20.08.2013 Views

Full text pdf - Tropical Bryology

Full text pdf - Tropical Bryology

Full text pdf - Tropical Bryology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Tropical</strong> <strong>Bryology</strong> 31: 33-42, 2010<br />

Chemosystematics of selected liverworts collected in<br />

Borneo<br />

Agnieszka Ludwiczuk 1,2 & Yoshinori Asakawa 1<br />

1<br />

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho; Tokushima 770-<br />

8514, Japan (asakawa@ph.bunri-u.ac.jp)<br />

2<br />

Chair and Department of Pharmacognosy with Medicinal Plant Unit, Medical University, 1 Chodzki<br />

Str., 20-093 Lublin, Poland (aludwiczuk@pharmacognosy.org)<br />

Abstract: The GC/MS analysis of the volatile components present in diethyl ether extracts of 15<br />

Marchantiophyta species collected in Borneo island indicated that each liverwort species, produce own<br />

characteristic compounds. Most of the studied species elaborate a large quantity of sesquiterpenoids whereas<br />

only a few synthesize monoterpenoids, diterpenoids and aromatic compounds. Sesquiterpenoids, such as<br />

herbertanes, gymnomitranes, chiloscyphanes as well as eudesmane, germacrane and guaiane sesquiterpene<br />

lactones, can be used as chemosystematics markers. Aromatic compounds like methyl benzoates with prenyl<br />

ether group are characteristic of Trichocolea pluma. Diterpenoids belonging to labdane-, clerodane- and<br />

fusicoccane-types are chemical markers of Pleurozia gigantea, while cembranes are characteristic for<br />

Chandonanthus hirtellus and rearranged 7,8-secolabdane-type diterpenoids for Pallavicinia species.<br />

Monoterpenoids, responsible for characteristic fragrance, occur mainly in thalloid liverworts belonging to the<br />

order Marchantiales, here represented by Wiesnerella denudata and Dumortiera hirsuta.<br />

Keywords: Borneo liverworts, chemosystematics, chemotypes, sesquiterpenoids, diterpenoids, aromatic<br />

compounds<br />

Introduction<br />

Liverworts are diverse phylum of small, herbaceous,<br />

terrestrial plants, estimated to comprise about 5,000<br />

species (Crandall-Stotler et al. 2008). These spore<br />

forming plants can grow in almost every available<br />

habitat, most often in humid locations, although there<br />

are desert and arctic species as well. Liverworts are<br />

characterized by the presence of oil bodies, unique<br />

organelles in which terpenoids and aromatic<br />

compounds are accumulated (Flegel & Becker 2000;<br />

Suire et al. 2000). Although the function of the oil<br />

bodies is still controversial, these single-membranebound<br />

organelles are restricted to liverworts and occur<br />

in approximately 90% of taxa (Shaw & Renzaglia<br />

2004). Many different oil bodies types have been<br />

described and/or illustrated, and sometimes used to<br />

organize taxonomic units. Variations that occur in oil<br />

body size, shape, color, number and distribution are<br />

taxonomically informative characters of liverworts<br />

(Schuster 1992a; 1992b; Crandall-Stotler & Stotler<br />

2000). Terpenoids and aromatic metabolites, which<br />

constitute the oil bodies of the Marchantiophyta, are<br />

also of value for taxonomic investigations. A survey<br />

of the scientific literature allows us to find papers<br />

concerning chemosystematics of liverworts in general<br />

(Asakawa 1982; 1995; 2004) as well as<br />

TROPICAL BRYOLOGY 31 (2010)<br />

chemosystematics of liverworts families or genera<br />

(Gradstein et al. 1985; Asakawa et al. 2000; Rycroft<br />

et al. 2001; Rycroft 2003). Recently we reported that<br />

the Greek Fossombronia angulosa (Dicks.) Raddi.<br />

and Tahitian Chandonanthus hirtellus (Web.) Mitt.<br />

produce exactly the same acetogenins as those found<br />

in the brown algae, Dictyopteris species (Ludwiczuk<br />

et al. 2008; 2009). The chemical identity of certain<br />

liverworts with brown algae supports the position of<br />

liverworts as the basal most group of extant land<br />

plants, as has been shown by molecular analyses, e.g.<br />

Qiu et al. (2006).<br />

The southern hemisphere together with tropic region<br />

is characterized by extraordinarily high liverwort<br />

diversity. This area has more endemic liverwort<br />

species than the northern hemisphere (Inoue 1988).<br />

Recent studies concerning biodiversity hotspots have<br />

shown that Madagascar and Sundaland (which<br />

include Borneo island) together with Philippines have<br />

been identified as the leaders among the eight hottest<br />

hotspots in the world, while the <strong>Tropical</strong> Andes and<br />

mentioned Sundaland are the top hotspots in terms of<br />

endemic plants (Myers et al. 2000). In case of the<br />

liverworts, New Zealand has a greater density of those<br />

spore forming plants than any other country. There<br />

are 606 species known in New Zealand and about half


34<br />

LUDWICZUK & ASAKAWA: CHEMOSYSTEMATICS OF SELECTED LIVERWORTS<br />

of them are endemic (Engel & Gleny, 2008). In<br />

tropical America there are an estimated 1350<br />

liverworts species in 188 genera and 41 families<br />

(Gradstein et al., 2001). On the other hand in Europe<br />

there are 490 liverworts species and only 4 endemic<br />

(Söderström & Séneca 2008). These differences could<br />

be explained by different histories of both Earth<br />

hemispheres. In the northern hemisphere the supercontinent<br />

of Laurasia split into North America and<br />

Eurasia which are relatively close today. East-west<br />

winds could carry propagules and maintain at least<br />

sporadic gene flow between distant populations. By<br />

contrast the southern hemisphere history is dominated<br />

by the break-up of Gondwana. This continent split<br />

into Antarctica, Africa, India, Australasia and South<br />

America, which move far apart from each other. A<br />

gene flow between the different continents became<br />

very difficult. From that stage the bryophytes in the<br />

different Gondwanan continents evolved largely<br />

independently of each other (Frahm 2008; Kürschner<br />

2008).<br />

Borneo is the third largest island in the world. Most of<br />

the island is covered with dense tropical rainforest.<br />

The Borneo rainforest is one of the most biologically<br />

diverse habitats on Earth possessing extremely high<br />

numbers of endemic plant species, including<br />

liverworts. From the viewpoint of the differentiation<br />

of the bryophytes species chemical analysis of the<br />

liverworts growing in this region is very interesting.<br />

In this paper, we report the volatile components of<br />

selected liverworts collected in Borneo, with the focus<br />

of their chemosystematics.<br />

Materials and Methods<br />

Plant material. 15 liverworts species belonging to the<br />

Jungermanniales and the Marchantiales were<br />

collected in Sabah, Borneo (East Malaysia) on May<br />

1988. There are: Trichocolea pluma (Reinw., Blume<br />

& Nees) Mont., Frullania serrata Gottsche, Lindb. &<br />

Nees, Lepidozia borneensis Steph. and L. fauriana<br />

Steph., Chandonanthus hirtellus (Web.) Mitt.,<br />

Mastigophora diclados (Brid. ex F. Weber) Nees,<br />

Pleurozia gigantea (F. Weber) Lindb., Scapania<br />

javanica Gottsche, Heteroscyphus aselliformis<br />

(Reinw., Blume & Nees) Schiffn., Dumortiera hirsuta<br />

(Sw.) Nees, Wiesnerella denudata (Mitt.) Steph.,<br />

Bazzania harpago (De Not.) Schiffn., B. spiralis<br />

(Reinw., Blume & Nees) Meijer, B. praerupta<br />

(Reinw., Blume & Nees) Trevis and an unidentified<br />

Pallavicinia Gray species. All liverworts have been<br />

identified by Dr. Sinske Hattori (Hattori Botanical<br />

Laboratory, Miyazaki, Japan) and deposited in the<br />

Faculty of Pharmaceutical Sciences, Tokushima Bunri<br />

University, Japan.<br />

Extraction and analysis. Each liverwort, after being<br />

air-dried, was extracted with diethyl ether (Et2O) for<br />

two weeks. Each extract was filtered through a short<br />

glass column packed with silica gel (240-400 mesh)<br />

and the solvent evaporated to give crude extract which<br />

was analyzed by TLC and GC/MS. For thin-layer<br />

chromatography (TLC) a precoated silica gel glass<br />

plates (0.25 mm) F254 and n-hexane–EtOAc (1:1 and<br />

1:4) as mobile phase have been used. Spots were<br />

visualized by spraying with Godin reagent (Godin<br />

1954) and heated at 100-110 o C. Gas chromatographymass<br />

spectrometry (GC/MS) was performed on 1%<br />

SE-30 glass column (2m x 2mm). Oven temperature:<br />

50 o C with 3 min initial hold, and then to 250 o C,<br />

temperature programmed at 5 o /min. and 10 min. at<br />

250 o C. Injection temperature was 260 o C and helium<br />

(30ml/min) was used as a carrier gas. The detector<br />

was operated in electron impact mode (70eV with 3<br />

scans/s and mass range m/z 40-500) at 270 o C.<br />

Identification of components. Identification of each<br />

peak appeared on gas chromatogram was carried out<br />

by comparison of retention times and mass spectra of<br />

those of authentic samples, reported mass spectra<br />

(Joulain & König 1998; König et al. 2008 -<br />

MassFinder 4.0) and our library databases.<br />

Results & Discussion<br />

In continuing our chemosystematics studies of the<br />

Marchantiophyta we investigated 15 samples of<br />

liverwort species collected in Malaysian part of<br />

Borneo. The classification of investigated liverworts<br />

according to Crandall-Stotler et al. (2008) is presented<br />

in Table 1. Table 2 shows the distribution of detected<br />

terpenoids and aromatic compounds in examined<br />

Borneo liverworts.<br />

The genus Trichocolea, which belongs to the order<br />

Jungermanniales, is of nearly worldwide distribution.<br />

It is best represented in the tropics while only a single<br />

species is known from the North Temperate Zone<br />

(Hatcher 1958). Some of the Trichocolea species<br />

collected in Japan, Taiwan, New Zealand and Europe<br />

have been already investigated chemically. Methyl<br />

benzoates with prenyl ether group, diterpenoids and<br />

flavonoids were detected in these liverworts species<br />

(Asakawa et al. 1981; Perry et al. 1996; Lorimer et<br />

al., 1997; Baek et al. 1998; Nagashima et al. 2003).<br />

Methyl benzoates with prenyl ether group were<br />

detected in all studied specimens and these<br />

compounds are significant chemical markers of<br />

Trichocolea genus. Trichocolea pluma (Reinw.,<br />

Blume & Nees) Mont. investigated here also produces<br />

these compounds. Trichocolein (1), tomentellin (2)<br />

and isotomentellin (3) together with vanillic acid<br />

methyl ester (4) have been detected in this liverwort.<br />

Recently, compound 4 and prenylated mehyl<br />

benzoates have been isolated from Tahitian specimen<br />

(Ludwiczuk et al. 2009). Beside trichocolein (1), in<br />

the Taiwanese T. pluma labdane-type diterpenene<br />

TROPICAL BRYOLOGY 31 (2010)


LUDWICZUK & ASAKAWA: CHEMOSYSTEMATICS OF SELECTED LIVERWORTS 35<br />

Table 1. Classification of the analyzed Borneo liverworts according to Crandall-Stotler et al. (2008)<br />

Code<br />

Class: Marchantiopsida Gonquist, Takht & W. Zimm. 1<br />

Subclass: Marchantiidae Engl.<br />

Order: Marchantiales Limpr.<br />

Family: Wiesnerellaceae Inoue; Wiesnerella denudata (Mitt.) Steph.<br />

Dumortieraceae D.G. Long; Dumortiera hirsuta (Sw.) Nees<br />

Class: Jungermanniopsida Stotler & Crand.-Stotl. 2<br />

Subclass: Pelliidae He-Nygrén, Juslén, Ahonen, Glenny & Piippo<br />

Order: Pallaviciniales W. Frey & M. Stech<br />

Suborder: Pallaviciniineae R.M. Schust.<br />

Family: Pallaviciniaceae Mig.; Pallavicinia Gray a<br />

Subclass: Metzgeriidae Barthol.-Began<br />

Order: Pleuroziales Schljakov<br />

Family: Pleuroziaceae Müll. Frib.; Pleurozia gigantea (F. Weber) Lindb. b<br />

Subclass: Jungermanniidae Engl.<br />

Order: Porellales Schljakov<br />

Suborder: Jubulineae Müll. Frib.<br />

Family: Frullaniaceae Lorch; Frullania serrata Gottsche, Lindb. & Nees c<br />

Order: Jungermanniales H. Klinggr.<br />

Suborder: Lophocoleineae Schljakov<br />

Family: Trichocoleaceae Nakai; Trichocolea pluma (Reinw., Blume & Nees) Mont.<br />

Mastigophoraceae R.M. Schust; Mastigophora diclados (Brid. ex F. Weber) Nees<br />

Lepidoziaceae Limpr.; Bazzania harpago (De Not.) Schiffn.<br />

Bazzania spiralis (Reinw., Blume & Nees) Meijer<br />

Bazzania praerupta (Reinw., Blume & Nees) Trevis<br />

Lepidozia borneensis Steph.<br />

Lepidozia fauriana Steph.<br />

Lophocoleaceae Vanden Berghen; Heteroscyphus aselliformis (Reinw., Blume &<br />

Nees) Schiffn.<br />

Suborder: Cephaloziineae Schljakov<br />

Family: Scapaniaceae Mig.; Chandonanthus hirtellus (Web.) Mitt.<br />

Scapania javanica Gottsche<br />

TROPICAL BRYOLOGY 31 (2010)<br />

a<br />

b<br />

d<br />

e<br />

f 1<br />

f 2<br />

f 3<br />

f 4<br />

f 5<br />

g<br />

h 1<br />

h 2


36<br />

LUDWICZUK & ASAKAWA: CHEMOSYSTEMATICS OF SELECTED LIVERWORTS<br />

TROPICAL BRYOLOGY 31 (2010)


LUDWICZUK & ASAKAWA: CHEMOSYSTEMATICS OF SELECTED LIVERWORTS<br />

Table 2. Distribution of terpenoids and aromatic compounds in the studied Borneo liverworts. Wiesnerella<br />

denudata (Wd), Dumortiera hirsuta (Dh), an unidentified Pallavicinia species (Psp), Pleurozia gigantea (Pg),<br />

Frullania serrata (Fs), Trichocolea pluma (Tp), Mastigophora diclados (Md), Bazzania harpago (Bh); Bazania<br />

spiralis (Bs); Bazzania praerupta (Bp), Lepidozia borneensis (Lb), Lepidozia fauriana (Lf), Heterescyphus<br />

aselliformis (Ha), Chandonanthus hirtellus (Ch) and Scapania javanica (Sj). * code in Table 1<br />

Liverwort Class & Family* 1a 1b 2a 2b 2c 2d 2e 2f1 2f2 2f3 2f4 2f5 2g 2h1 2h2<br />

Compounds<br />

Species<br />

TROPICAL BRYOLOGY 31 (2010)<br />

Wd Dh Psp Pg Fs Tp Md Bh Bs Bp Lb Lf Ha Ch Sj<br />

Trichocolein (1) +<br />

Tomentellin (2) +<br />

Isotomentellin (3) +<br />

Vanillic acid methyl ester (4) +<br />

Frullanolide (5) +<br />

Dihydrofrullanolide (6) +<br />

Tulipinolide (7) + +<br />

Dihydrotulipinolide (8) + +<br />

-Elemene (9) + + +<br />

Eremophilene (10) +<br />

Spathulenol (11) + + + + + + +<br />

-Barbatene (12) + + +<br />

Gymnomitr-8(12)-en-9-one (13) +<br />

Gymnomitr-8-en-12-ol (14) +<br />

Gymnomitr-8(12),9-diene (15) +<br />

Gymnomitr-8(12)-en-9-ol (16) +<br />

Drimenol (17) +<br />

Albicanol (18) +<br />

ent--Selinene (19) + +<br />

ent-8-Hydroxyeudesm-3-one (20) +<br />

Anastreptene (21) + + +<br />

Trinoranastreptene (22) +<br />

-Bazzanene (23) +<br />

Isobazzanene (24) +<br />

Cuparene (25) + +<br />

11,12-Dihydrochiloscyphone (26) +<br />

Dihydrochiloscypholone (27) +<br />

Eudesm-3-en-7-ol (28) +<br />

Kolavelool (29) +<br />

Fusicogigantone A (30) + +<br />

2,5-Fusicoccadiene (31) +<br />

Pleuroziol (32) +<br />

8-epi-Sclareol (33) +<br />

Herbertene (34) +<br />

-Herbertenol (35) +<br />

-Herbertenol (36) +<br />

Herbertene-2,3-diol (37) +<br />

Herbertene-1,2-diol (38) +<br />

Isochandonanthone (39) +<br />

Pallavicinin (40) +<br />

Cubebol (41) +<br />

-Maaliene (42) +<br />

Cadina-3,5-diene (43) +<br />

Bicyclosesquiphellandrene (44) +<br />

Bornyl acetate (45) +<br />

Borneol (46) +<br />

Limonene (47) + + + +<br />

Costunolide (48) +<br />

8-Acetoxyzaluzanin D (49) +<br />

Dumhirone A (50) +<br />

37


38<br />

LUDWICZUK & ASAKAWA: CHEMOSYSTEMATICS OF SELECTED LIVERWORTS<br />

alcohol, (12E)-3-hydroxylabda-8(17),12,14-triene<br />

has also been detected by Chang & Wu (1987). We<br />

did not confirm the presence of diterpenoids in the<br />

specimen collected in Borneo island. Among other<br />

Trichocolea species so far investigated diterpenoids<br />

(isopimarane-type) have been detected only in the<br />

New Zealand T. mollissima (Hook f & Taylor)<br />

Gottsche (Lorimer et al. 1997; Nagashima et al.<br />

2003).<br />

The Borneo Frullania serrata Gottsche, Lindb. &<br />

Nees like many other Frullania species belonging to<br />

chemotype I (sesquiterpene lactone-type) produces<br />

eudesmane-type sesquiterpene lactones. All of these<br />

compounds, which possess an -methylene-butyrolactone<br />

group, are allergy-inducing substances,<br />

while -methyl--butyrolactones do not cause allergy<br />

(Asakawa 1995; 2008; Asakawa et al. 2009).<br />

Frullanolide (5) and dihydrofrullanolide (6) have been<br />

detected in Frullania serrata along with germacranetype<br />

lactones, tulipinolide (7) and dihydrotulipinolide<br />

(8). The presence of germacrane-type sesquiterpene<br />

lactones in this leafy liverwort is quite interesting,<br />

since these compounds are chemical markers of<br />

Wiesnerella denudata (Mitt.) Steph. placed in the<br />

order Marchantiales. However germacranolide,<br />

costunolide (48) have been previously detected in F.<br />

monocera (Hook f & Taylor) Gottsche, Lindb. &<br />

Nees, F. tamarisci (L.) Dum. ssp. tamarisci and F.<br />

tamarisci ssp. nisquallensis (Sull.) Hatt. (Asakawa<br />

1982; 1995). It is worth to mention that the presence<br />

of compounds 7, 8 together with 48 have been also<br />

confirmed by Asakawa et al. (1991) in different<br />

Malaysian collection of Frullania serrata. Other<br />

sesquiterpenoids, such as pentalene, silphin-1-ene, elemene<br />

(9), eremophilene (10) and spathulenol (11)<br />

have been also detected as minor components.<br />

Bazzania species are known as rich sources of many<br />

kinds of sesquiterpenoids (Asakawa 1982; 1995;<br />

2004). The volatile components of three Bazzania<br />

species from Borneo have been investigated.<br />

Received results indicate that these species are not<br />

related chemically to one another as each of studied<br />

liverworts produce different compounds.<br />

Gymnomitranes (=barbatanes) are characteristic of<br />

Bazzania harpago (De Not.) Schiffn., eudesmanes of<br />

B. spiralis (Reinw., Blume & Nees) Meijer and<br />

drimanes of B. praerupta (Reinw., Blume & Nees)<br />

Trevis.<br />

B. harpago here investigated produces -barbatene<br />

(12), gymnomitr-8(12)-en-9-one (13), gymnomitr-8en-12-ol<br />

(14), gymnomitr-8(12),9-diene (15) and<br />

gymnomitr-8(12)-en-9-ol (16). Gymnomitrane-type<br />

sesquiterpenoids, among others components, have<br />

been also found in the Japanese liverworts, B.<br />

pompeana (Sande Lac.) Mitt. (Matsuo 1982) and B.<br />

fauriana (Toyota & Asakawa 1988). Drimenol (17)<br />

and albicanol (18) are characteristic compounds for<br />

Borneo B. praerupta. These two compounds were<br />

detected in this liverwort among other like limonene<br />

(47), anastreptene (21), trinoranastreptene (22), ent-selinene<br />

(19) and spahulenol (11). Drimanes,<br />

especially drimane-type sesquiterpene esters are<br />

characteristic components of Japanese B. fauriana<br />

(Toyota & Asakawa 1988) and B. japonica (Sande<br />

Lac.) Lindb. (Asakawa 1995) and also of Malagasy B.<br />

decrescens (Lehm. & Lindenb.) Trevis.<br />

(Harinantenaina & Asakawa 2007). Drimenol (17)<br />

along with gymnomitranes, bazzananes and<br />

calamenanes have been also detected in Japanese B.<br />

trilobata (L.) Gray (Huneck et al. 1984). B. spiralis<br />

collected in Borneo produces ent-eudesmane-type<br />

sesquiterpenoids, ent--selinene (19) and ent-8hydroxyeudesm-3,11-diene<br />

(20). Interestingly, the<br />

Japanese B. fauriana elaborates 6-hydroxyeudesm-<br />

3-one, whose configuration is opposite to that of<br />

eudesmanes found in B. spiralis, but identical to that<br />

of many eudesmanes found in higher plants (Toyota<br />

& Asakawa 1988; Kondo et al. 1990). Besides 19 and<br />

20, B. spiralis also produces -elemene (9), cubebene<br />

and spathulenol (11), but neither<br />

gymnomitranes nor drimanes.<br />

In the ether extract of Lepidozia borneensis Steph. the<br />

following sesquiterpenoids were identified: bazzanene<br />

(23), isobazzanene (24), cuparene (25), chamigrene,<br />

-bourbonene and guaia-6,9-dien-4-ol<br />

among which -bazzanene (23) is the major<br />

component. It is noteworthy that bazzananes and<br />

cuparanes are widespread in Bazzania species<br />

(Asakawa 1995), which belong to the same family as<br />

Lepidozia, the Lepidoziaceae. In comparison to L.<br />

borneensis Steph., the Borneo Lepidozia fauriana<br />

Steph. biosynthesizes chiloscyphane-type<br />

sesquiterpenoids; 11,12-dihydrochiloscyphone (26)<br />

and dihydrochiloscypholone (27), which were<br />

previously detected in the Taiwanese specimen (Paul<br />

et al. 2001). Apart from Lepidozia species,<br />

chiloscyphanes have been also found in the Japanese<br />

liverworts, Jungermannia vulcanicola (Schiffn.)<br />

Steph. and Chiloscyphus polyanthos (L.) Corda<br />

(Asakawa 2004). The Borneo Lepidozia fauriana also<br />

produces eudesm-3-en-7-ol (28). The eudesmanetype<br />

sesquiterpenoids, including the mentioned<br />

compound 28, have previously been isolated from L.<br />

vitrea Steph. of Japanese origin (Toyota et al. 1996a).<br />

Interestingly, compound 28 is also biosynthesized by<br />

the Japanese Chiloscyphus polyanthus (Toyota et al.<br />

1999). The results indicated that some Lepidozia<br />

species: L. fauriana and L. vitrea (Lepidoziaceae) are<br />

chemically very closely related to the Chiloscyphus<br />

species (Lophocoleaceae).<br />

Both Heteroscyphus and Chiloscyphus, belong to the<br />

family Lophocoleaceae (Crandall-Stotler et al. 2008),<br />

but there is no chemical affinity between<br />

Heteroscypus species and the other genus of this<br />

family, which were investigated chemically (Asakawa<br />

TROPICAL BRYOLOGY 31 (2010)


LUDWICZUK & ASAKAWA: CHEMOSYSTEMATICS OF SELECTED LIVERWORTS 39<br />

2004). Genus Heteroscyphus is known as a rich<br />

source of diterpenoids. Previously investigated H.<br />

planus (Mitt.) Schiffn. of Japanese origin<br />

biosynthesized ent-clerodane- and cyathane-type<br />

diterpenoids together with ent-2,3secoaromadendrene-<br />

and calamenene-type<br />

sesquiterpenoids (Hashimoto et al., 1995). ent-<br />

Clerodanes have also been isolated from the other<br />

Japanese species, H. coalitus (Hook. f.) Schiffn.<br />

together with halimanes and aromadendrane-type<br />

sesquiterpenoids (Toyota et al. 1996b). H. aselliformis<br />

(Reinw. Blume & Nees) Schiffn. originated from<br />

Borneo produces mainly sesquiterpenoids.<br />

Anastreptene (21), cuparene (25) and-elemene (9)<br />

have been detected.<br />

The genus Pleurozia (Pleuroziaceae), formerly<br />

classified in the leafy liverworts (order<br />

Jungermanniales), in the new classification of the<br />

Marchantiophyta is placed into the order Pleuroziales<br />

within subclass Metzgeriidae (simple thalloid<br />

liverworts) (see Table 1) (Crandall-Stotler et al.<br />

2008). The East Malaysian Pleurozia gigantea (F.<br />

Weber) Lindb. produces mainly diterpenoids. In the<br />

diethyl ether extract only one sesquiterpenoid,<br />

spathulenol (11) has been identified. The main<br />

compound detected in this liverwort is kolavelool<br />

(29), which is a member of clerodane-type<br />

diterpenoids, and also occurs in Jungermannia species<br />

(Asakawa 2004). Beside clerodanes P. gigantea also<br />

produces fusicoccane- and labdane-type diterpenoids.<br />

Fusicogigantone A (30), 2,5-fusicoccadiene (31),<br />

pleuroziol (32) and 8-epi-sclareol (33) have been<br />

detected in ether extract of this liverwort. The present<br />

data are in accordance with those, reported previously<br />

by Asakawa et al. (1990), except for the absence of<br />

dolabellane-type diterpenoids in the present<br />

collection.<br />

The members of the genus Mastigophora<br />

(Mastigophoraceae) are chemically very closely<br />

related to the Herbertus (Herbertaceae) species, since<br />

both produce herbertane-type sesquiterpenoids as<br />

major constituents (Asakawa 1995; 2004;<br />

Harinantenaina & Asakawa 2007). GC/MS<br />

examination of the ether extract of the Borneo M.<br />

diclados (Brid. Ex F. Weber) Nees showed the<br />

presence of herbertene (34), -herbertenol (35), herbertenol<br />

(36), herbertene-2,3-diol (37) and<br />

herbertene-1,2-diol (38). In a previous collection of<br />

the East Malaysian M. diclados, apart from<br />

herbertanes 34-38, herbertane dimers,<br />

mastigiphorenes A-D have been found (Asakawa et<br />

al., 1991). However, the West Malaysian species does<br />

not produce any herbertanes; instead trachylobanetype<br />

diterpenoids have been isolated (Leong &<br />

Harrison, 1997). A Japanese collection elaborates<br />

herbertene (34) and -herbertenol (35) together with<br />

cyclic chlorinated bis-bibenzyls, whereas no<br />

diterpenoids and herbertane dimers have been<br />

TROPICAL BRYOLOGY 31 (2010)<br />

detected (Hashimoto et al., 2000). These data point<br />

out that there are at least three geographical races of<br />

M. diclados in Asia; bis-bibenzyl-type in Japan,<br />

mastigophorene-type in Borneo (East Malaysia), and<br />

pimarane and pimarane-derived trachylobane<br />

diterpenoid type in Taiwan and West Malaysia.<br />

Interestingly, all three types have been found in<br />

Malagasy M. diclados (Harinantenaina & Asakawa,<br />

2004).<br />

Many of the previously investigated Scapania species<br />

produce various kinds of sesquiterpenoids which are<br />

ubiquitous in other liverworts (Asakawa 1982; 1995;<br />

2004). The most common sesquiterpene in all<br />

investigated species is anastreptene (21). Among<br />

volatile components occurring in ether extract of<br />

Scapania javanica Gottsche collected in Borneo, barbatene<br />

(12) and spathulenol (11) have been<br />

identified. However, the presence of anastreptene (12)<br />

has not been confirmed. This compound has been<br />

detected in Chandonathus hirtellus (Web.) Mitt.<br />

among other constituents like limonene (47),<br />

sesquisabinene, spathulenol (11), fusicogigantone A<br />

(30) and isochandonanthone (39). The genus<br />

Chandonanthus is known to produce cembrane-type<br />

diterpenoids, which are significant chemical markers<br />

of this liverwort (Asakawa 1995, 2004; Shy et al.<br />

2002). Chandonanthus hirtellus originated from<br />

Borneo elaborates isochandonanthone (39), which has<br />

previously been detected in a Chinese collection (Shy<br />

et al. 2002). Interestingly, the Borneo C. hirtellus also<br />

produces a fusicoccane-type diterpenoid,<br />

fusicogigantone A (30). Apart from this collection,<br />

fusicoccanes have been detected only in Tahitian C.<br />

hirtellus (Ludwiczuk et al. 2009). This is the second<br />

report of such compounds in Chandonanthus<br />

hirtellus, however, dolabellanes, which are<br />

biogenetically related to fusicoccanes have been<br />

isolated from West Malaysian species (Wang et al.<br />

2009).<br />

Pallavicinia species are simple thalloid liverworts.<br />

The chemical analysis of several Pallavicinia species<br />

afforded a number of common sesquiterpenoids,<br />

sterols and carbohydrates (Asakawa 1982; 1995). The<br />

unidentified Pallavicinia species collected in Borneo<br />

elaborates sesquiterpenoids. Cubebol (41), -maaliene<br />

(42), cadina-3,5-diene (43) and bicyclosesquiphellandrene<br />

(44) have been detected. Among volatile<br />

components pallavicinin (40), the rearranged 7,8secolabdanoid<br />

has also been identified. This<br />

compound has been previously isolated from Japanese<br />

and Taiwanese P. subciliata (Aust.) Steph. and<br />

Chinese P. ambigua (Mitt.) Steph. (Wu et al., 1994;<br />

Toyota et al., 1998; Liu & Wu, 1999; Li et al., 2005).<br />

The investigated Borneo Pallavicinia species is<br />

closely related chemically to P. subciliata and P.<br />

ambigua.


40<br />

LUDWICZUK & ASAKAWA: CHEMOSYSTEMATICS OF SELECTED LIVERWORTS<br />

The main compound of Wiesnerella denudata (Mitt.)<br />

Steph. collected in Borneo is bornyl acetate (45) in<br />

contradiction to the same specimen collected in Japan,<br />

which produce a large amount of neryl acetate<br />

(Ludwiczuk et al. 2008). The Borneo W. denudata<br />

also produces borneol (46) and limonene (47). All of<br />

the compounds mentioned above are responsible for<br />

unique fragrant odor of W. denudata, whose chemical<br />

profile is almost identical to that of Conocephalum<br />

conicum (L.) Dum. belonging to bornyl acetate<br />

chemotype (Toyota et al. 1997). Beside<br />

monoterpenoids the Borneo W. denudata elaborates<br />

germacrane- and guaiane-type sesquiterpenoids.<br />

Costunolide (48), tulipinolide (7), dihydrotulipinolide<br />

(8) and 8-acetoxyzaluzanin D (49) have been<br />

detected in ether extract. There are three different<br />

chemical races of W. denudata: I – costunolideguaianolide<br />

type, II – costunolide type and III –<br />

guaianolide type (Asakawa 2004). The present<br />

specimen belongs to type I in comparison to the<br />

Japanese specimen, which is placed in type III<br />

because of lacking of costunolide (Ludwiczuk et al.<br />

2008).<br />

In addition to limonene (47), -curcumene, barbatene<br />

(12) and spathulenol (11), the Borneo<br />

Dumortiera hirsuta (Sw.) Nees produces dumhirone<br />

A (50) (phenylethyl cyclohexadienone) previously<br />

reported by Xie et al (2007) in a Chinese specimen. It<br />

is known that some of the Dumortiera species<br />

biosynthesized lunularin (Gorham 1977; Asakawa<br />

1995), which could be precursor of dumhirone A. In<br />

contrast, D. hirsuta from Argentina and Japan<br />

produce dumortane- and germacrane-type<br />

sesquiterpenoids as the main components,<br />

respectively (Bardon et al. 1999; Ludwiczuk et al.<br />

2008). These data indicated that there are several<br />

chemotypes of D. hirsuta.<br />

Since the classification of the Matchantiophyta<br />

especially that of leafy liverworts is extremely<br />

difficult, studies of their chemical constituents are<br />

necessary from a chemosystematics point of view.<br />

Many liverworts produce their own peculiar<br />

constituents and some of them such as the<br />

sacculatane- and pinguisane-type terpenoids have not<br />

been found in higher plants, fungi or marine<br />

organisms (Asakawa 1982; 1995). The pattern of<br />

terpenoids and aromatic compounds depends on the<br />

type of environment in which each liverwort plant<br />

normally lives. Sometimes liverwort species or genus<br />

collected from different locations produces<br />

compounds characteristic only for one environment<br />

e.g. the Taiwanese Trichocolea pluma, which<br />

produces labdane diterpene alcohol (Chand & Wu<br />

1987), and this compound does not occur in Tahitian<br />

and Borneo specimens. Despite these differences all<br />

mentioned specimens produce characteristic<br />

prenylated methyl benzoates, which are significant<br />

chemical markers of Trichocoleaceae family. There<br />

are many more such examples among liverworts<br />

(Asakawa 2004). It is also worth to mention about<br />

cases when the analysis showed the significant<br />

differences in composition within one liverwort<br />

species. The good example is Conocephalum<br />

conicum. The analysis of the flavonoids composition<br />

of the European and American collections showed the<br />

occurrence of the geographical races of this liverwort<br />

(Markham et al. 1976). The differences in the<br />

composition of the volatile components of the<br />

Japanese C. conicum from different collections sites<br />

provided to description of three chemically different<br />

types of C. conicum in Japan (Toyota et al. 1997).<br />

However, these differences are in agreement with<br />

molecular analysis, which have shown that C.<br />

conicum is a complex of a few cryptic species<br />

(Odrzykoski & Szweykowski 1991).<br />

GC/MS analysis of the ether extract of several<br />

Marchantiophyta species collected in Borneo<br />

indicated that each liverwort species, genus or family<br />

produce own characteristic compounds which could<br />

be used as taxonomic indicators. The present<br />

liverworts are rich sources of sesquiterpenoids with a<br />

variety of carbon skeletons, whereas only a few<br />

monoterpenoids, diterpenoids and aromatic<br />

compounds have been found.<br />

Among sesquiterpenoids, the Borneo liverworts<br />

produce mainly eudesmanes, drimanes, herbertanes,<br />

gymnomitranes, aromadendranes, cuparanes,<br />

chiloscyphanes, germacranes, guaianes, bazzananes<br />

and elemanes. Some of them can be used as chemical<br />

markers, like herbertanes for Mastigophora diclados,<br />

gymnomitranes for Bazania harpago, eudesmanolides<br />

for Frullania serrata, and germacrane- and guaianetype<br />

sesquiterpene lactones for Wiesnerella denudata.<br />

Among other terpenoids identified in the Borneo<br />

liverworts, the monoterpenoids occurred in thalloid<br />

liverworts belonging to order Marchantiales are<br />

responsible for characteristic fragrance. Diterpenoids<br />

and aromatic compounds are also important from a<br />

chemosystematics point of view. Diterpenoids<br />

belonging to ladane-, clerodane- and fusicoccanetypes<br />

are chemical markers of Pleurozia gigantea<br />

while cembranoids are characteristic for<br />

Chandonanthus hirtellus and rearranged<br />

secolabdanoids for some Pallavicinia species. Methyl<br />

benzoates with prenyl ether group are significant<br />

chemical markers of the Trichocoleaceae<br />

(Trichocolea pluma).<br />

Acknowledgements: The authors thank Dr. S. Hattori, The<br />

Hattori Botanical Laboratory, Miyazaki, Japan for his<br />

identification of the liverworts. This work was supported in<br />

part by Grant-in-Aid for Open Research and by Grant-in-<br />

Aid for Senryaku Research (to A.L.) from the Ministry of<br />

Education, Culture, Sports, Science and Technology, Japan.<br />

TROPICAL BRYOLOGY 31 (2010)


References<br />

LUDWICZUK & ASAKAWA: CHEMOSYSTEMATICS OF SELECTED LIVERWORTS 41<br />

Asakawa, Y. 1982. Chemical constituents of the Hepaticae.<br />

In: Herz W., Grisebach H., Kirby G.W. (Eds.)<br />

Progress in the Chemistry of Organic Natural<br />

Products., Vol. 42, pp. 1-285. Springer, Vienna.<br />

Asakawa, Y. 1995. Chemical constituents of the<br />

Bryophytes. In: Herz W., Kirby W.B., Moore R.E.,<br />

Steglich W., Tamm Ch. (Eds.) Progress in the<br />

Chemistry of Organic Natural Products. Vol. 65, pp.<br />

1-618. Springer, Vienna.<br />

Asakawa, Y. 2004. Chemosystematics of the Hepaticae.<br />

Phytochemistry 65: 623-669.<br />

Asakawa, Y. 2008. Liverworts – potential source of<br />

medicinal compounds. Current Pharmaceutical<br />

Design 14: 3067-3088.<br />

Asakawa, Y., X. Lin, K. Kondo Y. Fukuyama. 1991.<br />

Terpenoids and aromatic compounds from selected<br />

East Malaysian liverworts. Phytochemistry 30:<br />

4019-4024.<br />

Asakawa, Y., X. Lin, M. Tori & K. Kondo. 1990.<br />

Fusicoccane-, dolabellane- and rearanged labdanetype<br />

diterpenoids from the liverwort Pleurozia<br />

gigantea. Phytochemistry 29: 2597-2603.<br />

Asakawa, Y., A. Ludwiczuk, F. Nagashima, M. Toyota,<br />

T. Hashimoto, M. Tori, Y. Fukuyama & L.<br />

Harinantenaina. 2009. Bryophytes – Bio- and<br />

Chemical Diversity, Bioactivity and<br />

Chemosystematics. Heterocycles 77: 99-150.<br />

Asakawa, Y., M. Toyota, F. Nagashima, T. Hashimoto,<br />

& L. E. Hassane. 2000. Sesquiterpene lactones and<br />

acetogenin lactones from the Hepaticae and<br />

chemosystematics of the liverworts Frullania,<br />

Plagiochila and Porella. Heterocycles 54: 1057-<br />

1093.<br />

Asakawa, Y., M. Toyota, T. Takemoto & R. Mues. 1981.<br />

Aromatic esters and terpenoids of the liverworts in<br />

the genera Trichocolea, Neotrichocolea and<br />

Trichocoleopsis. Phytochemistry 20: 2695-2699.<br />

Baek, S.-H., N. B. Perry, R. T. Weavers, & R. S.<br />

Tangney. 1998. Geranyl phenyl ethers from the<br />

New Zealand liverwort Trichocolea hatcheri.<br />

Journal of Natural Products 61: 126-129.<br />

Bardon, A., N. Bamiya, M. Toyota, & Y. Asakawa. 1999.<br />

A 7-nor-dumortenone and other dumortane<br />

derivatives from the Argentine liverwort Dumortiera<br />

hirsuta. Phytochemistry 51: 281-287.<br />

Chang, S. J. & C.-L. Wu. 1987. A new labdane alcohol<br />

from the liverwort Trichocolea pluma. Huaxue 45:<br />

142-149.<br />

Crandall-Stotler, B. & R. E. Stotler 2000. Morphology<br />

and classification of Marchantiophyta. In: Shaw A.J.<br />

& Goffinet B. (eds.) Bryophyte Biology, pp 21-70,<br />

Cambridge University Press, Cambridge.<br />

Crandall-Stotler, B., R. E. Stotler, & D. G. Long. 2008.<br />

Morphology and classification of the<br />

Marchantiophyta, In: Goffinet B. & Shaw A.J. (eds.)<br />

Bryophyte Biology, 2nd edition, pp. 1-54.<br />

Cambridge University Press, Cambridge.<br />

Engel, J. J. & D. S. Gleny. 2008. A Flora of the Liverworts<br />

and Hornworts of New Zealand. Vol. 1-3, Missouri<br />

Botanical Garden Press, St. Louis.<br />

Flegel, M. & H. Becker 2000. Characterization of the<br />

contents of oil bodies from the liverwort Radula<br />

complanata. Plant Biology 2: 208-210.<br />

TROPICAL BRYOLOGY 31 (2010)<br />

Frahm, J.-P. 2008. Diversity, dispersal and biogeography<br />

of bryophytes (mosses). Biodiversity &<br />

Conservation 17: 277-284.<br />

Godin, P. 1954. A new spray reagent for paper<br />

chromatography of polyols and cetoses. Nature 174:<br />

134.<br />

Gorham, J. 1977. Lunularic acid and related compounds in<br />

liverworts, algae and Hydrangea. Phytochemistry<br />

16: 249-253.<br />

Gradstein, S. R., S. P. Churchil & N.Salazar-Allen. 2001.<br />

Guide to the Bryophytes in <strong>Tropical</strong> America. The<br />

New York Botanical Garden Press, Bronx, New<br />

York.<br />

Gradstein, S. R., R. Matsuda, & Y. Asakawa. 1985. A<br />

chemosystematic survey of terpenoids and aromatic<br />

compounds in the Lejeuneaceae (Hepaticae). In:<br />

Gradstein S.R. (ed), Contribution to a Monograph of<br />

the Lejeuneaceae subfamily Ptychanthoideae, pp 63-<br />

86, J. Cramer, Vaduz.<br />

Harinantenaina, L. & Y. Asakawa. 2004. Chemical<br />

constituents of Malagasy liverworts, Part II:<br />

Mastigophoric acid methyl ester of biogenetic<br />

interest from Mastigophora diclados (Lepicoleaceae<br />

subf. Mastigophoraceae). Chemical &<br />

Pharmaceutical Bulletin 52: 1382-1384.<br />

Harinantenaina, L. & Y. Asakawa. 2007. Malagasy<br />

liverworts, source of new biologically active<br />

compounds. Natural Product Communications 2:<br />

701-709.<br />

Hashimoto, T., H. Irita, S. Takaoka, M. Tanaka & Y.<br />

Asakawa. 2000. New chlorinated cyclic<br />

bis(bibenzyls) from the liverworts Herbertus<br />

sakuraii and Mastigophora diclados. Tetrahedron<br />

56: 3153-3159.<br />

Hashimoto, T., I. Nakamura, M. Tori, S. Takaoka & Y.<br />

Asakawa. 1995. epi-Neoverrucosane- and entclerodane-type<br />

diterpenoids and ent-2,3secoaromadendrane-<br />

and calamenene-type<br />

sesquiterpenoids from the liverwort Heteroscyphus<br />

planus. Phytochemistry 38: 119-127.<br />

Hatcher, R. E. 1958. The genus Trichocolea in New<br />

Zealand. Transactions of the Royal Society of New<br />

Zealand 85: 237-246.<br />

Huneck, S., S. Janicke, L. Meinunger, G. Snatzke, J. D.<br />

Connolly & Y. Asakawa. 1984. Seasonal<br />

dependence of the essential oil from Bazzania<br />

trilobata. The stereochemistry and absolute<br />

configuration of (-)-5-hydroxycalamenene. Journal<br />

of the Hattori Botanical Laboratory 57: 337-342.<br />

Inoue, H. 1988. Bryophytes as an indicator of continental<br />

drift (Gondwana land). Kagaku-Asahi 48: 116-121.<br />

Joulain, D. & W. A. König. 1998. The Atlas of Spectral<br />

Data of Sesquiterpene Hydrocarbons. E.B.-Verlag,<br />

Hamburg.<br />

Kondo, K., M. Toyota & Y. Asakawa. 1990. ent-<br />

Eudesmane-type sesquiterpenoids from Bazzania<br />

species. Phytochemistry 29: 2197-2199.<br />

König, W. A., D. Joulain, & D. H. Hochmuth. 2008.<br />

MassFinder 4.0, Terpenoids and related constituents<br />

of essential oils. Available from:<br />

http://www.massfinder.com/.<br />

Kürschner, H. 2008. Biogeography of south-west Asian<br />

bryophytes – with special emphasis on the tropical<br />

element. Turkish Journal of Botany 32: 433-446.<br />

Leong, Y.-W. & L. J. Harrison. 1997. ent-Trachylobane<br />

diterpenoids from the liverwort Mastigophora<br />

diclados. Phytochemistry 45: 1457-1459.


42<br />

LUDWICZUK & ASAKAWA: CHEMOSYSTEMATICS OF SELECTED LIVERWORTS<br />

Li, Z.-J., H.-X. Lou, W.-T. Yu, P.-H. Fan, D.-M. Ren, B.<br />

Ma & M. Ji. 2005. Structures and absolute<br />

configurations of three 7,8-secolabdane diterpenes<br />

from the Chinese liverwort Pallavicinia ambrigua.<br />

Helvetica Chimica Acta 88: 2637-2640.<br />

Liu, H.-J. & C.-L. Wu. 1999. Neopallavicinin from the<br />

Taiwanese liverwort Pallavicinia subciliata. Journal<br />

of Asian Natural Products Research 1: 177-182.<br />

Lorimer, S. D., N. B. Perry, E. J. Burgess & L. M.<br />

Foster. 1997. 1-Hydroxyditerpenes from two New<br />

Zealand liverworts, Paraschistochila pinnatifolia<br />

and Trichocolea mollissima. Journal of Natural<br />

Products 60: 421-424.<br />

Ludwiczuk, A., Komala, I., Pham, A., Bianchini, J.-P.,<br />

Raharivelomanana, P. & Asakawa, Y. 2009.<br />

Volatile components from selected Tahitian<br />

liverworts. Natural Product Communications 4:<br />

1387-1392.<br />

Ludwiczuk, A., F. Nagashima, R. S. Gradstein & Y.<br />

Asakawa. 2008. Volatile components from selected<br />

Mexican, Ecuadorian, Greek, German and Japanese<br />

liverworts. Natural Product Communications 3: 133-<br />

140.<br />

Markham, K. R., L. J. Porter, R. Mues, H. D.<br />

Zinsmeister & B. G. Brehm. 1976. Flavonoid<br />

variation in the liverwort Conocephalum conicum:<br />

evidence for geographical races. Phytochemistry 15:<br />

147-150.<br />

Matsuo, A. 1982. Selected chemotaxonomic characteristic<br />

of liverworts sesquiterpenoids. Journal of the Hattori<br />

Botanical Laboratory 53: 295-304.<br />

Meyers, N., R. A. Mittermeler, C. G. Mittermeler, G. A.<br />

B. da Fonseca & J. Kent. 2000. Biodiversity<br />

hotspots for conservation priorities. Nature 403:<br />

853-858.<br />

Nagashima, F., M. Murakami, S. Takaoka & Y.<br />

Asakawa. 2003. ent-Isopimarane-type diterpenoids<br />

from the New Zealand liverwort Trichocolea<br />

mollissima. Phytochemistry 64: 1312-1325.<br />

Odrzykoski, I. J. & J. Szweykowski. 1991. Genetic<br />

differentiation without concordant morphological<br />

divergence in the thallose liverwort Conocephalum<br />

conicum. Plant Systematics and Evolution 178: 135-<br />

151.<br />

Paul, C., W. A. König & C.-L. Wu. 2001. Sesquiterpenoid<br />

constituents of the liverworts Lepidozia fauriana and<br />

Lepidozia vitrea. Phytochemistry 58: 789-798.<br />

Perry, N. B., L. M. Foster, S. D. Lorimer, B. C. H. May,<br />

R. T. Weavers, M. Toyota, E. Nakaishi & Y.<br />

Asakawa. 1996. Isoprenyl phenyl ethers from<br />

liverworts of the genus Trichocolea: Cytotoxic<br />

activity, structural corrections, and synthesis.<br />

Journal of Natural Products 59: 729-733.<br />

Qiu, Y. L., L. Li, B. Wang, Z. Chen, V. Knoop, M.<br />

Groth-Malonek, O. Dombrovska, J. Lee, L. Kent,<br />

J. Rest, G. F. Estabrook, T. A. Hendry, D. W.<br />

Taylor, C. M. Testa, M. Ambros, B. Crandall-<br />

Stotler, R. J. Duff, M. Stech, W. Frey, D. Quandt<br />

& C. C. Davis. 2006. The deepest divergences in<br />

land plants inferred from phylogenomic evidence.<br />

The Proceedings of the National Academy of<br />

Science USA 103: 15511-15516.<br />

Rycroft D. S., J. Heinrichs, W. J. Cole & H. Anton. 2001.<br />

A phytochemical and morphological study of the<br />

liverwort Plagiochila retrorsa Gottsche, new to<br />

Europe. Journal of <strong>Bryology</strong> 23: 23-34.<br />

Rycroft, D. S. 2003. Chemosystematics of the liverwort<br />

genus Plagiochila. Journal of the Hattori Botanical<br />

Laboratory 93: 331-342.<br />

Schuster, R. M. 1992a. The oil-bodies of the Hepaticae. I.<br />

Introduction. Journal of the Hattori Botanical<br />

Laboratory 72: 151-162.<br />

Schuster, R. M. 1992b. The oil-bodies of the Hepaticae. II.<br />

Lejeuneaceae. Journal of the Hattori Botanical<br />

Laboratory 72: 163-359.<br />

Shaw, J. & K. Renzaglia. 2004. Phylogeny and<br />

diversification of bryophytes. American Journal of<br />

Botany 91: 1557-1581.<br />

Shy, H.-S., C.-L. Wu, C. Paul, W. A. König, & U.-J. Ean.<br />

2002. Chemical constituents of two liverworts<br />

Metacalypogeia alternifolia and Chandonanthus<br />

hirtellus. Journal of Chinese Chemical Society 49:<br />

593-598.<br />

Söderström, L. & A. Séneca. 2008. Species richness and<br />

range restricted species of liverworts in Europe and<br />

Macaronesia. Folia Cryptogamica Estonica 44: 143-<br />

149.<br />

Toyota, M. & Y. Asakawa. 1988. Sesquiterpenoids from<br />

the liverwort Bazzania fauriana. Phytochemistry 27:<br />

2155-2159.<br />

Toyota, M., Nakaishi, E. & Asakawa, Y. 1996a.<br />

Eudesmane-type sesquiterpenoids from the liverwort<br />

Lepidozia vitrea. Phytochemistry 41: 833-836.<br />

Toyota, M., I. Nakamura, S. Takaoka, Y. Kan & Y.<br />

Asakawa. 1996b. Terpenoid constituents of the<br />

liverwort Heteroscyphus coalitus. Phytochemistry<br />

41: 575-580.<br />

Toyota, M., Saito, T. & Asakawa, Y. 1998. Novel skeletal<br />

diterpenoids from the Japanese liverwort<br />

Pallavicinia subciliata. Chemical & Pharmaceutical<br />

Bulletin 46: 178-180.<br />

Toyota, M., T. Saito & Y. Asakawa. 1999. The absolute<br />

configuration of eudesmane-type sesquiterpenoids<br />

found in the Japanese liverwort Chiloscyphus<br />

polyanthos. Phytochemistry 51: 913-920.<br />

Toyota, M., T. Saito, J. Matsunami & Y. Asakawa. 1997.<br />

A comparative study on three chemo-types of the<br />

liverwort Conocephalum conicum using volatile<br />

constituents. Phytochemistry 44: 1265-1270.<br />

Wang, Y., L. J. Harrison & B. C. Tan. 2009. Terpenoids<br />

from the liverwort Chandonanthus hirtellus.<br />

Tetrahedron 65: 4035-4043.<br />

Wu, C.-L., H.-J. Liu & H.-L. Uang. 1994. A 7,8secolabdanoid<br />

from the liverwort Pallavicinia<br />

subciliata. Phytochemistry 35: 822-824.<br />

Xie, C.-F., J.-B. Qu, B. Sun, H.-F. Guo & H.-X. Lou.<br />

2007. Dumhirone A, an unusual phenylethyl<br />

cyclohexadienone from the Chinese liverwort<br />

Dumortiera hirsuta. Biochemical Systematics and<br />

Ecology 35: 162-165.<br />

TROPICAL BRYOLOGY 31 (2010)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!