 N<br />

50% <strong>slag</strong><br />

70% <strong>slag</strong><br />

1 10 100 1000<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

Time (days)<br />

November 2010, Holmes Beach, FL, USA


17<br />

A different hardened <strong>cement</strong> structure<br />

Portland matrix is less dense than <strong>slag</strong> matrix<br />

8 year old C 3S paste;<br />

w/c = 0.5<br />

Portland Blast <strong>furnace</strong> <strong>slag</strong><br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

Pictures credits: I.G. Richardson<br />

1 year old <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> 70%;<br />

w/c = 0.5<br />

November 2010, Holmes Beach, FL, USA


atrix<br />

Ma<br />

Chloride<br />

18<br />

Dense matrix results in<br />

High durability <strong>of</strong> <strong>slag</strong> <strong>cement</strong><br />

CEM I (Portland <strong>cement</strong>) CEM III (Blast <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong>)<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


19<br />

Slag effect on chloride ingress<br />

• Concrete sample kept 1 year in 3 M NaCl bath<br />

• Next analyzed the slice at 20-40 mm depth<br />

• Plot total chloride content<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

Slice <strong>of</strong> a core<br />

November 2010, Holmes Beach, FL, USA


20<br />

Graph from durability performance doc.<br />

Based on rapid chloride migration data (RCM)<br />

* 10 /s)<br />

12 (m 2 /<br />

DRCM<br />

40<br />

30<br />

20<br />

10<br />

CEM I<br />

CEM III > 50% <strong>slag</strong><br />

OPC, 18-30% fly ash<br />

fly ash, extrapolated<br />

0<br />

030 0.30 035 0.35 040 0.40 045 0.45 050 0.50 055 0.55 060 0.60 065 0.65<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

w/b ratio<br />

November 2010, Holmes Beach, FL, USA


21<br />

Very good ASR resistance<br />

• The dense microstructure is complement <strong>with</strong>:<br />

• A reduced pore size<br />

• Reduced mobility <strong>of</strong> the alkalis<br />

• Using g <strong>slag</strong> g reduces the total alkalis in the system y<br />

• There are less alkalis to start <strong>with</strong> (compared to Portland <strong>cement</strong>)<br />

• Creates a lower pH<br />

• Causes a slower dissolution rate <strong>of</strong> silica<br />

• Slag consumes alkalis in the hydration process<br />

• Making them unavailable for the alkali silica reaction<br />

• Dutch Department <strong>of</strong> Transportation / Army corps <strong>of</strong> engineers (RWS)<br />

demands use <strong>of</strong> CEM III/B in all important structures.<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA


22<br />

Spalling <strong>of</strong> <strong>slag</strong> concrete (freeze/thaw)<br />

Seems related to carbonation <strong>of</strong> <strong>slag</strong> concrete<br />

• Calcium source:<br />

• Portland <strong>cement</strong> reaction <strong>with</strong> Ca(OH) 2 (volume expansion)<br />

• Slag <strong>cement</strong> reaction <strong>with</strong> Ca from C-S-H (volume reduction)<br />

• CaCO 3 product p formed:<br />

• Metastable forms: Stable form:<br />

Aragonite<br />

Vaterite<br />

• In (Dutch) practice<br />

• Much less damage than in freeze/thaw tests<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

Calcite<br />

November 2010, Holmes Beach, FL, USA


23<br />

Slag in the <strong>cement</strong> code: EN 197-1 (2000)<br />

Composition ranges <strong>of</strong> constituents<br />

CEM III / B<br />

CEM III / A<br />

CEM II / B-T<br />

CEM II / B-V<br />

CEM II / B-S<br />

CEM II / A-V<br />

CEM II / A-S<br />

CEM I<br />

Clinker<br />

Slag<br />

Cli Clinker k<br />

Sl Slag<br />

Clinker<br />

Clinker<br />

Clinker<br />

Clinker<br />

Clinker<br />

Clinker<br />

Slag<br />

Slag<br />

0 20 40 60 80 100<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

Slag<br />

Fly ash (type F)<br />

Trass<br />

Clinker<br />

A: 80 - 94<br />

B: 65 - 79<br />

Max. Addition<br />

A: 6 - 20<br />

B: 21 - 35<br />

CEM III (<strong>slag</strong>)<br />

A: 36 - 65<br />

B: 66 - 80<br />

November 2010, Holmes Beach, FL, USA


24<br />

Cemment<br />

use in<br />

NL<br />

Use <strong>of</strong> <strong>cement</strong>s in Netherlands<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

CEM I<br />

CEM III<br />

Fly ash<br />

• 85% <strong>of</strong> our ready ready-mix mix is CEM CEM III<br />

III<br />

• 40% <strong>of</strong> our prefab includes CEM III<br />

10%<br />

0%<br />

GGBS as total <strong>of</strong> <strong>cement</strong> (%)<br />

sales in UK<br />

19<strong>75</strong> 1985 1995 2005<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

Year<br />

November 2010, Holmes Beach, FL, USA


25<br />

Conclusions<br />

High <strong>dosed</strong> <strong>slag</strong> <strong>cement</strong><br />

• Don’t consider it a waste product<br />

• Selling a product quality control<br />

• Properties<br />

• Low heat <strong>of</strong> hydration<br />

• Early strength is much better than generally percieved<br />

• Creates very dense concrete microstructure<br />

• GGood d ddurability bilit resistance i t<br />

• Sales and practice show<br />

• It is used over many decades<br />

• In large quantities<br />

• With great success<br />

<strong>75</strong> <strong>Years</strong> <strong>of</strong> <strong>experience</strong> <strong>with</strong> <strong>high</strong> <strong>dosed</strong> <strong>blast</strong> <strong>furnace</strong> <strong>slag</strong> <strong>cement</strong><br />

November 2010, Holmes Beach, FL, USA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!