20.08.2013 Views

Full text pdf - Tropical Bryology

Full text pdf - Tropical Bryology

Full text pdf - Tropical Bryology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Tropical</strong> <strong>Bryology</strong> 31: 1-4, 2010<br />

Looking back on 15 years of research on bioindication with<br />

Jan-Peter Frahm in Bonn<br />

Norbert J. Stapper 1 & Isabelle Franzen-Reuter 2<br />

1 Büro für Ökologische Studien, Monheim, Germany (nstapper@t-online.de)<br />

2 Burgbrohl, Germany (franzen-reuter@web.de)<br />

Abstract: The article summarizes 15 years of research activity of Jan-Peter Frahm at Bonn University in the<br />

field of bioindication of environmental pollution with bryophytes and lichens as sensitive monitoring organisms.<br />

Keywords: bioindication, lichen, bryophyte, atmospheric pollution, eutrophication, climate change.<br />

Jan-Peter Frahm's transfer from the Pedagogical<br />

University in Duisburg to the venerable University of<br />

Bonn in 1994 coincided with the first observable<br />

reduction in decades of annual means of sulphur<br />

dioxide immissions below the level of 25µg/m 3 .<br />

Investment in flue gas desulphurization and the use of<br />

low sulphur fuel helped to stop the "acid rain"<br />

(Vestreng et al. 2007). This represents a landmark in<br />

European industrial history. At the same time, a few<br />

mosses and lichens spread into rural parts of the Ruhr<br />

district and started colonizing tree bark. Shortly<br />

before, the centers of the big cities along the Rhine<br />

and Ruhr were "epiphyte deserts", because epiphytic<br />

bryophytes and lichens were most affected due to the<br />

low buffer capacity of tree bark.<br />

In Duisburg, Jan-Peter had lived close to the major<br />

source of the acid rain. Already in 1974, he had<br />

studied the impact of acidic immissions on<br />

transplanted mosses (Frahm 1976). Transplanted<br />

Dicranoweisia cirrata e.g. rapidly died within four<br />

weeks. Twenty years later, however, it survived for an<br />

entire year of exposure outside the lab, and when the<br />

experiment was stopped, sporophytes had formed.<br />

Under non-experimental conditions, however, this<br />

species did neither occur in Duisburg, nor in Bonn at<br />

this time. This was soon to change radically.<br />

On weekends at the Lower Rhine in the vicinity of the<br />

Dutch border and on local walks around Bonn, Jan-<br />

Peter found the first small cushions of Orthotrichum<br />

affine, and shortly afterwards, Ulota bruchii -<br />

indicating that the return of the epiphytes had begun.<br />

To document this phenomenon, Jan-Peter - in the<br />

summer term of 1996 - started giving lectures and lab<br />

classes focusing on "mosses as bioindicators".<br />

Somewhat later, lichens were included in the curricula<br />

and the first diploma thesis was initiated: Claudia<br />

Dilg (Dilg 1998) mapped epiphytic lichens and<br />

TROPICAL BRYOLOGY 31 (2010)<br />

bryophytes in the city of Bonn. She recorded 38<br />

bryophytes and 54 lichens, among them were<br />

sensitive species such as Frullania dilatata, Bryoria<br />

fuscescens, and Ramalina pollinaria. At that time,<br />

epiphytic species’ diversity still correlated well with<br />

winter levels of sulphur dioxide immissions, but Dilg<br />

(1998) already postulated that air pollution by<br />

eutrophicating compounds like dust and reactive<br />

nitrogen were growing in significance.<br />

The bioindication lab class soon became particularly<br />

popular at graduate students of biology. In addition to<br />

techniques for mapping epiphytes, analyses of heavy<br />

metal content in Sphagnum samples ("Sphagnum<br />

bags"); tests with water mosses in aquariums, or<br />

estimates of the water quality in the River Ahr by use<br />

of aquatic mosses became part of the study program.<br />

Subsequently, the cooperation with the State Institute<br />

for Ecology, Agriculture and Forestry of North Rhine-<br />

Westphalia (LÖBF NRW) gave more momentum. On<br />

behalf of the LÖBF, epiphytic lichens and bryophytes<br />

were mapped along three transects through Duisburg,<br />

Bochum and Dortmund. Not only many species were<br />

recorded, but a significant gradient was observed,<br />

indicating stronger pollution impact on the northern<br />

parts of the transects. While pollution tolerant<br />

Lecanora conizaeoides dominated in the north,<br />

several Orthotrichum mosses and Parmelia lichens<br />

were monitored in the south, and last but not least,<br />

there was no longer evidence of lichen deserts<br />

(Stapper et al. 2000). We were indeed proud when the<br />

Environmental Secretary showcased our results as a<br />

testimony of better air quality in the Ruhr district and<br />

proof that investment in environmental protection had<br />

been sensible.<br />

Jan-Peter strongly “infected” both of us with his<br />

enthusiasm for this topic, so that currently one of us<br />

(IFR) is now responsible for drafting technical


2<br />

guidelines for the Association of German Engineers<br />

(VDI), while the other (NJS) has become a selfemployed<br />

surveyor specializing in bioindication with<br />

lower plants.<br />

During the last years, epiphyte recolonization<br />

proceeded at a faster pace. In less than two years,<br />

epiphitic species’ diversity doubled within the<br />

transects. Moreover, frequency and cover increased<br />

substantially. When remapping the transects, we<br />

observed that especially nitrophytic species like<br />

Orthotrichum diaphanum, Phaeophyscia spp. and<br />

Xanthoria spp. were rapidly spreading, even Bryum<br />

argenteum as well as dense tomenta of filamentous<br />

algae had become prevalent on trunks (Frahm 1999,<br />

Franzen 2001a) while species adapted to nutrient-poor<br />

or acidic substrata, e.g. Hypogymnia physodes,<br />

rapidly receded.<br />

Thus the improvement for epiphytes was not only due<br />

to a decrease of acidic immissions, but also to (the<br />

influence of) airborne nutrients. Epiphyte monitoring<br />

within the level II programme that was also promoted<br />

by the LÖBF, yielded confirmatory results (Stetzka &<br />

Stapper 2001).<br />

Two doctoral dissertations, partially financed by the<br />

ministry of the environment of North Rhine-<br />

Westphalia and the Deutsche Bundesstiftung Umwelt,<br />

were initiated to conduct research on the cause of the<br />

apparent changes of epiphyte flora: What are the<br />

causes for the increase of nitrophytes? Which nitrogen<br />

compounds are of importance ("reactive nitrogen")?<br />

Are there further factors affecting epiphytes? A<br />

comprehensive epiphyte mapping of North Rhine-<br />

Westphalia gave an overview of the occurrence of<br />

epiphytic lichens and bryophytes (Franzen et al. 2002,<br />

Franzen-Reuter & Stapper 2003, Stapper & Franzen-<br />

Reuter 2004). Data interpretation according to VDI<br />

3799 Part 1 (VDI 1995) resulted in high „air quality<br />

values“ indicating low pollution levels also for those<br />

parts of the state of which airborne nutrient supply<br />

was already known to be high (Frahm et al. 2006).<br />

Closer analysis, however, showed that the high „air<br />

quality values“ were caused by the abundance of<br />

nitrophytes, epiphytes promoted by pollution with<br />

airborne nutrients falsified the results. When, in lieu<br />

of lichen frequency, we simply plotted the mean<br />

number of epiphytes per tree, a much more realistic<br />

pattern was obtained. The Dutch colleagues call this<br />

figure "Nitrifiele Indicatie Waarde" (van Herk 1999).<br />

Finally, we participated in the revision of the<br />

guideline for lichen mapping; the current version is<br />

VDI 3957 Part 13 (VDI 2005). IFR examined the<br />

effects on and metabolism of experimentally applied<br />

nitrogen compounds on epiphytic lichens and<br />

bryophytes (Franzen-Reuter 2004, Franzen-Reuter et<br />

al. 2006, Franzen-Reuter & Frahm 2007), while<br />

landscape ecologist Andreas Solga, who had joined<br />

the Frahm group, made similar experiments with<br />

STAPPER & FRANZEN-REUTER: BIOINDICATION IN BONN<br />

terrestrial and saxicolous bryophytes (Solga 2003,<br />

Solga et al. 2005, 2006b). They discovered that<br />

reactive nitrogen is preferentially taken up in its<br />

reduced form. Both, nitrate and ammonia are taken up<br />

by organisms, and ammonia is instantly incorporated<br />

into amino acids and other metabolites, whereas the<br />

conversion of nitrate is rather energy consuming,<br />

making oxidized N a less efficient nutrient. Mapping<br />

results showed a strong correlation between the<br />

frequency of nitrophytes and both agricultural activity<br />

or traffic intensity. We initially suspected dust<br />

(Vorbeck & Windisch 2001) and nitrogen oxides from<br />

cars (Franzen et al. 2002) as the principal nutrients for<br />

nitrophytes downtown, but in view of the rapid<br />

decline of traffic impact with distance from road<br />

edges, ammonia produced in catalytic converters<br />

(Cape et al. 2004, Frahm 2008), appeared as more<br />

likely candidate. Consequently, we analyzed<br />

specimens of the foliose lichen Parmelia sulcata<br />

collected at different sites in Düsseldorf, and<br />

discovered a strong correlation between total tissue<br />

nitrogen content and traffic intensity at the collecting<br />

site (Stapper et al. 2005). At the same sites, Jan-Peter<br />

estimated ammonia using FERM samplers (Frahm<br />

2006, 2007a) showing that sites with both high<br />

nitrogen content in lichens and traffic intensity were<br />

the ones with high ammonia levels, too.<br />

Compared to livestock farming, traffic is a small<br />

source for ammonia, and for this reason, its potential<br />

impact on the urban ecosystem has been<br />

underestimated or ignored so far. In congested and<br />

canyonlike downtown streets, only mosses and<br />

lichens which are most resistant to airborne nutrients<br />

hold out if any (Stapper & Kricke 2004). At these<br />

sites, the influence of eutrophicating pollutants is<br />

particularly strong. In the Netherlands, the trafficrelated<br />

impact on epiphytes has become noticeable<br />

with declining levels of ammonia emitted from the<br />

agricultural sector (van Herk 2009). There are several<br />

explanations for the effects of ammonia on the<br />

composition of epiphytic lichen and bryophyte<br />

communities, (1) altered substrate, i.e. increased pH<br />

of bark caused by ammonia (van Herk 2001), and (2),<br />

higher tolerance of (some) nitrophytes to drought and<br />

osmotic stress, imputing ammonia derived<br />

compounds to act (Janßen et al. 2007, Frahm 2008,<br />

Frahm et al. 2009).<br />

Drought resistence appears to be a cause of the<br />

increase of Phaeophyscia nigricans and P.<br />

orbicularis, because they predominantly do not only<br />

survive at highly congested sites but also at heated<br />

sites in urban areas, where most others cannot be<br />

found. Furthermore, Jan-Peter Frahm and his students<br />

demonstrated that the frequency of nitrophytes<br />

declines with increasing humidity at the investigated<br />

sites (Frahm et al. 2007a,b). Some of the nitrophyte<br />

species used as indicators for eutrophication by VDI<br />

3957 Part 13 suffer much less from low humidity than<br />

TROPICAL BRYOLOGY 31 (2010)


acidophytes and neutrophytes. Frahm & Stapper<br />

(2008) consequently introduced a humidity related<br />

correction factor for lichen mappings of large areas.<br />

The activities of Jan-Peter Frahm in the field of<br />

bioindication with bryophytes are numerous and<br />

diverse, and resulted in two amply illustrated<br />

<strong>text</strong>books (Frahm 1998, Frahm et al. 2007a). The<br />

experience gathered in many studies and observations<br />

during field trips are, for instance, included in a VDI<br />

guideline for mapping of diversity of epiphytic<br />

bryophytes as indicators of air quality (Franzen<br />

2001b, VDI 2006).<br />

Investigating the effects of climate change on<br />

bryophytes and lichens is another focus of research of<br />

the "Bonn group". First scientific findings were<br />

published already 10 years ago (Frahm & Klaus 2000,<br />

Frahm 2003, 2007b). Here again, epiphytes are of<br />

main interest, because their properties are well<br />

known. The rapid increase - particularly in northwest<br />

Germany - of lichens originally limited to the<br />

Mediterranean or Atlantic parts of Europe appears to<br />

be caused by climate change, even if one keeps in<br />

mind that the return of many species due to reduced<br />

pollution is not completed (unpublished observation).<br />

Research has largely been focusing on epiphytes. For<br />

the sake of completeness it has, however, to be<br />

mentioned that some results of studies on aquatic or<br />

terrestrial mosses are used or will soon be used in<br />

standards and technical guidelines. The sampling<br />

procedure developed by Solga et al. (2006a) and<br />

Solga & Frahm (2006), for instance, has been made<br />

standard practice in VDI 3957 Part 19 (VDI 2009).<br />

Acknowledgements: We are indebted to our colleague<br />

Walter Erhardt (Karlsruhe) for helpful comments.<br />

References<br />

Cape, J. N., Y. S. Tang, N. van Dijk., L. Love, M. A.<br />

Sutton & S. C. F. Palmer. 2004. Concentrations of<br />

ammonia and nitrogen dioxide at roadside verges,<br />

and their contribution to nitrogen deposition.<br />

Environmental Pollution 132: 469-478.<br />

Dilg, C. 1998. Epiphytische Moose und Flechten als<br />

Bioindikatoren der Luftqualität im Stadtgebiet von<br />

Bonn. Limprichtia 11: 1-94.<br />

Frahm, J.-P. 1976. Transplantationsversuche mit<br />

epigäischen Moosen zur Eichung von<br />

Bioindikatoren für die Luftverschmutzung. Natur<br />

und Wissenschaft 51(1):19-22.<br />

Frahm, J.-P. 1998. Moose als Bioindikatoren. Quelle &<br />

Meyer, Wiesbaden.<br />

Frahm, J.-P. 1999. Epiphytische Massenvorkommen der<br />

fädigen Grünalge Klebsormidium crenulatum<br />

(Kützing) Lokhorst im Rheinland. Decheniana<br />

(Bonn) 152: 117-119.<br />

TROPICAL BRYOLOGY 31 (2010)<br />

STAPPER & FRANZEN-REUTER: BIOINDICATION IN BONN<br />

Frahm, J.-P. 2003. Weitere Auswirkungen des<br />

Klimawandels auf die Moosflora Mitteleuropas.<br />

Limprichtia 22: 147-156.<br />

Frahm, J.-P. 2006. Der Einfluss von Ammoniak auf<br />

Stickstoff liebende Flechten in verkehrsbelasteten<br />

Gebieten. Immissionsschutz 4/2006: 164-167.<br />

Frahm, J.-P. 2007a. Die Rolle von Ammoniak bei der<br />

eutrophierenden Wirkung von Luftschadstoffen auf<br />

Flechten. VDI-KRdL Schriftenreihe 37: 79-86.<br />

Frahm, J.-P. 2007b. Moose als Indikatoren des<br />

Klimawandels. Gefahrstoffe – Reinhaltung der Luft<br />

67: 269-273.<br />

Frahm, J.-P. 2008. Überdüngung und Versalzung durch<br />

Katalysatoren? Biologie in unserer Zeit 2: 94-101.<br />

Frahm, J.-P. & D. Klaus. 2000. Moose als Indikatoren von<br />

rezenten und früheren Klimafluktuationen in<br />

Mitteleuropa. Berichte der Niedersächsischen<br />

Naturschutzakademie 2/2000: 69-75.<br />

Frahm, J.-P., I. Franzen-Reuter & N.J. Stapper. 2006.<br />

Bioindikation mit epiphytischen Flechten – ein<br />

Methodenvergleich an Hand einer landesweiten<br />

Kartierung Nordrhein-Westfalens unter besonderer<br />

Berücksichtigung der neuen Richtlinie VDI 3957<br />

Blatt 13. Gefahrstoffe - Reinhaltung der Luft 66 (6):<br />

267-271.<br />

Frahm, J.-P., N.J. Stapper & I. Franzen-Reuter. 2007a.<br />

Epiphytische Moose als Umweltgütezeiger – Ein<br />

illustrierter Bestimmungsschlüssel. KRdL-<br />

Schriftenreihe 40. Kommission Reinhaltung der Luft<br />

im VDI und DIN – Normenausschuss KRdL,<br />

Düsseldorf.<br />

Frahm, J.-P., S. Hensel & D. Thönnes. 2007b. Zur<br />

Vergleichbarkeit von Luftgütekartierungen mit Hilfe<br />

der VDI-Flechtenrichtlinie 3957 Blatt 13.<br />

Gefahrstoffe – Reinhaltung der Luft 67: 206-208.<br />

Frahm, J.-P. & N.J. Stapper, N.J. 2008. Der Einfluss der<br />

Humidität eines Gebietes auf die Ermittlung der<br />

Luftgüte mit Flechten nach VDI 3957 Blatt 13.<br />

Gefahrstoffe – Reinhaltung der Luft 68: 251-256.<br />

Frahm, J.-P., A.-M. Janßen, J. Schumacher, D. Thönnes,<br />

S. Hensel, B. Heidelbach & D. Erler. 2009. Das<br />

Nitrophytenproblem bei epiphytischen Flechten –<br />

eine Synthese. Archive for Lichenology 5: 1-8.<br />

Franzen, I. 2001a. Epiphytische Moose und Flechten als<br />

Bioindikatoren der Luftgüte am Westrand des<br />

Ruhrgebietes. Limprichtia 16: 1-85.<br />

Franzen, I. 2001b. Entwurf zu einer VDI-Richtlinie für die<br />

Kartierung epiphytischer Moose. Bryologische<br />

Rundbriefe 45: 1-5.<br />

Franzen-Reuter, I. 2004. Untersuchungen zu den<br />

Auswirkungen atmosphärischer Stickstoffeinträge<br />

auf epiphytische Flechten und Moose im Hinblick<br />

auf die Bioindikation. Dissertation Universität Bonn.<br />

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/<br />

2004/franzen-reuter_isabelle/franzen-reuter.htm<br />

Franzen, I., N.J. Stapper & J.-P. Frahm. 2002.<br />

Ermittlung der lufthygienischen Situation<br />

Nordrhein-Westfalens mit epiphytischen Flechten<br />

und Moosen als Bioindikatoren. Gutachten im<br />

Auftrag des Ministeriums für Umwelt und Naturschutz,<br />

Landwirtschaft und Verbraucherschutz<br />

Nordrhein-Westfalen - MUNLV. 41 S.<br />

Franzen-Reuter, I. & N.J. Stapper. 2003. Nachweis<br />

eutrophierender Luftverunreinigungen in NRW -<br />

Landesweite Kartierung epiphytischer Flechten und<br />

Moose. LÖBF-Mitteilungen 1/03: 71-73.<br />

3


4<br />

Franzen-Reuter, I., J. Gehrmann & J.-P. Frahm. 2006.<br />

Veränderungen des Epiphytenbewuchses zwischen<br />

2002 und 2004 auf Dauerbeobachtungsflächen in<br />

Nordrhein-Westfalen. LÖBF-Mitteilungen 2/06: 2-7.<br />

Franzen-Reuter, I. & J.-P. Frahm, J.-P. 2007.<br />

Auswirkungen experimenteller Stickstoffgaben auf<br />

die Epiphytenflora in Dauerbeobachtungsflächen<br />

(Rheinland-Pfalz, Deutschland). Herzogia 20: 61-75.<br />

Janßen, A.-M., J.-P. Frahm & J. Gehrmann. 2007.<br />

Auswirkungen unterschiedlicher Stickstoffdepositionsformen<br />

auf epiphytische Flechten. Immissionsschutz<br />

3/2007: 110-115.<br />

Solga, A. 2003. Untersuchungen zur Eignung von Moosen<br />

als Bioindikatoren atmosphärischer<br />

Stickstoffeinträge. Dissertation Universität Bonn.<br />

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak<br />

/2003/solga_andreas/index.htm .<br />

Solga, A. & J.-P. Frahm. 2006. Nitrogen accumulation of<br />

six pleurocarpous moss species and their suitability<br />

for monitoring nitrogen deposition. Journal of<br />

<strong>Bryology</strong> 28: 46-52.<br />

Solga, A., J. Burkhardt, H.G. Zechmeister, & J.-P.<br />

Frahm. 2005. Nitrogen content, 15N natural<br />

abundance and biomass of the two pleurocarpous<br />

mosses Pleurozium schreberi (Brid.) Mitt. and<br />

Scleropodium purum (Hedw.) Limpr. in relation to<br />

atmospheric nitrogen deposition. Environmental<br />

Pollution 134: 465-473.<br />

Solga, A., J. Burkhardt, & J.-P. Frahm. 2006a. A new<br />

approach to Assess Atmospheric Nitrogen<br />

deposition by way of Standardized Exposition of<br />

mosses. Environmental Monitoring and Assessment<br />

116: 399-417.<br />

Solga, A., T. Eichert & J.-P. Frahm. 2006b. Historical<br />

alteration in the nitrogen content and 15N natural<br />

abundance of mosses in western Germany:<br />

indication for regionally varying changes in<br />

atmospheric nitrogen deposition within the last 150<br />

years. Atmospheric Environment 40: 8044-8055.<br />

Stapper, N.J., I. Franzen, S. Gohrbandt & J.-P. Frahm.<br />

2000. Epiphyten kehren ins Ruhrgebiet zurück.<br />

Ergebnisse einer Moos- und Flechtenkartierung im<br />

Revier. LÖBF-Mitteilungen 2/2000, 12-21.<br />

Stapper, N.J. & I. Franzen-Reuter. 2004. Mapping aerial<br />

hypertrophication with epiphytic lichens as biomonitors<br />

in North Rhine-Westphalia (NRW, Germany).<br />

Lichens in a changing pollution environment.<br />

English Nature Research Reports 525: 31-36.<br />

Stapper, N.J., I. Franzen-Reuter & J.-P. Frahm. 2005.<br />

Stickstoffgehalte in der Blattflechte Parmelia<br />

sulcata als Indikator atmosphärischer<br />

Stickstoffeinträge in einer Großstadt am Beispiel<br />

Düsseldorf. Immissionsschutz 10: 84-89.<br />

Stapper, N.J. & R. Kricke. 2004. Epiphytische Moose und<br />

Flechten als Bioindikatoren von städtischer Überwärmung,<br />

Standorteutrophierung und<br />

verkehrsbedingten Immissionen. Limprichtia 24:<br />

187 - 208.<br />

Stetzka, K.M. & N.J. Stapper. 2001. Moose und Flechten<br />

im Level-II-Programm: Erste Untersuchungsergebnisse<br />

aus Hessen, Sachsen und Nordrhein-Westfalen.<br />

S. 88-157. In: Dauerbeobachtung der Waldvegetation<br />

im Level II-Programm: Methoden und<br />

Auswertung. Hrsg.: Bundesministerium für<br />

Verbraucherschutz, Ernährung und Landwirtschaft<br />

(BMVEL), Referat 533.<br />

STAPPER & FRANZEN-REUTER: BIOINDICATION IN BONN<br />

van Herk, C.M. 1999. Mapping of ammonia pollution with<br />

epiphytic lichens in The Netherlands. Lichenologist<br />

31: 9-20.<br />

van Herk, C.M. 2001. Bark pH and susceptibility to toxic<br />

air pollutants as independent causes of changes in<br />

epiphytic lichen composition in space and time.<br />

Lichenologist 33: 419-441.<br />

van Herk, C.M. 2009. Climate change and ammonia from<br />

cars as notable recent factors influencing epiphytic<br />

lichens in Zeeland, Netherlands. Biodiversity and<br />

ecology of lichens – Liber Amicorum Harrie<br />

Sipman. Bibliotheca Lichenologica 99: 205-224.<br />

VDI (Verein Deutscher Ingenieure [ed.]). 1995. VDI<br />

3799 Blatt 1: Messen von Immissionswirkungen -<br />

Ermittlung und Beurteilung phytotoxischer<br />

Wirkungen von Immissionen mit Flechten -<br />

Flechtenkartierung zur Ermittlung des<br />

Luftgütewertes (LGW) (Measurement of immission<br />

effects - Measurement and evaluation of phytotoxic<br />

effects of ambient air pollutants (immissions) with<br />

lichens - Mapping of lichens for assessment of the<br />

air quality). Beuth, Düsseldorf, 24 S.<br />

VDI (Verein Deutscher Ingenieure [ed.]). 2005. VDI<br />

3957 Blatt 13: Biologische Messverfahren zur<br />

Ermittlung und Beurteilung der Wirkung von<br />

Luftverunreinigungen auf Flechten (Bioindikation) -<br />

Kartierung der Diversität epiphytischer Flechten als<br />

Indikator für Luftgüte (Biological measurement<br />

procedures for determining and evaluating the<br />

effects of ambient air pollutants by means of lichens<br />

(bioindication) - Mapping the diversity of epiphytic<br />

lichens as an indicator of air quality). Beuth, Berlin.<br />

VDI (Verein Deutscher Ingenieure [ed.]). 2006. VDI<br />

3957 Blatt 12: Biologische Messverfahren zur<br />

Ermittlung und Beurteilung der Wirkung von<br />

Luftverunreinigungen (Bioindikation) - Kartierung<br />

der Diversität epiphytischer Moose als Indikatoren<br />

für die Luftqualität (Biological measuring<br />

techniques for the determination and evaluation of<br />

the effects of air pollutants (bioindication) -<br />

Mapping of diversity of epiphytic bryophytes as<br />

indicators of air quality). Beuth, Berlin.<br />

VDI (Verein Deutscher Ingenieure [ed.]). 2009. VDI<br />

3957 Blatt 19: Biologische Messverfahren zur<br />

Ermittlung und Beurteilung der Wirkung von<br />

Luftverunreinigungen (Bioindikation) - Nachweis<br />

von regionalen Stickstoffdepositionen mit den<br />

Laubmoosen Scleropodium purum und Pleurozium<br />

schreberi (Biological measurement procedures to<br />

determine and assess the effects of ambient air<br />

pollutants (bioindication) - Detection of regional<br />

nitrogen depositions with the mosses Scleropodium<br />

purum and Pleurozium schreberi). Beuth, Berlin.<br />

Vestreng, V., G. Myhre, H. Fagerli, S. Reis &<br />

L.Tarrason. 2007. Twenty-five years of continuous<br />

sulphur dioxide emission reduction in Europe.<br />

Atmospheric Chemistry and Physics 7, 3663–368.<br />

Vorbeck, A. & U. Windisch. 2001. Forschungs- und<br />

Entwicklungsvorhaben Flechtenkartierung München<br />

– Eignung von Flechten als Bioindikatoren für<br />

verkehrsbedingte Immissionen. Bayrisches<br />

Staatsministerium für Landesentwicklung und<br />

Umweltfragen (StMLU). Materialien Umwelt und<br />

Entwicklung 173. München. 174 S.<br />

TROPICAL BRYOLOGY 31 (2010)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!