20.08.2013 Views

L - Florence Theory Group - Infn

L - Florence Theory Group - Infn

L - Florence Theory Group - Infn

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

QCD@Work 2003<br />

International Workshop on<br />

Quantum Chromodynamics<br />

<strong>Theory</strong> and Experiment<br />

Conversano (Bari, Italy)<br />

June 14-18 2003<br />

Inhomogeneous color<br />

superconductivity<br />

Roberto Casalbuoni<br />

Department of Physics and INFN – <strong>Florence</strong><br />

&<br />

CERN TH Division - Geneva


Introduction<br />

Effective theory of CS<br />

Gap equation<br />

The The inhomogeneous phase (LOFF): phase<br />

diagram and crystalline structure<br />

Phonons<br />

LOFF phase in compact stellar objects<br />

Outlook<br />

Summary


Introduction<br />

mu, , md , ms s


Effective theory of<br />

Color<br />

Superconductivity


Relevant scales in CS<br />

δ (cutoff)<br />

∆ (gap)<br />

Fermi momentum defined by<br />

pF<br />

r<br />

E( pF<br />

)<br />

=<br />

µ<br />

The cutoff is of order ωD in<br />

superconductivity and > ΛQCD QCD<br />

in QCD<br />

∆<br />


Hierarchies of effective lagrangians<br />

Microscopic description LQCD QCD<br />

Quasi-particles Quasi particles (dressed fermions<br />

as electrons in metals). Decoupling<br />

of antiparticles (Hong ( Hong 2000) 2000<br />

Decoupling of gapped quasi-<br />

particles. Only light modes as<br />

Goldstones, etc. (R.C. ( R.C. & Gatto<br />

Gatto; ; Hong,<br />

Rho & Zahed 1999)<br />

1999<br />

p – pF >> δ<br />

LHDET HDET<br />

δ >> p – pF >> ∆<br />

p – pF


Physics near the Fermi surface<br />

(see:<br />

( ∆


SM M gives rise di-fermion di fermion condensation producing a<br />

Majorana mass term. Work in the Nambu-Gorkov<br />

Nambu Gorkov basis:<br />

r<br />

1 ⎛ ψ ( p)<br />

⎞<br />

χ = ⎜ r ⎟<br />

⎜ ⎟<br />

⎝Cψ<br />

∗<br />

2 ( −p)<br />

⎠<br />

Near the Fermi surface<br />

ξr<br />

p ≡<br />

r<br />

r ∂E(<br />

p)<br />

( p)<br />

− µ ≈ r<br />

∂p<br />

r r<br />

r r r r r<br />

⋅(<br />

p − pF<br />

) ≡ vF<br />

⋅(<br />

p − p<br />

E F<br />

r<br />

p<br />

F<br />

r<br />

= µ v l r<br />

F<br />

r<br />

p<br />

r<br />

µ v<br />

= F<br />

p=<br />

p<br />

F<br />

+<br />

r<br />

l<br />

)


S<br />

=<br />

S<br />

E<br />

−1<br />

=<br />

Dispersion relation<br />

⎡E<br />

− ξ<br />

⎢ *<br />

⎣ − ∆<br />

1<br />

r<br />

p<br />

E<br />

−<br />

+<br />

∆<br />

ξ<br />

r<br />

p<br />

⎤<br />

⎥<br />

⎦<br />

⎡E<br />

+ ξr<br />

p<br />

2 ⎢ *<br />

∆ ⎣ ∆<br />

∆<br />

− ξ<br />

r<br />

ε(<br />

p)<br />

= ±<br />

2 2<br />

ξr<br />

+ ∆<br />

2<br />

− ξr<br />

p −<br />

E<br />

At fixed vF only energy and<br />

momentum along vF are relevant<br />

v1 Infinite copies of 2-d 2 d physics<br />

p<br />

r<br />

p<br />

⎤<br />

⎥<br />

⎦<br />

v 2


Gap equation<br />

Gap equation<br />

2<br />

BCS<br />

2<br />

2<br />

4<br />

4<br />

4<br />

|<br />

p<br />

|<br />

p<br />

1<br />

)<br />

2<br />

(<br />

p<br />

d<br />

G<br />

1<br />

∆<br />

+<br />

+<br />

π<br />

= ∫ r<br />

∑<br />

∫<br />

+∞<br />

−∞<br />

=<br />

∆<br />

ε<br />

+<br />

π<br />

+<br />

π<br />

=<br />

n<br />

2<br />

2<br />

3<br />

3<br />

)<br />

,<br />

p<br />

(<br />

)<br />

T<br />

)<br />

1<br />

n<br />

2<br />

((<br />

1<br />

)<br />

2<br />

(<br />

p<br />

d<br />

GT<br />

1 r<br />

)<br />

,<br />

p<br />

(<br />

n<br />

n<br />

1<br />

)<br />

2<br />

(<br />

p<br />

d<br />

2<br />

G<br />

1<br />

d<br />

u<br />

3<br />

3<br />

∆<br />

ε<br />

−<br />

−<br />

π<br />

= ∫ r<br />

1<br />

e<br />

1<br />

n<br />

n T<br />

/<br />

)<br />

,<br />

p<br />

(<br />

d<br />

u<br />

+<br />

=<br />

= ∆<br />

ε r


For T T 0<br />

1<br />

G<br />

2<br />

At weak coupling<br />

d p<br />

( 2π)<br />

3<br />

= ∫ 3 2 r<br />

1 ≅<br />

∆<br />

G<br />

2π<br />

2<br />

BCS<br />

p<br />

v<br />

2<br />

F<br />

F<br />

≈<br />

ξ<br />

log<br />

2δe<br />

1<br />

( p)<br />

+<br />

2δ<br />

∆<br />

∆<br />

BCS<br />

2<br />

−<br />

Gρ<br />

2<br />

BCS<br />

( δ =<br />

ρ<br />

cutoff<br />

=<br />

π<br />

p<br />

2<br />

2<br />

F<br />

v<br />

)<br />

F<br />

density of states


With G fixed by χSB SB at T = 0, requiring<br />

Mconst const ~ 400 MeV<br />

and for typical values of µ ~ 400 – 500 MeV one gets<br />

∆<br />

≈<br />

10 ÷ 100<br />

MeV<br />

Evaluation from QCD first principles at asymptotic µ<br />

∆<br />

≈<br />

(Son Son 1999) 1999<br />

bµ<br />

g<br />

5<br />

se<br />

Notice the behavior exp(-c/g) exp( c/g) and not exp(-c/g exp( c/g2 ) as one<br />

would expect from four-fermi four fermi interaction<br />

For µ ~ 400 MeV one finds again ∆<br />

≈10<br />

÷ 100 MeV<br />

−<br />

3π<br />

2<br />

2g<br />

s


The inhomogeneous<br />

phase (LOFF)<br />

In many different situations the “would be” pairing fermions<br />

belong to Fermi surfaces with different radii:<br />

• Quarks with different masses<br />

• Requiring electrical neutrality and/or weak equilibrium


Consider 2 fermions with m 1 = M, m 2 = 0 at the same<br />

chemical potential µ. . The Fermi momenta are<br />

2<br />

pF1 = µ −<br />

M<br />

2<br />

pF2<br />

To form a BCS condensate one needs common momenta<br />

of the pair pF comm<br />

p<br />

comm<br />

F<br />

Grand potential at T = 0<br />

for a single fermion<br />

=<br />

µ<br />

−<br />

2<br />

M<br />

4µ<br />

pF<br />

3<br />

d p r<br />

Ω = 2∫<br />

) 3<br />

( 2π)<br />

0<br />

=<br />

µ<br />

( ε(<br />

p − µ )


2<br />

2 comm<br />

comm<br />

∆Ω ≈ 2∑ µ ( pF<br />

− pFi)(<br />

εi<br />

( pF<br />

) − µ ) ≈<br />

i=<br />

1<br />

Pairing energy<br />

Pairing possible if<br />

≈<br />

−µ<br />

2<br />

∆<br />

2<br />

2<br />

M<br />

The problem may be simulated using massless fermions with<br />

different chemical potentials (Alford, ( Alford, Bowers & Rajagopal 2000) 2000<br />

Analogous problem studied by Larkin &<br />

Ovchinnikov,<br />

Ovchinnikov,<br />

Fulde & Ferrel 1964. 1964.<br />

Proposal of<br />

a new way of pairing. LOFF phase<br />

µ<br />

≤<br />

∆<br />

M<br />

4


LOFF: ferromagnetic alloy with paramagnetic<br />

impurities.<br />

The impurities produce a constant exchange<br />

field acting upon the electron spins giving rise to<br />

an effective difference in the chemical potentials<br />

of the opposite spins. spins.<br />

Very difficult experimentally but claims of<br />

observations in heavy fermion superconductors<br />

(Gloos Gloos & al 1993) 1993 and in quasi-two quasi two dimensional layered<br />

organic superconductors (Nam ( Nam & al. 1999, Manalo & Klein<br />

2000)<br />

2000


µ ≠ µ or paramagnetic impurities (<br />

1<br />

I<br />

2<br />

H = −δµσ<br />

Ω<br />

or paramagnetic impurities (δµ δµ ∼ H) give<br />

rise to an energy additive term<br />

BCS<br />

−<br />

3<br />

4<br />

d p 1<br />

1 = G∫<br />

4<br />

2 r<br />

( 2π)<br />

( p + iδµ<br />

) + | p<br />

Ω<br />

normal<br />

4<br />

=<br />

ρ<br />

− ( ∆<br />

4<br />

Gap equation<br />

2<br />

BCS<br />

|<br />

2<br />

+ ∆<br />

Solution as for BCS ∆ = ∆ BCS, BCS,<br />

up to (for T = 0)<br />

δµ<br />

1<br />

=<br />

∆<br />

BCS<br />

2<br />

≈<br />

0.<br />

707<br />

∆<br />

BCS<br />

2<br />

− 2δµ<br />

2<br />

)


According LOFF, close to first order line, possible<br />

condensation with non zero total momentum<br />

r<br />

p 1<br />

r r r r r<br />

= k + q = −k<br />

+ q<br />

p 2<br />

More generally<br />

| q<br />

r<br />

r<br />

q<br />

/<br />

|<br />

ψ(<br />

x)<br />

ψ(<br />

x)<br />

ψ(<br />

x)<br />

ψ(<br />

x)<br />

|<br />

r r<br />

p + p 1 2<br />

r<br />

q<br />

|<br />

=<br />

=<br />

=<br />

∆<br />

∆e<br />

∑<br />

m<br />

r<br />

2q<br />

r r<br />

2iq⋅x<br />

c<br />

m<br />

e<br />

r r<br />

2iq<br />

⋅x<br />

fixed variationally<br />

chosen<br />

spontaneously<br />

m


Simple plane wave: energy shift<br />

r r r<br />

E(<br />

p)<br />

− µ → E(<br />

± k + q)<br />

− µ m δµ ≈ ξ m µ<br />

r r<br />

µ = δµ − ⋅q<br />

Gap equation:<br />

n ≠<br />

u<br />

n<br />

d<br />

For T T 0<br />

3<br />

g d p 1<br />

= ∫ r<br />

2 ( 2π)<br />

ε(<br />

p,<br />

∆)<br />

1 3<br />

v F<br />

3<br />

g d p 1−<br />

n u − n<br />

1 = ∫ 3 r<br />

2 ( 2π)<br />

ε(<br />

p,<br />

∆)<br />

( 1<br />

e<br />

d<br />

1<br />

n = u,<br />

d ( ε( p,<br />

∆)<br />

± µ ) / T<br />

r<br />

blocking region<br />

− θ(<br />

−ε<br />

− µ ) − θ(<br />

−ε<br />

+ µ ))<br />

+ 1<br />

ε<br />

< | µ<br />

|


The blocking region reduces the gap:<br />

∆<br />

LOFF<br />


Ω<br />

=<br />

α∆<br />

2<br />

+<br />

β<br />

2<br />

∆<br />

4<br />

+<br />

γ<br />

3<br />

∆<br />

6<br />

+<br />

⋅⋅⋅<br />

(for regular crystalline structures all the ∆q are equal)<br />

The coefficients can be determined microscopically for<br />

the different structures (Bowers ( Bowers and Rajagopal (2002))<br />

(2002)


Gap equation<br />

Propagator expansion<br />

Insert in the gap equation


We get the equation<br />

α∆<br />

+<br />

β∆<br />

3<br />

+<br />

γ∆<br />

5<br />

+ ⋅⋅⋅<br />

∂Ω<br />

Which is the same as = 0<br />

∂∆<br />

α∆<br />

β∆ 3<br />

γ∆ 5<br />

=<br />

=<br />

=<br />

=<br />

0<br />

with<br />

The first coefficient has<br />

universal structure,<br />

independent on the crystal.<br />

From its analysis one draws<br />

the following results


δµ<br />

δµ<br />

1<br />

2<br />

Ω<br />

Ω<br />

=<br />

BCS<br />

LOFF<br />

∆<br />

− Ω<br />

∆<br />

BCS<br />

− Ω<br />

LOFF<br />

/<br />

normal<br />

≈ 0.<br />

754∆<br />

normal<br />

ρ<br />

= − ( ∆<br />

4<br />

2<br />

BCS<br />

− 2δµ<br />

= −0.<br />

44ρ(<br />

δµ − δµ<br />

≈1.<br />

15 ( δµ 2 − δµ )<br />

2<br />

BCS<br />

Small window. Opens up in QCD?<br />

(Leibovich Leibovich, , Rajagopal & Shuster 2001;<br />

Giannakis, Giannakis,<br />

Liu & Ren 2002<br />

2<br />

2002)<br />

2<br />

)<br />

)<br />

2


Results of Leibovich, Rajagopal &<br />

µ(MeV)<br />

LOFF<br />

400<br />

1000<br />

Shuster (2001)<br />

δµ 2/ /∆ BCS<br />

0.754<br />

1.24<br />

3.63<br />

(δµ 2 −δµ 1 )/∆ BCS<br />

0.047<br />

0.53<br />

2.92


Along the critical line<br />

( at T = 0,<br />

q = 1.<br />

2δµ<br />

2<br />

)<br />

Single plane wave<br />

∂Ω<br />

∂∆<br />

Critical line from<br />

=<br />

∂Ω<br />

0 , =<br />

∂q<br />

0


General<br />

analysis<br />

(Bowers Bowers and<br />

(2002))<br />

Rajagopal (2002)<br />

Preferred<br />

structure:<br />

face-centered<br />

face centered<br />

cube


Phonons<br />

In the LOFF phase translations and rotations are broken<br />

phonons<br />

Phonon field through the phase of the condensate (R.C., ( R.C.,<br />

Gatto, Gatto,<br />

Mannarelli & Nardulli 2002): 2002):<br />

ψ(<br />

x)<br />

ψ(<br />

x)<br />

Introduce:<br />

=<br />

∆e<br />

r r<br />

2iq⋅x<br />

→<br />

∆e<br />

iΦ(<br />

x)<br />

Φ(<br />

x)<br />

1 r r<br />

φ(<br />

x)<br />

= Φ(<br />

x)<br />

− 2q<br />

⋅ x<br />

f<br />

=<br />

r r<br />

2q<br />

⋅ x


L<br />

phonon<br />

2 2<br />

2<br />

⎡1<br />

⎛ ∂ φ ∂ φ ⎞ ∂ φ⎤<br />

= ⎢ φ&<br />

2 2<br />

2<br />

− v ⎜ + ⎟<br />

⊥ − v<br />

2 2 || 2 ⎥<br />

⎣2<br />

⎝ ∂x<br />

∂y<br />

⎠ ∂z<br />

⎦<br />

Coupling phonons to fermions (quasi-particles) (quasi particles) trough<br />

the gap term<br />

∆(<br />

x)<br />

ψ<br />

T<br />

Cψ<br />

→<br />

∆e<br />

iΦ(<br />

x)<br />

ψ<br />

T<br />

Cψ<br />

It is possible to evaluate the parameters of Lphonon phonon<br />

v<br />

2<br />

⊥<br />

=<br />

1<br />

2<br />

(R.C., R.C., Gatto, Gatto,<br />

Mannarelli & Nardulli 2002) 2002<br />

⎛<br />

⎜ ⎛ δµ ⎞<br />

1−<br />

⎜ r<br />

⎟<br />

⎜ | q |<br />

⎝ ⎝ ⎠<br />

2<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

≈<br />

+<br />

0.<br />

153<br />

v<br />

2<br />

||<br />

⎛ δµ ⎞<br />

= ⎜ r ⎟<br />

⎝ | q | ⎠<br />

2<br />

≈<br />

0.<br />

694


Cubic structure<br />

Cubic structure<br />

∑<br />

∑<br />

∑<br />

±<br />

=<br />

ε<br />

=<br />

Φ<br />

ε<br />

±<br />

=<br />

ε<br />

=<br />

ε<br />

=<br />

⋅<br />

∆<br />

⇒<br />

∆<br />

=<br />

∆<br />

=<br />

∆<br />

i<br />

)<br />

i<br />

(<br />

i<br />

i<br />

i<br />

i<br />

k<br />

;<br />

3<br />

,<br />

2<br />

,<br />

1<br />

i<br />

)<br />

x<br />

(<br />

i<br />

;<br />

3<br />

,<br />

2<br />

,<br />

1<br />

i<br />

x<br />

|<br />

q<br />

|<br />

i<br />

2<br />

8<br />

1<br />

k<br />

x<br />

q<br />

i<br />

2<br />

e<br />

e<br />

e<br />

)<br />

x<br />

(<br />

r<br />

r<br />

r<br />

i<br />

)<br />

i<br />

(<br />

x<br />

|<br />

q<br />

|<br />

2<br />

)<br />

x<br />

(<br />

r<br />

=<br />

Φ<br />

i<br />

)<br />

i<br />

(<br />

)<br />

i<br />

(<br />

x<br />

|<br />

q<br />

|<br />

2<br />

)<br />

x<br />

(<br />

)<br />

x<br />

(<br />

f<br />

1 r<br />

−<br />

Φ<br />

=<br />

ϕ


Using the symmetry group of the cube one gets:<br />

L<br />

−<br />

phonon<br />

b<br />

2<br />

∑<br />

=<br />

i=<br />

1,<br />

2,<br />

3<br />

1<br />

2<br />

∑<br />

i=<br />

1,<br />

2,<br />

3<br />

( ⎛ ∂φ<br />

⎜<br />

⎝ ∂t<br />

i)<br />

−<br />

∑<br />

i=<br />

1,<br />

2,<br />

3<br />

( ( i)<br />

)<br />

2<br />

∑(<br />

( i)<br />

( j)<br />

∂ φ − ∂ φ ∂ φ )<br />

i c i j<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

i<<br />

j=<br />

1,<br />

2,<br />

3<br />

a<br />

2<br />

r<br />

| ∇φ<br />

Coupling phonons to fermions (quasi-particles) (quasi particles) trough<br />

the gap term<br />

∆(<br />

x)<br />

ψ<br />

T<br />

Cψ<br />

→<br />

∆<br />

∑<br />

iεiΦ<br />

e<br />

i=<br />

1,<br />

2,<br />

3;<br />

ε = ±<br />

i<br />

(<br />

i )<br />

( x)<br />

( i)<br />

ψ<br />

T<br />

|<br />

2<br />


we get for the coefficients<br />

1<br />

a = b = 0<br />

12<br />

c<br />

1 ⎛ ⎞<br />

⎜ ⎛ δµ ⎞<br />

= 3 − ⎟<br />

⎜ ⎜⎜ r ⎟⎟ 1<br />

12<br />

⎟<br />

⎝ ⎝ | q | ⎠ ⎠<br />

One can also evaluate the effective lagrangian for the<br />

gluons in the anisotropic medium. For the cube one finds<br />

Isotropic propagation<br />

This because the second order invariant for the cube<br />

and for the rotation group are the same!<br />

2


LOFF phase in CSO<br />

Why the interest<br />

in the LOFF<br />

phase in QCD?


In neutron stars CS can be studied at T = 0<br />

T<br />

∆<br />

ns<br />

BCS<br />

≈10<br />

−6<br />

÷ 10<br />

−7<br />

( 1MeV<br />

20<br />

≤<br />

≈10<br />

10<br />

∆<br />

BCS<br />

K)<br />

For LOFF state from δpF ∼ 0.75 ∆ BCS<br />

14 ≤ δµ ( MeV)<br />

≤<br />

( MeV)<br />

70<br />

≤100<br />

Orders of magnitude from a crude model: 3 free quarks<br />

M =<br />

M = 0,<br />

M<br />

u d<br />

s<br />

≠<br />

0


ρ n.m.<br />

.m.is is the saturation nuclear density ~ .15x10 15<br />

At the core of the neutron star ρB ~ 10 15<br />

Choosing µ ~ 400 MeV<br />

M s = 200<br />

M s = 300<br />

δp F = 25<br />

δp F = 50<br />

15 g/cm 3<br />

ρB<br />

≈ 5 ÷<br />

ρ<br />

n.<br />

m.<br />

15 g/cm 3<br />

6<br />

Right ballpark<br />

(14 - 70 MeV)<br />

MeV


Glitches: discontinuity in the period of the pulsars.<br />

Standard explanations require: metallic crust +<br />

superfluide inside (neutrons)<br />

LOFF region inside the star might provide a<br />

crystalline structure + superfluid CFL phase<br />

New possibilities for strange stars<br />

( ∆Ω/Ω<br />

≈10<br />

−6<br />

)


Outlook<br />

Theoretical problems: problems Is the cube the optimal<br />

structure at T=0? Which is the size of the LOFF<br />

window?<br />

Phenomenological problems: problems:<br />

Better discussion<br />

of the glitches (treatment of the vortex lines)<br />

New possibilities:<br />

possibilities:<br />

Recent achieving of degenerate<br />

ultracold Fermi gases opens up new fascinating<br />

possibilities of reaching the onset of Cooper pairing of<br />

hyperfine doublets. Possibility of observing the LOFF<br />

crystal?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!