20.08.2013 Views

Smirnov (op.) - ICTP

Smirnov (op.) - ICTP

Smirnov (op.) - ICTP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Worksh<strong>op</strong> on theoretical aspects<br />

of neutrino masses and mixing<br />

<strong>ICTP</strong>, Trieste, Italy<br />

September 17 – 23, 2012


Ongoing progress


eaking<br />

T2K 90%<br />

Fogli et al, 1<br />

Daya Bay, 1<br />

Double Chooz, 1<br />

QLC<br />

RENO, 1<br />

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40<br />

sin 2 13<br />

mass ratio


d 23 = ½ - sin 2 23<br />

the key to ( probe)<br />

understand the<br />

underlying physics<br />

NH<br />

MINOS, 1<br />

symmetry<br />

violation<br />

Connection to<br />

1-3 mixing<br />

Quark -Lepton<br />

Complementarity<br />

Fogli et al, 1<br />

SK, 90%<br />

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70<br />

23 ~ /2 - V cb<br />

sin 2 23


SK (NH), 90%<br />

SK (IH), 90%<br />

Fogli et al, 1<br />

MINOS,<br />

1<br />

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70<br />

sin 2 23<br />

QLC


sin 2 13 ~ 0.022<br />

sin 2 13 =<br />

O(1)<br />

m 21 2<br />

m 32 2<br />

``Naturalness’’ of mass matrix<br />

~ ½ sin 2 C Quark Lepton Complementarity<br />

~ ½cos 2 2 23 - symmetry violation<br />

12<br />

Mixing anarchy<br />

Self-complementarity<br />

The same 1-3 mixing with completely different implications


sin 2 13~ ½sin 2 C<br />

Follows from<br />

permutation of<br />

matrices<br />

From charged<br />

leptons<br />

13~ ½ c<br />

First obtained in the context of<br />

Quark-Lepton Complementarity<br />

U 12 ( c) U 23( /2)<br />

Permutation - to reduce the lepton<br />

mixing matrix to the standard form<br />

Maximal from<br />

neutrinos<br />

H. Minakata, A Y S<br />

Related to smallness<br />

of mass


m 2 31 - m 2 31<br />

Resonance in the antineutrino<br />

channel> V -V


MASS<br />

3<br />

2<br />

1<br />

Normal mass hierarchy<br />

m 2 32<br />

m 2 21<br />

?<br />

FLAVOR FLAVOR<br />

Two large mixings<br />

m 2 32 = 2.3 x 10 -3 eV 2<br />

m 2 21 = 8 x 10 -5 eV 2<br />

MASS<br />

2<br />

1<br />

3<br />

e<br />

Inverted mass hierarchy<br />

m 2 21<br />

m 2 23


Precision IceCube Next Generation Upgrade<br />

Denser array<br />

20 new strings (~60 DOMs each)<br />

in 30 MTon DeepCore volume<br />

Few GeV threshold in inner<br />

10 Mton volume<br />

Energy resolution ~ 3 GeV<br />

Existing IceCube strings<br />

Existing DeepCore strings<br />

New PINGU-I strings<br />

125 m<br />

PINGU v2


~ 1/E0.5 = 0.2E Degeneracy


G. L. Fogli<br />

First glimpses?<br />

T . Yanagida<br />

Neutrinoantineutrino<br />

asymmery<br />

CP ~ /2 +/- 0.02<br />

Third way<br />

Key measurement:<br />

amplitudes of the<br />

- oscillations<br />

due to solar and<br />

atmospheric mass<br />

splittings<br />

Do we have predictions for the phase in quark sector?<br />

Why do we think that we can predict leptonic mixing?<br />

Again because of neutrinos are special ? Symmetries?


In the first<br />

approximation<br />

U tbm =<br />

- maximal 2-3 mixing<br />

- zero 1-3 mixing<br />

- no CP-violation<br />

- sin 2 12 = 1/3<br />

Symmetry from mixing matrix<br />

2/3 1/3 0<br />

- 1/6 1/3 - 1/2<br />

- 1/6 1/3 1/2<br />

U tbm = U 23( /4) U 12<br />

L. Wolfenstein<br />

P. F. Harrison<br />

D. H. Perkins<br />

W. G. Scott<br />

3 is bi-maximally mixed<br />

2 is tri-maximally mixed<br />

Uncertainty related<br />

to sign of 2-3 mixing:<br />

23 =


Mixing appears as a result of different ways of the flavor<br />

symmetry breaking in neutrino and charged lepton sectors<br />

Residual<br />

symmetries<br />

G l<br />

M l<br />

diagonal<br />

G f<br />

G<br />

M<br />

TBM-type<br />

the splitting originates from different flavor assignments of<br />

the RH components of N c and l c and different higgs multiplets<br />

?<br />

1<br />

A4 T7 T’<br />

S 4


Deviations from BM due to high order corrections<br />

Complementarity:<br />

implies quark-lepton<br />

symmetry or GUT,<br />

or horizontal symmetry<br />

sin C =<br />

m<br />

m<br />

Self-complementarity relations<br />

Xinyi Zhang Bo-Qian Ma, arXiv:1202.4258<br />

Weak complementarity or<br />

Cabibbo haze<br />

P. Ramond<br />

Altarelli et al<br />

Corrections from high order<br />

flavon interactions generate<br />

Cabibbo mixing and deviation from BM,<br />

GUT is not necessary<br />

sin C = 0.22<br />

as ``quantum’’ of<br />

flavor physics


Similar Ansatz for<br />

structure of mass matrices<br />

Relations between<br />

masses and mixing<br />

The same coupling<br />

strength between<br />

generations<br />

sin 13 ~ ½ sin 12 sin 23<br />

Fritzsch Anzatz<br />

similar to quark sector<br />

3 RH neutrinos with equal<br />

masses <br />

Normal mass hierarhy,<br />

Right value of 13 mixing<br />

Flavor ordering in<br />

mass matrix


Values of elements gradually decrease from m to m ee<br />

corrections wash out sharp<br />

difference of elements of the<br />

dominant -block and<br />

the subdominant e-line<br />

This can originate from power dependence of elements<br />

on large expansion parameter ~ 0.7 – 0.8 .<br />

Another complementarity: = 1 - C<br />

Froggatt-Nielsen?


After many speculations back to good old picture?<br />

High scale seesaw<br />

The same mechanism which explains<br />

smallness of neutrino mass is responsible<br />

for large lepton mixing<br />

Something is<br />

still missed<br />

Difference of quarks and leptons<br />

is related to smallness of neutrino mass


u r , u b , u j ,<br />

d r , d b , d j , e<br />

- Enhance mixing<br />

- Produce zero order mixing<br />

- Screen Dirac mass hierarchies<br />

- Produce randomness (anarchy)<br />

- Seesaw symmetries<br />

- Increase seesaw scale<br />

u r c , ub c , uj c , c<br />

d r c , db c , dj c , e c<br />

S<br />

S S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S S<br />

S S<br />

RH-neutrino<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

Hidden sector


L R<br />

BAU<br />

WDM<br />

Normal<br />

Mass<br />

hierarchy<br />

M. Shaposhnikov et al<br />

Everything below EW scale<br />

small Yukawa couplings<br />

Few 100 MeV<br />

split ~ few kev<br />

- generate light<br />

mass of neutrinos<br />

- generate via oscillations<br />

lepton asymmetry<br />

in the Universe<br />

- can beproduced in<br />

B-decays (BR ~ 10 -10 )<br />

3- 10 kev - warm dark<br />

matter<br />

- radiative decays <br />

X-rays<br />

EW seesaw


cosmology<br />

BUGEY+MINOS<br />

In assumption of<br />

no-oscillations in ND<br />

|U 4| 2 < 0.019 (90% CL) 13 = 11.5 o<br />

LSND/MiniBooNE require:<br />

|U 4| 2 > 0.025<br />

- s mixing<br />

m 41 2 > 0.5 eV 2<br />

or modification of Cosmology:<br />

N = 1.23 (add massless)<br />

= - 1.11<br />

BBN: chemical potential for e<br />

J Hamann et al 1108.4136


T. Schwetz<br />

Hints from νe disappearance<br />

(reactor and gallium anomalies)<br />

Strong tension between disappearance<br />

data and νμ → νe LSND-MiniB signals<br />

(non-observation of νμ disappearance)


m = m a + m<br />

Original active mass<br />

matrix e.g. from see-saw<br />

Induced mass matrix<br />

due to mixing with nu sterile<br />

m can change structure (symmetries) of the original<br />

mass matrix completely (not a perturbation)<br />

Enhance lepton mixing<br />

Be origin of difference of<br />

and


mass<br />

2<br />

3<br />

0<br />

1<br />

sin 2 2 ~ 10 -3<br />

sin 2 2 ~ 10 -1<br />

m 2 31<br />

m 2 21<br />

m 2 dip<br />

s<br />

Very light sterile neutrino<br />

m 0 ~ 0.003 eV<br />

M 2<br />

M Planck<br />

e<br />

- solar neutrino data<br />

DE scale?<br />

M ~ 2 - 3 TeV


pp 7 Be CNO 8 B<br />

e - survival probability from solar<br />

neutrino data vs LMA-MSW solution<br />

HOMESTAKE<br />

low rate<br />

pep<br />

.<br />

SNO<br />

SNO+


No distortion of the energy spectrum<br />

at low energies : the upturn is disfavored<br />

at (1.1 – 1.9) level<br />

This is how new physics may show up<br />

M. Smy<br />

Increasing tension between m 2 21<br />

measured by KamLAND and in<br />

solar neutrinos 1.3 level


BBN:<br />

N = 3.0 +/-0.5<br />

Pettini and Cooke<br />

2012<br />

A. Melchiori<br />

et al 2012<br />

L. Verde


HDM<br />

Direct<br />

connection<br />

New<br />

neutrino<br />

states<br />

Warm DM<br />

Light active<br />

neutrinos<br />

indirect<br />

connection<br />

Mixing pattern<br />

Flavor symmetries<br />

Mechanism of<br />

neutrino mass<br />

generation<br />

ensure stability<br />

of DM particles<br />

new particles<br />

of the Universe<br />

Z 2<br />

right handed<br />

neutrinos<br />

play the role of DM<br />

Neutrinos<br />

and gravitino<br />

as DM<br />

W. Buchmueller<br />

Everything from one


On September 21


Discovery of relatively large 1-3 mixing – important<br />

implications for theory, phenomenology and<br />

experiment. Strong impact on further devel<strong>op</strong>ments.<br />

Mass hierarchy: with NOvA, atmospheric neutrinos<br />

ICAL INO, DeepCore IC, PINGU-I,<br />

supernova neutrinos<br />

Measurements of the deviation of 23 mixing<br />

from maximal, CP- phase, absolute mass scale


NH IH<br />

nu antinu<br />

Earth matter<br />

effect<br />

NOvA Energy spectrs<br />

Neutrino beam<br />

Fermilab-PINGU(W. Winter)<br />

Sterile neutrinos<br />

may help?


MASS<br />

3<br />

2<br />

1<br />

Oscillations<br />

D 31 ~ 2D 32<br />

Matter<br />

effect<br />

Normal hierarchy<br />

32 ij = m 2 ij /2E<br />

31<br />

Mass states can<br />

be marked by<br />

e - admixtures<br />

Inverted hierarchy<br />

31 > 32 31 < 32<br />

Fourier<br />

analysis<br />

makes the e-flavor heavier<br />

changes two spectra differently<br />

2<br />

1<br />

3<br />

31<br />

32<br />

e<br />

S. Petcov<br />

M. Piai


e<br />

E, GeV<br />

100<br />

10<br />

1<br />

0.1<br />

IceCube<br />

IC Deep Core<br />

PINGU-1<br />

0.005<br />

0.03<br />

0.10<br />

contours of constant oscillation<br />

probability in energy- nadir<br />

(or zenith) angle plane<br />

NuFac 2800<br />

LENF<br />

T2KK<br />

CNGS<br />

MINOS<br />

NOvA<br />

T2K<br />

HyperK<br />

OK for CP


Oscillation physics with Huge<br />

atmospheric neutrino detectors<br />

ANTARES<br />

DeepCore<br />

Ice Cube<br />

Oscillations 2.7<br />

Oscillations at high energies 10 –<br />

100 GeV in agreement with<br />

low energy data<br />

no oscillation effect<br />

at E > 100 GeV<br />

Bounds on non-standard<br />

interaction,<br />

Lorentz violation etc<br />

P. Coyle<br />

G. Sullivan


Next step: determination of neutrino mass hierarchy and<br />

CP-violating phase<br />

Establishing the absolute neutrino mass scale, and<br />

Majorana nature among main goals


mass<br />

3<br />

2<br />

1<br />

Leptons<br />

f = U PMNS mass<br />

mass<br />

t<br />

c<br />

u<br />

Quarks<br />

U d = U CKM + U<br />

U = (u, c, t)<br />

combination of down-quarks<br />

produced with a given up quark


symmetry


Daya Bay:<br />

RENO:<br />

QLC<br />

Double CHOOZ<br />

0 0.1 0.2 0.3<br />

0.04<br />

0.092 +/- 0.012<br />

0.116 +/- 0.024<br />

Daya Bay<br />

RENO<br />

sin 2 13<br />

> 7 from 0<br />

Important: Daya Bay, RENO and T2K<br />

(different energies, setups..) give the same value of the angle


GERmanium<br />

Detector<br />

Array<br />

Phase I: 15 kg y: 0.3 – 0.9 eV<br />

Phase II: 37.5 kg y: 0.09 – 0.29 eV<br />

Phase III: 1 ton 0.01 eV<br />

Xe- Observatory<br />

130 Te<br />

Cryogenic Underground<br />

Observatory for Rare Events<br />

CUORE-0


G. L. Fogli<br />

Serious implications<br />

for theory<br />

Non-zero, relatively<br />

Large 1-3 mixing<br />

Substantial deviation<br />

of the 2-3 mixing<br />

from maximal<br />

CP ~<br />

Robust ?


1. Two mass scales in the mass matrix<br />

m 21 2<br />

2. Two large mixing angles<br />

3. Normal mass hierarchy<br />

sin 13 ~<br />

m 31 2<br />

m 21 2 / m31 2 = 0.17 - 0.20<br />

sin 2 13 ~<br />

4. No fine tuning - no equalities of matrix elements<br />

- no particular (for leptons) flavor symmetries,<br />

- normal mass hierarchy<br />

m 21 2<br />

m 32 2<br />

E. Akhmedov,<br />

G. Branco et al 2002<br />

M Frigerio E. Ma, 2006<br />

W. Rodejohann et al,<br />

arXiv 1201.4936


1. - – symmetry of m<br />

sin 2 13 ~ ½cos 2 2 23<br />

- maximal 2-3 mixing<br />

- zero 1-3 mixing<br />

2. breaking of - symmetry by corrections to matrix elements:<br />

|m e - m e | ~ |m - m | = m<br />

3. Normal mass hierarchy<br />

sin 13 ~<br />

m<br />

2m 3<br />

D = ½ - sin 2 23 ~<br />

also: the - symmetry is broken by charged leptons<br />

m<br />

2m 3<br />

D - deviation from<br />

maximal 23 mixing<br />

m ~ m 2


Asymmetry, statistical significance<br />

S tot ~ s n 1/2<br />

Quick estimation<br />

of significance<br />

Effective average<br />

significance in individual bin<br />

Number of bins in<br />

resolution domains<br />

E. Kh Akhmedov,<br />

S Razzaque,<br />

A. Y. S.


Origins: KK states of extra dimensions<br />

Statistical distribution of Yukawa couplings y<br />

(y) ~<br />

1<br />

Y 1+<br />

Y = 10 -6 - 1<br />

M = 10 14 - 10 16 GeV Linear scale<br />

Random simulations, random phases<br />

Anarchical spectrum<br />

B. Feldstein, W. Klemm<br />

arXiv: 1111.6690<br />

reasonable fit<br />

for charged leptons<br />

Seesaw type I


Mass matrix in<br />

the flavor basis<br />

If there is no fine tuning<br />

of 12 and 13 elements<br />

1 1<br />

1 1<br />

sin 13 = ½ sin2 12 cot 23<br />

sin 13 = ½ sin2 12 tan 23<br />


Leptons<br />

U = U bm<br />

U l = U CKM<br />

seesaw<br />

U PMNS = U l + U = U CKM + U bm<br />

q-l symmetry<br />

1-3 mixing is generated by permutation of U 12 and U 23<br />

sin 13 = sin 23 sin C ~ 0.16<br />

sin 12 = sin( C) + 0.5sin C ( 2 - 1- V cbcos )<br />

D 23 = 0.5 sin 2 C + cos 2 C V cbcos = 0.02 +/- 0.04<br />

Quarks<br />

V u = I<br />

V d = VCKM<br />

H. Minakata, A.S.<br />

V quarks = V u + V d = V CKM<br />

sin 2 12 = 0.3345<br />

RGE -> can reduce<br />

M. Schmidt, A.S.


sin 2 13~ sin 2 23 sin 2 C<br />

Bi-maximal mixing?<br />

RGE effect<br />

D. Hernandez,<br />

A.S.<br />

Improves also<br />

predictions<br />

for 1-2 mixing<br />

sin 2 13~ sin 2 23 sin 2 C


If G is von Dyck group D(2, m, p)<br />

For column of the<br />

mixing matrix:<br />

|U i| 2 = |U i| 2<br />

|U i| 2 =<br />

1 – a<br />

4 sin 2 ( k/m)<br />

A is determined from<br />

condition<br />

3 + a 2 - a* - 1 = 0<br />

i p = 1<br />

k, m, p integers which<br />

determine symmetry group<br />

S 4<br />

= 103 0<br />

S 4<br />

D. Hernandez, A.S.<br />

A 4<br />

Also S. F. Ge, D. A. Dicus,<br />

W. W. Repko, PRL 108 (2012) 041801


Based on relation<br />

Bi-maximal mixing<br />

12<br />

Octahedral group<br />

Geometric violation of residual symmetry in the charged<br />

lepton sector (additional rotation from charged leptons)<br />

12<br />

H. J. He, X. J. Xu<br />

1203.2908 [hep-ph]


RH neutrino components have large<br />

Majorana mass<br />

M R ~<br />

M GUT<br />

M GUT 2<br />

M Pl<br />

in the presence<br />

of mixing<br />

1<br />

m = - m D T m D<br />

M GUT ~ 10 16 GeV - possible scale of unification of<br />

EM , strong and weak interactions<br />

Neutrino mass as an evidence of Grand Unification ?<br />

Leptogenesis:<br />

the CP-violating out of<br />

equilibrium decay<br />

N l + H<br />

M R<br />

lepton asymmetry<br />

baryon asymmetry<br />

of the Universe


Mass matrix e mee me me meS … m m<br />

… … m<br />

For m SS ~ 1 eV<br />

S<br />

… … …<br />

tan jS = m jS/m SS<br />

~ 0.2<br />

m ij ~ - tan iStan jS m SS ~ 0.04 m SS<br />

m S<br />

m S<br />

m SS<br />

In general can not be considered as small perturbation!<br />

Effect on mixing is small if<br />

Active neutrino spectrum<br />

is quasi degenerate mSS ~ mab m eS m S m S have<br />

certain symmetry<br />

m SS >> m ab , m aS<br />

J. Barry,<br />

W. Rodejohann,<br />

He Zhang<br />

arXiv: 1105.3911


m 0 ~ 0.003 eV<br />

m 0 =<br />

M 2<br />

M Planck<br />

M ~ 2 - 3 TeV<br />

P. de Holanda,<br />

AYS


m 0 ~ 0.003 eV<br />

mixing<br />

sin 2 2 ~ 10 -3<br />

sin 2 2 ~ 10 -1<br />

M2 m0 =<br />

M M ~ 2 - 3 TeV<br />

Planck<br />

~<br />

~<br />

h v EW<br />

M<br />

v EW<br />

M<br />

h = 0.1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!