19.08.2013 Views

Fun with the Shack-Hartmann - Space Nanotechnology Laboratory

Fun with the Shack-Hartmann - Space Nanotechnology Laboratory

Fun with the Shack-Hartmann - Space Nanotechnology Laboratory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fun</strong> <strong>with</strong> <strong>the</strong> <strong>Shack</strong>-<strong>Hartmann</strong><br />

<strong>Shack</strong> <strong>Hartmann</strong><br />

Andrew Lapsa<br />

<strong>Space</strong> <strong>Nanotechnology</strong> <strong>Laboratory</strong><br />

Massachusetts Institute of Technology<br />

August 15, 2003<br />

and <strong>the</strong> autocollimator…


User interfaces have<br />

been developed<br />

• Short-term Short term testing<br />

Averages x number<br />

of readings<br />

• Long-term Long term testing<br />

Takes data points for<br />

x number of hours,<br />

and saves data to a<br />

spreadsheet file<br />

Autocollimator


Objective<br />

<strong>Shack</strong>-<strong>Hartmann</strong><br />

<strong>Shack</strong> <strong>Hartmann</strong><br />

• Increase <strong>the</strong> dynamic range of <strong>the</strong><br />

CLAS-2D CLAS 2D system<br />

Understand details of CLAS-2D CLAS 2D<br />

Develop own measurement routine<br />

Integrate new routine and CLAS-2D CLAS 2D<br />

Study results


CLAS-2D CLAS 2D Concept<br />

Focal Plane<br />

Lenslet Array<br />

Optic


Lenslet Concept


Blobs out of range<br />

Blobs often wander<br />

out of <strong>the</strong> proper<br />

AOI<br />

Maximum angle<br />

detectable ~350<br />

microradians


Algorithm Concept<br />

Use image processing techniques<br />

identify blobs independent of AOIs<br />

Calculate <strong>the</strong>ir centroids<br />

Predict locations of centroids based<br />

on knowledge of o<strong>the</strong>r centroids to<br />

link centroids <strong>with</strong> AOI’s


Blob Detection Algorithms<br />

Gaussian Mask – too complicated<br />

Canny Edge Detector – too complicated<br />

Papert’s Turtle – simple, but only good<br />

for regions <strong>with</strong> 4-connectivity<br />

4 connectivity<br />

Inner Boundary Tracing – simple,<br />

good for regions <strong>with</strong> 8-connectivity<br />

8 connectivity


IBT – big picture<br />

Subtract threshold from image<br />

Scan for nonzero pixels from left to<br />

right, top to bottom.<br />

When nonzero pixel is hit, apply<br />

Inner Boundary Tracing algorithm to<br />

trace edge of blob<br />

Record maximum and minimum<br />

bounds of blob and move on


IBT – little picture<br />

At first region pixel, look in 7+6 (mod 8) = 5<br />

direction<br />

Iterate direction until next region pixel is found<br />

• If <strong>the</strong> new direction is odd, add 6<br />

• If <strong>the</strong> new direction is even, add 7<br />

Continue until you return to 1 st pixel, or until all<br />

directions are determined to be non-region non region pixels<br />

4<br />

3<br />

5<br />

2<br />

6<br />

1<br />

7<br />

0<br />

0<br />

1<br />

8<br />

2<br />

7<br />

6<br />

5<br />

3 4


Centroid Calculation<br />

Return to un-thresholded un thresholded image<br />

Study expanded regions where dots<br />

were found<br />

Calculate centroid (ρ ( x,ρy) )<br />

x<br />

ρ<br />

=<br />

∑ ∑<br />

cols rows<br />

∑∑<br />

cols rows<br />

Return array of centroids<br />

I<br />

ij<br />

I<br />

x<br />

ij<br />

i<br />

y<br />

ρ<br />

=<br />

∑ ∑<br />

cols rows<br />

I<br />

∑∑<br />

cols rows<br />

ij<br />

I<br />

y<br />

ij<br />

j


Keep in mind 3 file types:<br />

Reference Centroids (.CLB)<br />

Lenslet Centers and Indices (.XYB)<br />

Test-Optic Test Optic Centroids (.PKB)


Prepare for Matching<br />

Rearrange .XYB<br />

• Place lenslet centers into matrix –<br />

position of center in mtx corresponds to<br />

position in physical lenslet array<br />

Rearrange .CLB<br />

• Place reference centroids into same type<br />

of matrix – match each lenslet center<br />

<strong>with</strong> closest reference centroid


Matching<br />

Match center 5 reference and test-optic test optic<br />

centroids by location in image<br />

• Calculate size of search window, and record<br />

<strong>the</strong> differences<br />

• Link by location in matrix (lenslet assignment)<br />

Match centroids along x & y axes<br />

• Guess location of next centroid by difference in<br />

previous centroid pair<br />

• Link by location in matrix (lenslet assignment)<br />

Match centroids row by row in quadrants<br />

• Guess location: use x-error x error from neighboring<br />

centroid in same column, y-error y error from<br />

neighboring centroid in same row<br />

• Link by location in matrix (lenslet assignment)


Comparison


Write .PKB file<br />

Use test-optic test optic centroids’ indices<br />

(lenslet assignment) to assign each<br />

centroid to proper location in array<br />

Save array as text file<br />

Convert text file to .PKB<br />

Use new .PKB <strong>with</strong> CLAS-2D, CLAS 2D, and<br />

savor <strong>the</strong> results.


Results – Glass Wafer<br />

Old .PKB New .PKB


.PKB Comparison<br />

No significant error throughout entire range of<br />

wafer<br />

Best-fit Best fit Zernike polynomials almost identical<br />

No practical difference in surface reconstruction<br />

Frequency<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

HISTOGRAM<br />

-0.31<br />

-0.26<br />

-0.21<br />

-0.16<br />

-0.11<br />

-0.06<br />

-0.02<br />

0.03<br />

0.08<br />

0.13<br />

0.18<br />

0.23<br />

0.28<br />

0.33<br />

0.37<br />

0.42<br />

Difference


Silicon Wafer<br />

Max=2.0867 micron<br />

Max=7.2488 micron<br />

Max=9.1848 micron<br />

Max=2.6774 micron<br />

Max=15.4146 micron<br />

Max=31.7745 micron


Silicon Wafer<br />

Slope Field Matches Surface Reconstruction


Success<br />

Understand CLAS-2D CLAS 2D – successful<br />

Develop measurement routine –<br />

successful<br />

Integrate routine and CLAS-2D CLAS 2D –<br />

successful, but could be prettier<br />

Results – successful


Conclusions<br />

Dynamic range has been increased<br />

from 350 microradians to 350<br />

microradians/224 microns<br />

For 10 cm wafers, improvement is by<br />

a factor of 450<br />

Wafers <strong>with</strong> dynamic range between<br />

5.8 and 100 microns have already<br />

been measured

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!