18.08.2013 Views

THESIS

THESIS

THESIS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>THESIS</strong><br />

REGULATION OF GENES CONTROLLING GRAIN<br />

ANTHOCYANIN AND PROANTHOCYANIDIN (CONDENSED<br />

TANNINS) ACCUMULATION IN RICE<br />

KIJANAN WIRIYASUK<br />

GRADUATE SCHOOL, KASETSART UNIVERSITY<br />

2005


<strong>THESIS</strong><br />

REGULATION OF GENES CONTROLLING GRAIN<br />

ANTHOCYANIN AND PROANTHOCYANIDIN (CONDENSED<br />

TANNINS) ACCUMULATION IN RICE<br />

KIJANAN WIRIYASUK<br />

A Thesis Submitted in Partial Fulfillment of<br />

the Requirements for the Degree of<br />

Master of Science (Genetic Engineering)<br />

Graduate School, Kasetsart University<br />

2005<br />

ISBN 974-9834-79-8


ACKOWLEDGEMENTS<br />

This work was complete with a lot of help from a number of people. I would<br />

sincerely like to acknowledge to my committee members, Dr. Somvong Tragoonrung,<br />

Associate Professor Dr. Apichart Vanavichit, and Dr. Vipa Hongtrakul. I appreciated<br />

for their advice.<br />

Thank to National Center for Genetic Engineering and Biotechnology<br />

(BIOTEC), the two-year scholarship for my thesis.<br />

My thank also go to The Rice Gene Discovery Unit and The DNA<br />

Technology Unit for supporting my research facilities and thanks to their supportive<br />

and encouragement.<br />

Finally, for my family and my friends who always give me encouragement, I<br />

am thankful for all your help.<br />

Kijanan Wiriyasuk<br />

April, 2005


TABLE OF CONTENTS<br />

i<br />

Page<br />

TABLE OF CONTENTS…………………………………………………….. i<br />

LIST OF TABLES………………………………………………………….... iii<br />

LIST OF FIGURES…………………………………………………………... iv<br />

LIST OF ABBREVIATIONS………………………………………………… vi<br />

INTRODUCTION……………………………………………………………. 1<br />

LITETATURE REVIEWS…………………………………………………… 3<br />

Genetic of the anthocyanin pigmentation in rice……………………...<br />

Variation in tissue-specific distribution of anthocyanins<br />

3<br />

among rice lines………………………………………………………. 5<br />

Biochemical characterization of pigments……………………………. 5<br />

Flavonoid biosynthetic pathway in rice………………………………. 6<br />

Molecular isolation and characterization of rice cDNA clones………. 9<br />

The anthocyanin pathway in rice is ultraviolet light-responsive………<br />

Molecular manipulation of the anthocyanin pathway to<br />

11<br />

improve disease resistance in rice…………………………………….. 12<br />

MATERIALS AND METHODS……………………………………………... 14<br />

Plant materials………………………………………………………… 14<br />

Phenotyping of grain anthocyanin and proanthocynidin<br />

content in rice…………………………………………………………. 14<br />

Plant DNA extraction…………………………………………………. 15<br />

Genes specific primer design and amplification……………………… 16<br />

Single-strand conformational polymorphism (SSCP)………………… 17<br />

RNA Analyses…………………………………………………………<br />

Analysis nucleotide sequencing of anthocyanin<br />

17<br />

biosynthetic genes…………………………………………………….. 17<br />

Place and Duration……………………………………………………. 18


TABLE OF CONTENS (Continued)<br />

ii<br />

Page<br />

RESULTS…………………………………………………………………….. 19<br />

Isolation of seed color mutants……………………………………….. 19<br />

Quantitative of Anothocyanin………………………………………… 21<br />

Anthocyanin accumulation during grain development……………….. 22<br />

Regulatory Anthocyanin and Proanthocyanidin genes……………….. 23<br />

Defining region of rice seed color……………………………. 23<br />

Genomic organization of OSB1 and OSB2…………………... 25<br />

2-bp deletion in OSB1 generated a frame shift………………. 25<br />

Temperature-sensitive DFR transcript……………………………….. 28<br />

Genomic organization of DFR……………………………….. 28<br />

Temperature directing transcription profiles of DFR………… 29<br />

Post-transcriptional regulation of DFR is still a black box….. 30<br />

ANS, a key reaction for coloring in anthocyanin biosynthesis………. 32<br />

DISSCUSSION…………………………………………………………….... 36<br />

CONCLUSSION…………………………………………………………….. 40<br />

LITERATURE CITED………………………………………………………. 41<br />

APPENDIX…………………………………………………………………... 46


LIST OF TABLES<br />

Table Page<br />

1. The anthocyanin gene-pigment system and phenotypic<br />

effects on rice…………………………………………………………… 4<br />

2. Anthocyanin content of the rice varieties……………………………… 22<br />

iii


LIST OF FIGURES<br />

Figure Page<br />

1. The major anthocyanidin pigment in rice was indentified<br />

as cyanidin and the minor one as peonidin…………………………. 7<br />

2. Diagram of anthocyanin-producing cell in rice…………………….. 8<br />

3. Mutation of JHN seed color (BW1-4)…………………………….... 19<br />

4. Phylogenetic tree of rice variety using the NTSYSpc 2.10……….... 20<br />

5. Varying extractability of rice anthocyanin pingmentation…………. 22<br />

6. Anthocyanin accumulation during grain development<br />

in JHN purple rice………………………………………………….... 23<br />

7. Location of gene controlling grain color……………………………. 24<br />

8. The structure of OSB1 and OSB2 genes…………………………… 26<br />

9. Sequencing of OSB1-A fragment contrained 2-bp deletion………... 27<br />

10. Amplifed product OSB1-A fragment run SSCP on<br />

8% acylamide gel…………………………………………………… 28<br />

11. Structure of rice dihydroxyflavanol-4 reductase (DFR)<br />

gene including primer positions…………………………………….. 29<br />

12. Expression of DFR determined by RT-PCR revealed<br />

transcription profiles in summer and winter………………………... 30<br />

13. Two alleles of DFR, DFR x and DFR y .DFR x is<br />

temperature-sensitive allelethat found in deeppurple<br />

grain (a, b). DFR y is the unspliced allele found in<br />

normal white rice (c)……………………………………………….. 32<br />

14. Structure of rice anthocyanidin synthase (ANS) gene<br />

including primer positions………………………………………….. 33<br />

15. PCR-SSCP method detecting anthocyanin biosynthetic<br />

genes mutation……………………………………………………… 33<br />

16. DNA sequence alignment of ANS3 from different<br />

rice strains……………………………………………………….….. . 34<br />

iv


LIST OF FIGURES (Continued)<br />

Figure Page<br />

17. Cladogram sequencing of ANS3 fragment…………………………. 35<br />

18. Comparison between REB1 domain of C1 Nipponbare<br />

with C1 Purpleputu. REB1…………………………………….….. 37<br />

19. Mechanism of anthocyanin formation, leucoanthocyanidin<br />

to anthocyanidin 3-glucoside, catalyzed by ANS and 3-GT,<br />

and transport to vacuoleds………………………………………….. 39<br />

v


LIST OF ABBREVIATIONS<br />

ANS = Anthocyanidin synthase gene<br />

BAC = Bacterial Artificial Chromosome<br />

BW1-4 = Jao Hom Nin Mutant 1-4<br />

C1 = Colored-1 gene<br />

cDNA = Complementary<br />

DFR = Dihydroflavonol 4-reductase gene<br />

DH = Double Haploid<br />

g = gram<br />

JHN = Jao Hom Nin<br />

Kb = Kilobase<br />

KDML105 = Khao Dawk Mali 105<br />

ml = Milliter<br />

mM = Millimolar<br />

mRNA = Messenger Ribonucleic Acicd<br />

NCBI = National Center for Biotechnology Information<br />

ng = Nanogram<br />

nm = nanometer<br />

ORF = Open Reading Frame<br />

OSB1 = Oryza sativa. Booster1 gene<br />

OSB2 = Oryza sativa Booster 2 gene<br />

PCR = Polymerase Chain Reaction<br />

QTL = Quantitative Trait Locus<br />

RGP = Genome Research Program<br />

RT-PCR = Reverse-transcribed Polymerase Chain Reaction<br />

SSCP = Single Stand Conformation Polymorphism<br />

U = Unit<br />

µL = Microliter<br />

µM = Micromolar<br />

°C = Degree Celsius<br />

vi


REGULATION OF GENES CONTROLLING GRAIN<br />

ANTHOCYANIN AND PROANTHOCYANIDIN<br />

(CONDENSED TANNINS) ACCUMULATION IN RICE<br />

INTRODUCTION<br />

Rice (Oryza sativa L.) is one of the most important crop in Thailand and is the<br />

main source of energy, vitamin and protein and the top agricultural product being<br />

exported world wide. People are more concern about health, thus the vision regarding<br />

rice consumption was improved. This is the reason, why the brown rice is more<br />

preferable than before because rice meal contains high nutritional value such as<br />

protein, oil and cellulose. Color is one interesting character of brown rice that is<br />

present in the pericarp. Three different colors including light-brown, red and purple<br />

are the main colors that are produced by flavanoid biosynthesis. Flavonoids are<br />

secondary metabolites that are unique to higher plants. They are well known for the<br />

red, purple, and brown pigmentation they give to flowers, fruit, and grain. Flavonoids<br />

fulfill numerous physiological functions during plant life and also serve as beneficial<br />

micronutrients in human and animal diets (reviewed by Koes et al., 1994; Shirley,<br />

1996; Mol et al., 1998; Harborne and Williams, 2000). Rice contains three major<br />

classes of flavonoids: the anthocyanins (red to purple pigments), the flavonols<br />

(colorless to pale yellow pigments), and the proanthocyanidins (colorless pigments<br />

that turn to brown), which also are known as condensed tannins. Anthocyanins and<br />

flavonols are synthesized in vegetative parts, whereas flavonols and<br />

proanthocyanidins accumulate in pericarp (Reddy et al., 1995). Color of rice is not<br />

only attractive for consumer, it also appear to be antioxidant which is the important<br />

mechanism to protect consumers from body disorder (Canada et al., 1990; Myara et<br />

al., 1993). Hydrolyzed anthocyanin from red rice was effective on the suppression of<br />

tumor growth (Koide et al., 1996). In the future, health care providers may hand out<br />

proanthocyanidin pills as readily as they recommend aspirin today. A steady stream of<br />

animal and in vitro studies supplemented by epidemiological evidence and a<br />

1


smattering of preliminary human studies reveal numerous health benefits associated<br />

with these compounds. Chief among the benefits is antioxidant protection against<br />

heart disease and cancer. During the last decade, rapid advances of molecular genetic<br />

including morphological, isozyme and DNA markers used as genetic marker for<br />

construction of linkage maps (Yoshimura et al., 1997). Advance molecular<br />

technology provides us with information and tools useful in locating marker related to<br />

anthocyanin and proanthocyanidin accumulation in rice pericarp through QTL<br />

mapping approach and study RT-PCR of regulatory gene controlling grain<br />

anthocyanin and proanthocyanidin content in rice during grain development which<br />

will understranding the genetic base is of anthocyanin and proanthocyaidin<br />

pigmentation that rice breeder can use improve qualities of rice grain color and<br />

develop to regulatory anthocyanin gene as reporters in rice transformation.<br />

The objectives of this study are:<br />

1. To determine total anthocyanin and proanthocyanidin content among<br />

different rice varieties.<br />

2. To utilize the linkage map using F2 population derived from a cross<br />

between KDML105 and Jao Hom Nin in order to locate the QTL position of the traits<br />

related to anthocyanin and proanthocyanidin content in rice.<br />

3. To clone anthocyanin biosynthetic gene and detect gene mutation.<br />

4. To investigate regulation of genes controlling grain anthocyanin and<br />

proanthocyanidin accumulation in rice using RT-PCR.<br />

2


LITERATURE REVIEW<br />

Genetic of the anthocyanin pigmentation in rice<br />

Anthocyanin pigmentation in rice plant has been extensively reported by<br />

earlier breeders and geneticists (Nagao et al., 1962; Kadaw, 1974; Takahashi, 1982;<br />

Maekawa and Kita, 1987; Kinoshita and Takahashi, 1991; Reddy, 1996; Reddy et al.,<br />

1994, 1995, 1997, 1998). Genetic analyses were mainly concentrated on phenotypic<br />

description, identification of specific loci, and chomosomal map position. Broadly,<br />

the anthocyanin gene pigment system and its phenotypic variation in rice consist of<br />

structural gene, the C (Chromogen), A (Activator) and the Rc and Rd (determining the<br />

brown pericarp). The regulatory genes P (Purple) and Pl (Purple leaf), each with a<br />

number of alleles, govern the distribution of purple pigments in various plant organs.<br />

A collation of known genes of rice, their phenotypic effects, and interaction patterns<br />

is presented briefly in Table 1. However, noting is known about specific gene<br />

products and enzymes controlling individual biosynthetic step reactions and the<br />

associated regulatory circuits of the pathway. The pattern of anthocyanin<br />

pigmentation in the rice plant is thus determined mainly by the allelic status of<br />

individual genes and complex interactions between them. Intensity and shades of<br />

color are marginally influenced by nongenetic factor such soil condition, mineral,<br />

nutrition, pH, temperature, and light.<br />

3


Table 1 The anthocyanin gene-pigment system and phenotypic effects on rice.<br />

Gene Phenotypic effect<br />

Structural<br />

C (chromogen)<br />

A (activator)<br />

Rc (brown pericarp)<br />

Rd (brown pericarp)<br />

Regulatory<br />

P (purple)<br />

Pl (purple leaf)<br />

Pn (purple node)<br />

Prp (purple pericarp)<br />

Responsible for anthocyanin production: with an allelic<br />

series of C B , C Br , C + (null), etc.<br />

Activation of C gene; essential for anthocyanin: with an<br />

allelic series of A S , A E , A, A + (null), etc.<br />

Synthesis of pigments in pericarp<br />

Synthesis of pigments in pericarp<br />

Distributor of anthocyanin pigments in the apiculus: alleles<br />

P, P K , P + (null), etc.<br />

Localizer of anthocyanin in leaf: alleles Pl w (leaf blade,<br />

leaf sheath, auricles, ligule, and pericarp); Pl (leaf blade,<br />

leaf sheath, collar, auricles, ligule, node, and internode);<br />

Pl i (leaf blade, leaf sheath, ligule, and internode); Pl + (null<br />

allele resulting into color less phenotype of tissue).<br />

Localizer of anthocyanin in the node<br />

Localizer of anthocyanin in the pericarp<br />

Inhibitory<br />

Dominant inhibitor to purple anthocyanin<br />

I-Pl (inhibitor of<br />

purple leaf)<br />

Inhibit action of both Pl<br />

I-Pl1, I-Pl2, I-Pl3<br />

I-Pl4, I-Pl5<br />

I-Pl6<br />

Ilb (inhibitor of<br />

purple leaf)<br />

w and Pl i alleles<br />

Inhibit action of the Prp locus<br />

Inhibits action of Pl i allele<br />

Inhibits leaf blade pigmentation<br />

Sources: Chang and Jordan (1963), Takahashi (1982), Kinoshita and Takahashi (1991);<br />

adapted from Reddy et al (1995).<br />

4


Variation in tissue-specific distribution of anthocyanins among rice lines<br />

There is significant variation, both qualitative and quantitative, among rice<br />

varieties in the display of red/purple color phenotypes in various plant organs such as<br />

leaf, stem, node, internode, auricle, ligule, leaf sheath, stigma, apiculus, and pericarp.<br />

The distribution of red/purple color in different plant parts among indica lines showed<br />

considerable variation (Reddy et al., 1995). Some lines show color in almost all aerial<br />

tissues, whereas some show no red/purple color in any tissues. A few others exhibit an<br />

intermediate phenotype with color in various parts and finally, certain lines show no<br />

anthocyanin color in aerial parts but exhibit brown color in pericarp tissue (Reddy et<br />

al., 1995). The genotype of the above selected lines is predicted and then classfied,<br />

based on the pigment variation among well-defined japonica lines. These lines served<br />

as a base material for isolation of mutants and subsequently, the genes of pathway.<br />

Biochemical characterization of pigments<br />

Rice plants accumulate mainly two anthocyanin pigments, cyanidin and<br />

peonidin (Figure 1), an o-methyl derivative of cyanidin. This was confirmed by a<br />

variety of standard techniques: thin layer chromatography, proton-NMR spectroscopy,<br />

UV-VIS spectroscopy, and standard organic methods and cochromatography with<br />

authentic compounds (Reddy et al., 1995). Incidentally, this combination of<br />

anthocyanin pigment appears to be exclusive to indica rice. In certain japonica plants,<br />

the presence of malvidin was reported (Takahashi, 1957). In addition, rice plant seem<br />

to accumulate a unique class of pigments called proanthocyanins, imparting brown<br />

color, particularly in the pericarp of N22B. These pigments yielded cyanidin and<br />

peonidin on hydrolysis (Reddy et al., 1995).<br />

Qualitative and quantitative analyses of pigment extracts revealed that floral<br />

derived tissue accumulates as much as five times more pigments than vegetative<br />

tissue with about a tenfold increase in peonidin content in the apiculus, hull, and<br />

pericarp. On the other hand, vegetative tissues have cyanidin as the major pigment<br />

with very little of peonidin. Thus, the observed pigmentation pattern in a given tissue<br />

5


in rice reflects complex nonallelic gene interactions and the role of tissue-specific<br />

regulatory mechanisms. The assorted color shades from brown to red to deep purple<br />

could be due to different chemical modifications such as hydroxylation, glycosylation,<br />

methylation, acylation, and polymerization of the basic anthocyanidin molecule, apart<br />

from the effects of pH and the presence of copigments (Holton et al., 1993). For<br />

instance, methylation appears to be predominant in floral-derived tissue, being at its<br />

maximum in the pericarp of Purpleputtu (PP) rice. In as much as the pigment analyses<br />

were with anthocyanidin aglycones, it was not possible to assess the native glycosidic<br />

nature of these pigments. Also, the composition of flavonoids in rice has yet to be<br />

established.<br />

Flavonoid biosynthetic pathway in rice<br />

The flavonoid biosynthetic pathway in rice is well established (Reddy et al.,<br />

1995). A generalized flavonoid biosynthetic pathway is shown in Figure 2. The<br />

precursors for the synthesis of all flavonoids, including anthocyanins, are malonyl-<br />

CoA and p-coumaroyl-CoA. Chalcone synthase (CHS) catalyzes the stepwise<br />

condensation of three acetate units from malonyl-CoA with 4-coumaroyl-CoA to<br />

yield chalcononaringenin. Chalcone isomerase (CHI) then catalyzes the stereospecific<br />

isomerization of the yellow-colored chalcononaringenin to the colorless naringenin<br />

(NAR). NAR is converted to dihydrokaempferol (DHK) by flavonone 3-hydroxylase<br />

(F3H) or converted to eriodictyol (ERI) by flavonoid 3-hydroxylase (F3’H). DHK can<br />

subsequencetly be hydroxylated by flavonoid 3-hydroxylase (F3’H) or ERI<br />

hydroxylated by flavonone 3-hydroxylase (F3H) to produce dihydroquercetin (DHQ).<br />

DHQ is reduced to leucocyanidin (leucoanthocyanidin) by dihydroflavonol 4reductase<br />

(DFR). Leucoanthocyanidinreductase (LAR) which converts leucocyanidin<br />

to catechin, thereby initiating the polymerisation into procyanidin (brown).<br />

Anthocyanidin syntase (ANS), convert leucocyanindid to cyanidin (red) when is<br />

glycosylated to cyanidin-3-o-glucoside by flavonoid 3-glucosyltransferase (FGT) and<br />

peonidin-3-o-glucoside which is methylated by anthocyanin methyl transferase<br />

(AMT) that transferred to vacuole by glutathione s-transferase (GTS).<br />

6


Cyanidin Peonidin<br />

Procyanidin<br />

Figure 1 The major anthocyanidin pigment in rice was indentified as cyanidin and<br />

the minor one as peonidin. The major proanthocyanidin pigment in rice<br />

was tentatively identified as procyanidin.<br />

7


Figure 2 Diagram of anthocyanin-producing cell in rice. Regulatory genes for<br />

anthocyanin pigmentation pathway that activate their expression: C1<br />

(colored-1) and R (red). Inhibitory genes are I-PL (inhibitor of purple leaf)<br />

and I-LB (inhibitor of leaf blande) that inhibitory activity.Genes are<br />

represented in enzyme names are abbreviated as follows: phenylalanine<br />

ammonia lyase (PAL), cinamate-4-hydroxylase (C4H), 4-Coumarate : CoA<br />

ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI),<br />

flavanone 3-hydroxylase (F3H), flavonoid 3’ hydroxylase (F3’H),<br />

dihydroflavonol 4-reductase (DFR), flavonol systhase (FLS),<br />

leucoanthocyanidin reductase (LAR), anthocyanidin synthase (ANS),<br />

flavonoid 3-glucosyltransferase (3GT), anthocyanin methyl transferase<br />

(AMT), glutathione s-transferase (GTS) and data not available (NA).<br />

Indicates Regulation. Indicates Inhibition. Used in floral<br />

modification (Reddy et al., 1995, 1996; Madhuri et al., 1999).<br />

8


Molecular isolation and characterization of rice cDNA clones<br />

Structural genes<br />

Chalcone synthase (CHS)<br />

A cDNA library was made from poly A + mRNA from young<br />

developing leaves of Purpleputtu (PP) in λgt NM 1149-Pop13 cells using standard<br />

protocols. This library was screened and several cDNA clones were isolated. Using<br />

maize Zm:CHS:C2, the maize C2 cDNA encoding chalcone synthase as a probe, a<br />

cDNA clone, OS-CHS, was isolated. This cDNA clone was further characterized and<br />

sequenced (Scheffler et al., 1995). The sequence comparison of OS-CHS with<br />

Zm:C2:CHS revealed 86.3% homology, and with Zm:Whp:CHS, 85.4% homology<br />

within the translated region. Western analysis using Zm:CHS antisera also leads to the<br />

same conclusion. Further, these proteins are of comparable size. The OS-CHS<br />

sequence was mapped to chromosome 11 of rice using a restriction fragment length<br />

polymorphism mapping strategy (Reddy et al., 1996c). Chalcone synthase catalyses<br />

the formation of naringenin chalcone, the first flavonoid carbon-15 skeleton, which is<br />

a condensation product of three molecules of malonyl CoA and one molecule of 4coumaroyl<br />

CoA.<br />

Dihydroflavonol 4-reductase (DFR)<br />

A cDNA clone to the Zm:A1 probe was isolated after in vivo<br />

excision in the form of pBluescript SK(-) from λZAP cDNA library derived from<br />

mRNA isolated from UV-B containing white light treated 4-day-old etiolated<br />

Purpleputtu (Oryza sativa L.) seedings (Reddy et al., 1996b). Dihydroflavonol 4reductase<br />

catalyses the NADPH-dependent conversion of dihydroquercetin into<br />

unstable corresponding leucoanthocyanidins, the immediate precursors for the<br />

anthocyanins.<br />

9


Anthocyanidin synthase (ANS)<br />

A cDNA clone hybridizable to the Zm:A2 probe was isolate<br />

and partially sequenced. The sequence comparison between Os:Ans and Zm:A2 at the<br />

DNA and protein (deducedfrom cDNA) levels revealed an extensive homology (data<br />

not presented). The a2 mutant of maize is known to cause a genetic block in the<br />

anthocyanin pathway leading to accumulation of colorless leucoanthocyanidin (Coe et<br />

al., 1988). The ans mutant, therefore, in principle, should either accumulate<br />

leucoanthocyanidin or proanthocyanidin. In fact, the mutant lines N22B and G962<br />

accumulate detectable amounts of proanthocyanidins and leucoanthocyanidins,<br />

respectively (Reddy et al., 1995), and therefore are potential ans mutants.<br />

Regulatory genes<br />

Booster gene (B)<br />

The Purple leaf (Pl) locus of rice (Oryza sativaL.) affects<br />

regulation of anthocyanin biosynthesis in various plant tissues. The tissue-specific<br />

patterns of anthocyanin pigmentation, together with the syntenic relationship, indicate<br />

that the rice Pl locus may play a role in the anthocyanin pathway similar to the maize<br />

R/B loci. Sakamoto et al. (2001) isolated two cDNAs showing significant identity to<br />

the basic helix-loop-helix (bHLH) proteins found in the maize R gene family. OSB1<br />

appeared to be allelic to the previously isolated R homologue, Ra1, but showed a<br />

striking difference at the C-terminus because of a 2-bp deletion. Characterization of<br />

the corresponding genomic region revealed that the sequence identical to a 5′-portion<br />

of OSB2 existed ~10-kb downstream of the OSB1 coding region. OSB2 lacks a<br />

conserved C-terminal domain. A transient complementation assay showed that the<br />

anthocyanin pathway is inducible by OSB1or OSB2. These results suggest that the Pl w<br />

allele may be complex and composed of at least two genes encoding bHLH proteins.<br />

10


Colored-1 gene (C1)<br />

The C locus is located on the short arm of chromosome 6 and is<br />

linked to the wx which also shows allelic differentiation among rice cultivars. Based<br />

on synteny of maps between rice and maize, the region including these genes is<br />

present on chromosome 9 of maize and the maize C1 anthocyanin regulatory gene is<br />

located in the region. The C1 encodes a MYB like protein factor which activates the<br />

transcription of a number of structural genes involved in anthocyanin pigment<br />

biosynthetic pathway (Paz Ares et al., 1987). The rice homologue (Os-C1) of the<br />

maize C1 was cloned from cDNA library of Purpleputtu seedlings (Reddy et al.,<br />

1998).<br />

The anthocyanin pathway in rice is ultraviolet light-responsive<br />

The fact that the anthocyanin pathway in rice is ultraviolet (UV) lightresponsive<br />

(Reddy et al., 1994) is significant in view of the continuous depletion of<br />

the ozone layer in the atmosphere and the resulting increase in the incidence of UV<br />

light causing damage to plant life. Biochemical analysis revealed that this UV lightresponsive<br />

anthocyanin synthesis appears to be mediated by a specific phase of<br />

phenylalanine ammonia lyase activity (Reddy et al., 1994). Preliminary analysis<br />

suggests that rice seedlings seem to have a specific UV-B receptor in addition to<br />

general photoreceptor, the phytochrome. The UV-B-induced anthocyanin biosynthesis<br />

precedes the activation of genes of the anthocyanin pathway. Enzyme analyses<br />

revealed that phenylalanine ammonia lyase (Reddy et al., 1994), CHS, and F3GT<br />

showed enhanced activities under UV-B light. Northern analysis also substantiated<br />

these results. In addition, expression of the putative Gst gene (encoding glutathione-Stransferase)<br />

has also been shown to be inducible by UV-B in rice seedlings (Madhuri<br />

et al., 1994).<br />

A cDNA library from poly A+ mRNA of UV-B light-induced leaves was<br />

constructed and screened for genes of the anthocyanin pathway. This library would be<br />

11


a source of not only the anthocyanin genes, but also of UV-B responsive elements.<br />

Thus, the anthocyanin pathway could serve as a model system to study the genetic<br />

basis of response to light, particularly UV-B, and molecular mechanisms of signal<br />

transduction.<br />

Molecular manipulation of the anthocyanin pathway to improve disease<br />

resistance in rice<br />

Flavonoids as plant defense molecules<br />

The antibacterial and antifungal properties of flavonoids are well<br />

documented. Lamb et al. (1989) reported that flavonoids play a role in conferring<br />

disease resistance in many plants. Proanthocyanidins (Scalbert, 1991) and 3deoxyanthocyanidins<br />

(Snyder et al., 1991) have been shown to accumulate when<br />

plants are infected and are believed to be defense compounds. However, to date,<br />

direct evidence for such protective roles of these compounds is still lacking. Hence,<br />

we are looking at the toxic effects of flavonoids against major rice pathogens such as<br />

Xanthomonas oryzae pv. oryzae (Xoo; bacterial leaf blight), Pyricularia oryzae<br />

(blast), and Rhizoctonia solani (sheath blight). Some purified flavanones, flavonols,<br />

and phenylpropanoids were screened against the rice pathogens in an in vitro toxicity<br />

assay. The reaction response was highly varied where the tested compounds caused<br />

significant growth inhibition of the pathogens at micromolar concentrations.<br />

Naringenin (the first flavonoid intermediate committed to the anthocyanin pathway)<br />

showed a broad spectrum inhibition to six strains of Xoo tested. Liquid culture assays<br />

with naringenin also showed a tenfold reduction in the growth of Xoo after a 12-h<br />

shaker incubation at 28 o C. However, none of the compounds had any significant<br />

effect on the mycelial inhibition of P. oryzae or R. solani (Reddy, 1996). Attempts are<br />

under way to study the response of pigmented and nonpigmented rice cultivars, under<br />

blast and blight infection, by determining the flavonoid profiles, levels of<br />

phenylpropanoid and flavonoid pathway enzymes, and specific transcripts Role of<br />

flavonoids in disease resistance The present trend in developing defense strategies in<br />

12


many plants is to manipulate the response of defense genes to pathogen attack or to<br />

develop transgenic plants with engineered genes that inhibit the pathogen. A possible<br />

alternative strategy is to enhance the endogenous levels of selected phenylpropanoids<br />

and flavonoids by transferring the appropriate regulatory genes into rice plants.<br />

Enhanced accumulation of specific intermediates can also be achieved by using a<br />

combination of overexpression and antisense strategies. Such “smart plants” should<br />

hyper-accumulate flavonoid intermediates of interest and thereby should have their<br />

resistance to pathogen attack enhanced. Efforts are under way to make a complete<br />

repertoire of transcriptional fusion constructs of specific anthocyanin genes for<br />

overexpression and also inhibition, by antisense sequences, of the anthocyanin<br />

pathway. Such constructs are made for almost all the required structural and<br />

regulatory genes of the pathway. These constructs will enable us, through a transgenic<br />

approach, to test the premise that flavonoids play a role in disease resistance. Thus,<br />

the manipulation of the pathway and its eventual use to generate transgenics with<br />

improved disease resistance would ultimately prove to be a powerful technique. In<br />

addition, these gene constructs can be used possibly to alter the shades of color and<br />

intensity, tissue-specific distribution, and the composition of the responsible pigments<br />

in the variety of plant species, including ornamentals.<br />

13


1. Plant materials<br />

MATERIALS AND METHODS<br />

Rice strains used in this study were as follows: Oryza sativa strains Jao Hom<br />

Nin (JHN), Khao Dawk Mali 105 (KDML105) and Jao Hom Nin mutant (BW1-4),<br />

provided by Center of Excellence for Rice Molecular Breeding and Product<br />

Development, National Center for Agricultural Biotechnology, Kasetsart University,<br />

Kamphangsaen, Nakorn Pathom, Thailand.<br />

2. Phenotyping of grain anthocyanin and proanthocynidin content in rice<br />

2.1. Anthocyanin content<br />

On the basis of extractability results, a simple, rapid method for<br />

determining total anthocyanin in pigmented rice was established (Abedel and Hucl,<br />

1999). A ground rice sample (3 g) was weighed in a 50-ml centrifuge tube, and 24 ml<br />

of acidified ethanol (ethanol and HCl 1.0N, 85:15,v/v) was added. The solution was<br />

mixed and adjusted to pH 1 with 4N HCl. The resulting solution was shaken for 15<br />

min, and was readjusted to pH 1 if necessary, and the solution was shaken for an<br />

additional 15 min. The tube was centrifuged at 12,000 rpm for 30 min, and the<br />

supernatant was poured into a 50-ml volumetric flask and made up to volume with<br />

acidified ethanol. Absorbance was measured at 535 nm against a reagent blank.<br />

Cyanidin 3-glucoside or Kuromanin from Extrasynthese (Genay, France) was used as<br />

a standard pigment. A series of Cyanidin 3-glucoside standard solutions was prepared<br />

at 0-0.02 mmol (0-27 ug/3 ml). Absorbance was read at 535 nm against a reagent<br />

blank. The concentrations showed a linear relationship against absorbance and had<br />

regression and determination coefficients of 0.0197 and 0.999, respectively. Total<br />

anthocyanin content per sample (mg/kg) was calculated as cyanidin 3-glucoside:<br />

C = (A/ε) x (vol/1,000) x MW x (1/sample wt) x 10 6<br />

14


Where C is concentration of total anthocyanin (mg/kg), A is absorbance<br />

reading, ε is molar absorptivity (cyanidin 3-glucoside = 25,965 cm -1 M -1 ), vol is total<br />

volume of anthocyanin extract, and MW is moleculer weight of cyanidin 3-glucoside<br />

= 449. Under test conditions, the equation formula can be simplified to:<br />

C = (A/25,965) x (50/1,000) x 449 x (1/3) x 10 6<br />

or C = A x 288.21 mg/kg<br />

Beer’ law was used to calculate molar absorptivity of cyanidin 3-glucoside, which<br />

ranged from 25,591 cm -1 M -1 to 26,559 cm -1 M -1 , with an average of 25,965 cm -1 M -1 ,<br />

standard deviation of 520, and coefficient of variation of 2%. Mean molar<br />

absorptivity was used to calculate the concentration of total anthocyanins in<br />

pigmented rice samples.<br />

2.2. Proanthocyanidin content<br />

Total proanthocyanidin in rice was established (Reddy et al., 1995). A<br />

ground rice seed (3 g) were extracted with 10% aqueous methanol (1ml/50mg) for 24<br />

h at room temperature with occasional shaking. To 6 ml of the pooled extract, 4.5 ml<br />

of water and 12 ml of chloroform were added. The resulting solution was shaken for<br />

15 min. The tube was centrifuged at 12,000 rpm for 30 min, and the supernatant was<br />

poured into a 50-ml volumetric flask and made up to volume with 10% aqueous<br />

methanol. Absorbance was measured at 457 nm against a reagent blank.<br />

3. Plant DNA extraction<br />

Freshly collected leaf tissue was ground into fine powder using liquid nitrogen<br />

with a mortar and pestle. Twenty ml of 1.5x CTAB extraction buffer, preheated at 65˚<br />

C was added in 40 ml tube containing the ground tissue. The buffer tissue mixture<br />

was gently mixed to ensure even dispersal of the plant material in the buffer and was<br />

incubated at 65˚C for 1 hour with occasional swirling. The mixture was cooled at<br />

room temperature and equal volume of chloroform/isoamyl alcohol (24:1) was added.<br />

The tube were inverted repeatedly but gently and were centrifuged at 4000 rpm for15<br />

15


min at room temperature. The upper layer was transferred into a new centrifuge tube<br />

and 1 ml of 10x CTAB was added. Equal volume of chloroform/isoamyl alcohol was<br />

again added for the second round extraction of carbohydrates and other debris. The<br />

mixture was centrifuged with the same condition and the aqueous portion was<br />

transferred to 50-ml tube. The DNA was precipitated with 1x CTAB. After<br />

precipitation the DNA were hooked and dissolved in high salt TE. Adding 95%<br />

ethanol and the DNA were transferred to 1.5-ml microfuge tubes made final<br />

precipitation. The DNA was washed with 70% ethanol and was air-dried. After<br />

complete drying, two hundred µl of TE was added to dissolve the DNA. One µl of the<br />

DNA was loaded in 1% agarose gel along with 100 ng, 300 ng, 500 ng and 1000 ng<br />

concentration markers were eletrophoresed in 0.5x TBE buffer to determine the<br />

concentration of the DNA (Rogers and Bendich, 1994).<br />

4. Genes specific primer design and amplification<br />

The anthocynin specific primer pairs will be genereted from the DNA<br />

sequence of the anthocyanin structural genes (dihydroxyfravonol –4 reductase (DFR),<br />

anthocyanidin synthase (ANS), and the anthocyanin regulatory genes (Booster1 (B1;<br />

OsB1)) which involved anthocyanin biosynthesis in Oryza sativa L. (Gene Bank<br />

accession number AB003495, Y07955 and AB021079). All primer were designed by<br />

using Primer 3 Test Pre-Release output on a webservice, http://www-<br />

genome.wi.mit.edu/cgi-bin/primer /primer3_www_results.cgi, with the following<br />

parameters 40-60 %G+C rich, 60°C annealing temperature and 21 base pair in length.<br />

PCR reaction mixture volumes were 25 µL, containing 2.5 µl of 10x buffer, 25mM<br />

MgCl2, 200µM each of dNTPs (promega), 0.2µM anthocyanin specific primer, 100<br />

ng genomic DNA and 1 U Taq polymerase (promega). PCR amplification was<br />

performed in a Perkin Elmer Cetus Gene Amp PCR system 9700. The PCR products<br />

were electrophoresed on 1% agarose gels with 1x TBE and stained with ethidium<br />

bromide to verify amplification.<br />

16


5. Single-strand conformational polymorphism (SSCP)<br />

Five µL of the PCR product was mixed with 5 µl of denaturing solution (980<br />

ml/lite formamide, 50 ml/lite 0.2 M NaOH, 0.5 g/lite bromphenol blue, 0.5 g/lite<br />

xylene cyanol), heated for 5 min at 95°C, and quenched on ice. The samples were<br />

loaded onto the 8 % polyacrylamide/bis-acrylamide 99:1 and 1xTBE buffer. 1x TBE<br />

buffer (89 mM Tris-borate and 2 mM EDTA pH 8.0) was used as running buffer.<br />

Electrophoresis was performed at constant power, 5 watt, at 25°C for 18 hours.<br />

Polyacrylamide gels were silver-stained.<br />

6. RNA Analyses<br />

For expression analyses in developing grain of rice sample, during 10 day<br />

after pollination. Tissue samples were ground in liquid nitrogen, and total RNA was<br />

extracted with the high pure RNA isolation kit (Roche, Germany) according to the<br />

instructions of the manufacturer. The extracts were treated with 30 units of RNasefree<br />

DNase I (Roche, Germany). Two hundred ng of DNA-free RNA extract was<br />

converted into first-strand cDNA by using the One-step RT-RCR system (Roche,<br />

Germany) and 0.2 µM of each gene-specific primer. RT-PCR products were sizeseparated<br />

on a 1% (w/v) agarose gel.<br />

7. Analysis nucleotide sequencing of anthocyanin biosynthetic genes<br />

Anthocyanin biosynthetic genes PCR products will be used as templates for<br />

sequencing with big dye terminator sequencing kit (Perkin Elmer) and the ABI377<br />

automated DNA sequencer (Perkin Elmer). All sequencing reactions will be<br />

performed by DNA Fingerprinting Unit of Kasetsart University Khamphaengsaen.<br />

Sequencing for each sample will be carried out in both forward and reverse directions<br />

using anthocyanin biosynthetic genes specific primer forward and reverse sequencing<br />

primer respectively.<br />

17


8. Place and Duration<br />

This research was conducted at the Center of Excellence for Rice Molecular<br />

Breeding and Product Development, National Center for Agricultural Biotechnology,<br />

Kasetsart University, Kamphangsaen, Nakorn Pathom, Thailand from May 2001 to<br />

May 2005.<br />

18


Isolation of seed color mutants<br />

RESULTS<br />

Anthocyanin is a major class of flavonoids that accumulates in a variety of<br />

plant tissue in response to developmental and environmental signals. Mutant with<br />

novel expression pattern are readily identifiable, and have long been a subject of<br />

genetic studies. Characterization of those mutants has led to identification of genes<br />

encoding not only the enzyme of the anthocyanin biosynthetic pathway, but also the<br />

regulatory element that confer tissue-specific accumulation of anthocyanin (Holton<br />

and Cornish, 1995). The original rice, Jao Hom Nin rice (JHN) is nonglutiose that has<br />

purple pericarp, but mutant of JHN (BW1-4) have varying quantifying total<br />

anthocyanin in pericarp (Figure 3). How ever, there is white and varying purple<br />

pericarp color intensity in which mutants can led to identification of regulatory gene<br />

contronlling grain anthocyanin pigmentation in rice.<br />

Figure 3 Mutation of JHN seed color (BW1-4).<br />

To study BW (1-4) are mutation from JHN. DNA from 7 varity of rice<br />

(KDML105, KDxJHN, JHN, DH-JHN, Hei bao, BW1 and BW4) send to DNA<br />

19


Technology Laboratory use template for rice fingerprint by mulipex SSLP fluorcencelabel<br />

method on 12 chromosome number 78 locus. The multiplex PCR use 2-6 primer<br />

amplify DNA fragment and to examine size by program GeneScan (Applied<br />

Biosystem). Data show in appendix. Select 34 marker which have polymorphism<br />

allele score 1 and 0 to constructed a rice phylogentic tree by NTSYSpc 2.10 (Figure<br />

4).<br />

Figure 4 Phylogenetic tree of seven rice varieties using the NTSYSpc 2.10.<br />

From 34 polymorphism markers, phylogenetic tree of seven rice varieties<br />

(JHN, JHN(DH), Hei bao, BW1, BW4, KDML105 and an KDxJHN offspring) was<br />

constructed by NTSYS program. For the result, The phylogenetic tree of seven rice<br />

varieties separated into four groups at coefficient higher than 0.74. JHN group was<br />

consisted by JHN, double haploid of JHN, and Hei bao, sort of JHN. The nearest<br />

group is BW consisted by BW1 and BW1, mutants of JHN. Other two groups are the<br />

offspring of KDxJHN at coefficient 0.53 and KNML105 at coefficient 0.12,<br />

respectively. The result suggest that BW1 and BW4 are mutants that mutated from<br />

20


JHN since BW1 and BW4 had the fringerprinting result close JHN at coefficient 0.74<br />

more than the offspring of JHN and KDML105 that is coefficients 0.53 but less than<br />

Hei bao that is sort of JHN.<br />

Quantitative of Anothocyanin<br />

A simple, rapid method for determining total anthocyanins was developed for<br />

use in developing rice cultivars with dark-purple grains. The method was evaluated<br />

as absorbance was read at 535 nm and calculated as C = A x 288.21 (data show in<br />

method) where C is concentration of total anthocyanin (mg/kg), A is absorbance<br />

reading. Data show in table 2 and varying extractability of rice anthocyanin<br />

pingmentation see in Figure 5. The process was ued to determine total anthocyanins in<br />

pigmented rice. The maximum of total anthocyanins averaged 562.79 mg/kg in JHN<br />

(winter) but in summer has decrease total anthocyanins 112.98 mg/kg to indicate that<br />

temperature sensitive anthocyanin accumulation. White seed rice (KDML and JHN)<br />

has little synthesis anthocyanin.<br />

21


Table 2 Anthocyanin content of the rice varieties.<br />

Rice Sample Anthocyanins<br />

(mg/kg)<br />

KDML105 1.44<br />

JHN (summer) 112.98<br />

JHN (winter) 562.79<br />

BW1 0.48<br />

BW2 11.62<br />

BW3 3.94<br />

BW4 8.74<br />

JHN#3 (summer) 455.18<br />

DH 197.81<br />

KDML105 JHN(S) JHN(W) BW1 BW2 BW3 BW4 JHN#3 DH<br />

Figure 5 Varying extractability of rice anthocyanin pigmentation.<br />

Anthocyanin accumulation during grain development<br />

After fertilization, the grain anthocyanin levels were increased linearly to 10<br />

days before maturity in purple rice. When the grain anthocyanin content were<br />

determined at 5, 10, 15, 20, 25 and 30 days after fertilization, the effects of<br />

temperature during the grain filling period become clear (Figure 6). In winter, the<br />

grain anthocyanin accumulated much faster than in summer (562.79 mg/kg vs 112.98<br />

mg/kg, respectively) and maximized at 20 days after pollination. After 20 days, the<br />

accumulation of anthocyanin contents in both winter and summer were diminished at<br />

the similar rate. This later step in anthocyanin accumulation may be regulated by the<br />

22


increased degradation while the synthesis were down-regulated. The apparent<br />

anthocyanin intensities observed in the field 10 days before maturity were critical to<br />

the final grain anthocyanin content.<br />

Absorbance at 535 nm<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Comparison between anthocyanin with proanthocyanidin<br />

accumulation during rice grain development<br />

5 10 15 20 25 30<br />

Developmental stage<br />

5 10 15 20 25 30<br />

Figure 6 Anthocyanin accumulation during grain development in JHN purple rice.<br />

The developmental stages determined according to days after fertilizationstage<br />

6 day, 10 day, 15 day, 20 day, 25 day, 30 day.<br />

Regulatory Anthocyanin and Proanthocyanidin genes<br />

Defining region of rice seed color<br />

A (summer)<br />

PA (summer)<br />

A (winter)<br />

PA (winter)<br />

winter<br />

summer<br />

Seed color locus has been previously mapped on chromosome 4 from<br />

23


genetic map based on the 188 individuals from KDML105 and JHN was constructed<br />

using 114 SSR markers. The total map distance is 1,383.3 cM with an average<br />

interval distance of 12.1 cM. Grain color was scored in the F3 seeds using 1-3 scales.<br />

Two closely linked QTLs for seed color were detected on The two QTLs located<br />

within RM317-RM241 and RM252-RM241 marker intervals were accounted<br />

for58.3% and 56.7% of phenotypically variance explained (PVE), respectively. JHN<br />

alleles confer dark pericarb color on both QTLs. Multiloci QTL accounted for 64.5%<br />

of PVE (personal communicated). Computational gene finding programs found<br />

RM241 contained in OSJNBa0011L07 BAC distance 43 BAC contigs with RM317<br />

contained in OSJNBa0011J08 BAC and distance 8 BAC contigs with<br />

OSJNBa0065o17 that which contained a predictable OSB1 and OSB2 genes<br />

sequences (Figure 7).<br />

Figure 7 Location of gene controlling rice grain color.<br />

24


Genomic organization of OSB1 and OSB2<br />

To examine the OSJNBa0065o17 BAC of OSB1 and OSB2. Sequencing of<br />

this BAC revealed that the OSB1 coding region spanned approximately 6.3 kb,<br />

consisting of 11 exon and 10 introns. In addition to these regions, the gemomic<br />

organization of OSB1 was similar to that of Ra1, base on exon/intron boundaries and<br />

intron sequence such as the repeated sequence (Hu et al., 1996). In this BAC, the<br />

genomic organization of OSB2 was revealed to span approximately 24 kb with eight<br />

exon. It is notable the introns 2 and 6 of OSB2 are extraordinarily large (6.6 kb and<br />

~14 kb, respectively). Structure of OSB1 and OSB2 was demonstrated in Figure 8.<br />

2-bp deletion in OSB1 generated a frame shift<br />

Sequence of OSB1 and OSB2 cDNAs showed overall similarity with the maize<br />

R gene. The 2.2-kb OSB1 cDNA containd a 588- acid open reading frame (ORF), and<br />

showed almost complete identify (99.2%) to rice Ra1, and R-like gene previously<br />

reported by Hu et al., 1996. However, a 2-bp deletion in OSB1 generate a frame shift,<br />

affecting the 44 amino acids at it C-terminus relative to Ra1. In addition to the<br />

deletion, there were 11 single-nucleotide differences between OSB1 and Ra1, which<br />

resulted in seven amino acid substitutions upstream of the frame shift (Model<br />

structure shown in Figure 8)<br />

Design OBS1-A primer cover 2-bp deletion using select rice grain<br />

anthocyanin and proanthocyanidin biosynthesis trait. The amplified OSB1-A<br />

fragment on SSCP indentical which accumulated anthocyanin and proanthocyanidin<br />

in seed (SSCP of amplified OSB-1 fragment in Figure 10 and Sequencing of OSB-1<br />

fragment in Figure 9).<br />

25


Figure 8 The structure of OSB1 and OSB2 genes. Sequencing of OSB1 coding region<br />

spanned approximately 6.3 kb, consisting of 11 exon and 10 introns. In<br />

additional exon 11 have 2-bp deletion to generated a frame shift.<br />

Sequencing of OSB2 was revealed to span approximately 24 kb with eight<br />

exon and 7 introns. The introns 2 and 6 of OSB2 are extraordinarily large<br />

(6.6 kb and ~14 kb, respectively).<br />

26


JHN TAGCCTACCTCAAAGAGCTGGAGAAAAGAGTGGAAGAGCTGGAATCCAGCAGCCAACCAT 359<br />

Nipponbare TAGCCTACCTCAAAGAGCTGGAGAAAAGAGTGGAAGAGCTGGAATCCAGCAGCCAACCAT 359<br />

Murasaki TAGCCTACCTCAAAGAGCTGGAGAAAAGAGTGGAAGAGCTGGAATCCAGCAGCCAACCAT 92<br />

KDML105 TAGCCTACCTCAAAGAGCTGGAGAAAAGAGTGGAAGAGCTGGAATCCAGCAGCCAACCAT 360<br />

************************************************************<br />

JHN CGCCATGTCCATTGGAAACAAGAAGCAGGCGAAAGTGCCGTGAGATCACTGGGAAGAAGG 419<br />

Nipponbare CGCCATGTCCATTGGAAACAAGAAGCAGGCGAAAGTGCCGTGAGATCACTGGGAAGAAGG 419<br />

Murasaki CGCCATGTCCATTGGAAACAAGAAGCAGGCGAAAGTGCCGTGAGATCACTGGGAAGAAGG 152<br />

KDML105 CGCCATGTCCATTGGAAACAAGAAGCAGGCGAAAGTGCCGTGAGATCACTGGGAAGAAGG 420<br />

************************************************************<br />

JHN TTTCTGCAGGAGCGAAGAGAAAGGCGCCGGCGCCGGAGGTGGCCAGCGACGACGACACCG 479<br />

Nipponbare TTTCTGCAGGAGCGAAGAGAAAGGCGCCGGCGCCGGAGGTGGCCAGCGACGACGACACCG 479<br />

Murasaki TTTCTGCAGGAGCGAAGAGAAAGGCGCCGGCGCCGGAGGTGGCCAGCGACGACGACACCG 212<br />

KDML105 TTTCTGCAGGAGCGAAGAGAAAGGCGCCGGCGCCGGAGGTGGCCAGCGACGACGACACCG 480<br />

************************************************************<br />

JHN ACGGGGAGCGGCGCCATTGTGTGAGCAACGTGAACGTCACCATCATGGACAACAAGGAGG 539<br />

Nipponbare ACGGGGAGCGGCGCCATTGTGTGAGCAACGTGAACGTCACCATCATGGACAACAAGGAGG 539<br />

Murasaki ACGGGGAGCGGCGCCATTGTGTGAGCAACGTGAACGTCACCATCATGGACAACAAGGAGG 272<br />

KDML105 ACGGGGAGCGGCGCCATTGTGTGAGCAACGTGAACGTCACCATCATGGACAACAAGGAGG 540<br />

************************************************************<br />

JHN TTCTCCTCGAGCTGCAATGCCAGTGGAAGGAATTGCTGATGACGAGAGTGTTCGACGCGA 599<br />

Nipponbare TTCTCCTCGAGCTGCAATGCCAGTGGAAGGAATTGCTGATGACGAGAGTGTTCGACGCGA 599<br />

Murasaki TTCTCCTCGAGCTGCAATGCCAGTGGAAGGAATTGCTGATGACGAGAGTGTTCGACGCGA 332<br />

KDML105 TTCTCCTCGAGCTGCAATGCCAGTGGAAGGAATTGCTGATGACGAGAGTGTTCGACGCGA 600<br />

************************************************************<br />

2-bp deletion<br />

JHN TCAAGGGAGTCTCCCTGGA--TCCTCTCGGTGCAGGCATCAACATCGGATGGTCTCCTTG 657<br />

Nipponbare TCAAGGGAGTCTCCCTGGATGTCCTCTCGGTGCAGGCATCAACATCGGATGGTCTCCTTG 659<br />

Murasaki TCAAGGGAGTCTCCCTGGA--TCCTCTCGGTGCAGGCATCAACATCGGATGGTCTCCTTG 390<br />

KDML105 TCAAGGGAGTCTCCCTGGATGTCCTCTCGGTGCAGGCATCAACATCGGATGGTCTCCTTG 660<br />

******************* ***************************************<br />

JHN GACTGAAGATACAAGCCAAGGTCGTCATCTCAGCGGCTAAGTAGAGCTCGCAGCAGAAAT 717<br />

Nipponbare GACTGAAGATACAAGCCAAGGTCGTCATCTCAGCGGCTAAGTAGAGCTCGCAGCAGAAAT 719<br />

Murasaki GACTGAAGATACAAGCCAAG---------------------------------------- 410<br />

KDML105 GACTGAAGATACAAGCCAAGGTCGTCATCTCAGCGGCTAAGTAGAGCTCGCAGCAGAAAT 720<br />

********************<br />

Figure 9 Sequencing of OSB1-A fragment contained 2-bp deletion.<br />

27


JHN<br />

Pl w / Pl w<br />

KDML105<br />

+/+<br />

#3<br />

Pl w / Pl w<br />

BW1<br />

+/+<br />

BW2<br />

Pl w / Pl w<br />

BW3<br />

Pl w / Pl w<br />

BW4<br />

Pl w / Pl w<br />

1<br />

+/+<br />

Figure 10 Amplifed product OSB1-A fragment run SSCP on 8% acylamide gel.<br />

SSCP of Amplified OSB1-A fragment in seven rice varieties and nine F2 of<br />

KDML105xJHN using screen Pl w genotype which Pl w /Pl w allele related accumulation<br />

of anthocyanin and proanthocyanidin in pericarp of rice grain. +/+ allele related not<br />

storage anthocyanin and proanthocyanin in rice pericarp.<br />

Temperature-sensitive DFR transcript<br />

Genomic organization of DFR<br />

2<br />

+/+<br />

To examine of the DFR gene, genes specific primer deigned for polymerase<br />

chain reaction from Gene Bank accession number AB003495 that generate DFR<br />

fragment from DNA of KDML105, JHN, #3 and BW1. Sequencing of amplified DFR<br />

fragment that coding region spanned approximately 2 kb, consisting of 3 exon and 2<br />

3<br />

Pl w /+<br />

F2 (KDML105xJNH)<br />

3<br />

Pl w / Pl w<br />

4<br />

Pl w /+<br />

5<br />

Pl w / Pl w<br />

6<br />

+/+<br />

7<br />

Pl w / Pl w<br />

8<br />

Pl w /+<br />

9<br />

Pl w / Pl w<br />

Genotype<br />

28


intron (Figure 11 ). The sequencing of amplified DFR fragment was assembly by<br />

RICE GENE THRESHER program and multiple sequence alignment by ClustalW<br />

(EMBL-EBI database) that showed in Appendix.<br />

Figure11 Structure of rice dihydroxyflavanol-4 reductase (DFR) gene including<br />

primer positions.<br />

DFR-1I<br />

Temperature directing transcription profiles of DFR<br />

To examine the effect of the temperature on DFR at transcription level, RT-<br />

PCR analysis were performed on total RNA isolated from four rice strains in both<br />

winter, summer, and/or rainy seasons. Three transcription profiles were detected from<br />

these treatments. In such white rice as KDML105 and white BW1, only single pattern<br />

was detected in both winter and summer (Figure 12). In purple JHN and purple BW4<br />

rice strains, two patterns were identified in summer, winter, and/or rainy seasons. The<br />

394 bp was the expected if the intron 1 was completely spliced (Figure 12). All<br />

purple rice strains contained the expected transcript in all seasons. On the other hand,<br />

506 bp transcripts but not 394 bp were identified in the white rice grains. Using the<br />

same primers, PCR on the genomic DNA of JHN revealed only 506 bp genomic<br />

fragment. Therefore, the 506 bp identified in all white rice strains were the results of<br />

unspliced transcripts whereas the 394 bp fragments in all purple rice grains from<br />

different seasons were the spliced transcripts of DFR. The DFR may not be<br />

functional in white rice. Moreover, in purple rice strains, both 506 and 394 bp<br />

fragments were detected in summer while the 506 bp was detected but much less<br />

intensified in rainy season in JHN (Figure 12). In this case, the unspliced transcripts<br />

29


appeared in JHN and the purple mutant in summer corresponded well with the lower<br />

anthocyanin contents in summer in these two rice strains. Therefore, high<br />

temperature may affect grain anthocyanin content by interfering with intron 1 splicing<br />

of DFR.<br />

Figure 12 Expression of DFR determined by RT-PCR revealed transcription profiles<br />

in summer and winter.<br />

Post-transcriptional regulation of DFR is still a black box<br />

To understand the effect of unspliced transcripts at the translational level, in<br />

silico translation of the cloned and predicted coding sequence of the white and purple<br />

rice strains were compared. In DFR y , the full-length coding sequence from Murasaki<br />

(accession AB003495) and the predicted coding sequence from KDML105 revealed a<br />

peptide of 303 a.a. In DFR x , the full-length coding sequence from Purpleputtu<br />

(accession Y07959) and the predicted coding sequence from JHN revealed the peptide<br />

of 373 a.a. The DFR y and DFR x were very similar except 40-78 a.a. insertion from<br />

30


intron 1 in DFR y (Figure 13). This Intron 1 is translatable and in-frame with the<br />

leading exon. However, the inclusion of intron 1 in the peptide created a premature<br />

stop codon at position +153 nt while in DFR x , the full-length peptide was not<br />

interrupted. The premature stop codons in the specially exon may cause nonsensemediated<br />

decay (Issiki et al., 2001) ;and subsequently no template was available for<br />

translation. In this case, no leucoanthocyanin available for the anthocyanin synthase<br />

and the grains become white. To identified the conserved motif responsible for<br />

ineffective splicing, genomic sequences were compared of this gene on the first intron<br />

splice sites. No single nucleotide variation was detected at splice sites. The results<br />

described here demonstrate that the ability to splice out the intron 1 is a temperaturedependent<br />

process. This temperature sensitivity is not involved mutation at their<br />

splice sites. One possibility is that the temperature-dependent phenotype of DFR x is<br />

affected by the stability of RNA-RNA or RNA-Proteins interaction (Sablowski and<br />

Meyerowitz, 1998; Berget, 1995). The role of transacting regulators such as C1,<br />

OsB1, and OsB2 on intron 1 splicing must be illucidated. In case of unspliced DFR y ,<br />

C1, OsB1, and OsB2 were not expressed whereas in DFR x , these regulatory proteins<br />

were expressed. We postulate that the ability to splice intron 1 depend on the<br />

interaction between the regulatory proteins and snRNA in spliceosome. When a white<br />

rice was transform with the regulatory genes (C1, OsB1, and OsB2), the transgenic<br />

became purple grains (Sakamoto et al., 2001).<br />

31


Figure 13 Two alleles of DFR, DFR x and DFR y .DFR x is temperature-sensitive allele<br />

that found in deeppurple grain (a, b). DFR y is the unspliced allele found in<br />

normal white rice (c).<br />

ANS, a key reaction for coloring in anthocyanin biosynthesis<br />

The reaction leading from colorless leucoanthocyanidin to anthocyanidin and<br />

its 3-O-glucoside is the critical step in the formation of colored metabolites in<br />

anthocyanin biosynthesis. In this study, ANS gene specific primer designed for<br />

polymerase chain reaction from Gene Bank accession number Y07955. DNA from<br />

KDML105, JHN, BW1, BW2, BW3, and BW4 were used as source of ANS for gene<br />

amplification (Figure 14). SSCP was used to screen ANS PCR-products for mutation<br />

in genomic sequence. The amplified ANS3 fragment will be used to determine the<br />

sequence variation related with anthocyanin pigmentation in giving various pericarp<br />

color (Figure 15) and Sequencing of ANS3 fragment shown in Figure 16.<br />

32


Figure 14 Structure of rice anthocyanidin synthase (ANS) gene including primer<br />

positions.<br />

KDML105<br />

JHN<br />

BW1<br />

Figure 15 PCR-SSCP method detecting anthocyanin biosynthetic genes mutation.<br />

BW2<br />

ANS3 fragment shown several pattern of SSCP in six rice cultivars.<br />

BW3<br />

BW4<br />

33


JHN CGCAAAGTTGTTCAAGAAGCTCAAGGATCAGCAAAACAACAATGCCGCAGCTGCATCGAA 60<br />

BW2 CGCAAAGTTGTTCAAGAAGCTCAAGGATCAGCAAGACAACAATGCCGCAGCTGCATCGAA 60<br />

KDML105 CCC-AAGCTGTTCAAGAAGCTCAAGGATCAGCAAGACAACAATGCCGCAGCTGCATCGAA 59<br />

BW1 CGCAAAGTTGTTCAAGAAGCTCAAGGATCAGCAAGACAACAATGCCGCAGGTGCATCGAA 60<br />

BW3 CGCAAAGTTGTTCAAGAAGCTCAAGGATCAGCAAGACAACAATGCCGCAGGTGCATCGAA 60<br />

BW4 CGCCAAGCTGTTCAAGAAGCTCAAGGATCAGCAAGACAACAATGCCGCAGGTGCATCGAA 60<br />

* * *** ************************** *************** *********<br />

JHN CGGAATGATAACTAAATAATTGCAATTAGTCGATCTATCGGCGAGACAACCCAATATTTT 120<br />

BW2 CGGAATGATAACTAAATAATTGCAATTAGTCGATCTATCGGCGAGACAACCCAATATTTT 120<br />

KDML105 CGGAATGATAACTAAATAATTGCAATTAGTCGATCTATCGGCGAGACAACCCAATATTTT 119<br />

BW1 CGGAATGATAACTAAATAATTGCAATTAGTCGATCTATCGGCGAGACAACCTAATATTTT 120<br />

BW3 CGGAATGATAACTAAATAATTGCAATTAGTCGATCTATCGGCGAGACAACCTAATATTTT 120<br />

BW4 CGGAATGATAACTAAATAATTGCAATTAGTCGATCTATCGGCGAGACAACCTAATATTTT 120<br />

*************************************************** ********<br />

JHN GAAAAATTGATGGACACACAAAAAAAAACTTTTTTATATAAGAATATGCATTTGGTTGAT 180<br />

BW2 GAAAAATTGATGGACACACAAAAAAAAACTTTTTTATATAAGAATATGCATTTGGTTGAT 180<br />

KDML105 GAAAAATTGATGGACACACAAAAAAAA-CTTTTTTATATAAGAATATGCATTTGGTTGAT 178<br />

BW1 GAAAAATTGATGGACACAAAAAAAA---CTTTTTTATATAAGAATATGCATTTAGTTGAT 177<br />

BW3 GAAAAATTGATGGACACAAAAAAAA---CTTTTTTATATAAGAATATGCATTTAGTTGAT 177<br />

BW4 GAAAAATTGATGGACACAAAAAAAA---CTTTTTTATATAAGAATATGCATTTAGTTGAT 177<br />

****************** ****** ************************* ******<br />

JHN TCAACATGAAAAA-TATTTTCAAACCATTATATTTTTAATTGGTTATGAATAAACTATAA 239<br />

BW2 TCAACATGAAAAA-TATTTTCAAACCATTATATTTTTAATTGGTTATGAATAAACTATAA 239<br />

KDML105 TCAACATGAAAAA-TATTTTCAAACCATTATATTTTTAATTGGTTATGAATAAACTATAA 237<br />

BW1 TCAACATGAAAAAATATTTTCAAACCATTATATTTTTAATTTGTTATGAATAAACTATAA 237<br />

BW3 TCAACATGAAAAAATATTTTCAAACCATTATATTTTTAATTTGTTATGAATAAACTATAA 237<br />

BW4 TCAACATGAAAAAATATTTTCAAACCATTATATTTTTAATTTGTTATGAATAAACTATAA 237<br />

************* *************************** ******************<br />

JHN AAATAATTGCATTCGTCTGAATTTCAGATAAAGGAGAACAAATAATGTTCAACGGAAGCG 299<br />

BW2 AAATAATTGCATTCGTCTGAATTTCAGATAAAGGAGAACAAATAATGTTCAACGGAAGCG 299<br />

KDML105 AAATAATTGCATTCGTCTGAATTTCAGATAAAGGAGAACAAATAATGTTCAACGGAAGCG 297<br />

BW1 AAATAATTGCATTCGTCTGAATTTTAGATAAAGGAGAACAAATAATGTTCATCAGAAACG 297<br />

BW3 AAATAATTGCATTCGTCTGAATTTTAGATAAAGGAGAACAAATAATGTTCATCAGAAACG 297<br />

BW4 AAATAATTGCATTCGTCTGAATTTTAGATAAAGGAGAACAAATAATGTTCATCAGAAACG 297<br />

************************ ************************** * *** **<br />

JHN AAAGCCGGGGAAATGTACGGATGTTATATCGAGAGCTTAACTTATGAGATGTCTTATATT 359<br />

BW2 AAAGCCGGGGAAATGTACGGATGTTATATCGAGAGCTTAACTTATGAGATGTCTTATATT 359<br />

KDML105 AAAGCCGGGGAAATGTACGGATGTTATATCGAGAGCTTAACTTATGAGATGTCTTATATT 357<br />

BW1 AAAGCCAGGGAAACGTACGGATGTTATATCAAGAGTTTAACTTATGAGATGTCTTATATT 357<br />

BW3 AAAGCCAGGGAAACGTACGGATGTTATATCAAGAGTTTAACTTATGAGATGTCTTATATT 357<br />

BW4 AAAGCCAGGGAAACGTACGGATGTTATATCAAGAGTTTAACTTATGAGATGTCTTATATT 357<br />

****** ****** **************** **** ************************<br />

JHN TTGTTGTCTATGTATTGCAGTCGACTTGTACACCGA 395<br />

BW2 TTGGTGTCTATGTATTGCAGTCGACTTGTACACCGA 395<br />

KDML105 TTGTTGTCTATGTATTGCAGTCGACTTGTACACCGA 393<br />

BW1 TTGTTGTCTATGTATTGCAGTCGACTTGTGCACCGA 393<br />

BW3 TTGTTGTCTATGTATTGCAGTCGACTTGTGCACCGA 393<br />

BW4 TTGTGGTCTATGTATTGCAGTCGACTTGTGCACCGA 393<br />

*** ************************ ******<br />

Figure 16 DNA sequence alignment of ANS3 from different rice strain. The<br />

cladogram of amplified ANS3 fragment will be used to determine the<br />

sequence variation related with anthocyanin pigmentation in giving<br />

various pericarp color. To divide three group which group one is high<br />

antocyanin accumulation, group two and three are low accumulated<br />

anthocyanin (Figure 17).<br />

34


Figure17 Cladogram sequencing of ANS3 fragment.<br />

35


DISCUSSION<br />

OSB1 gene controlling grain anthocyanin and proanthocyanidin content in rice<br />

In the present study we characterized two rice genes, OSB1 and OSB2, with<br />

extensive homology to product of the maize R gene family which regulate<br />

anthocyanin and proanthocyanidin pigmentation. Several lines of evidence suggest<br />

that OSB1 comprise the Pl w allele. Based on these observations, we conclude that<br />

OSB1 is major components of the Plw allele. Our assumption that rice Pl might be<br />

orthologous to maize B enabled us, using B as a heterogous probe, to identify OSB1<br />

and OSB2. The notion that Pl is orthologous to B comes form the systeny between<br />

chromosome 2 in maize and chromosome 4 rice, where some morphological marker<br />

are also share (Ahn and Tanksley, 1993). B and R are displaced on two syntenic<br />

chromosome regions of maize (chromosome 2 and 10, respectively) that been<br />

evolutionarily duplicated by a polyploidization event. Characterization of the Pl w<br />

allele in this study that its complex organization rather resembles some alleles of the R<br />

locus. For example, the R-r allele contains three genes, P, Sl, and S2, by which plant<br />

and seed-specific expression is controlled, respectively (Robins et al., 1991). Further<br />

characterization of other Pl alleles is necessary to understand the diverse organization<br />

and differential expression of gene components.<br />

Anthocyanin intensity in rice grain is regulated by splicing efficiency of<br />

dihydroflavonol-4-reductase (DFR) is temperature sensitive<br />

To understand the genetic mechanism regulating splicing in DFR, genomic<br />

sequences around the exon1-2 junction from DFR x and DFR y were compared.<br />

However, genomic sequence around the splice junction of the two alleles were<br />

identical. Analysis of domain structure in the C1 using NCBI conserved domain<br />

found REB1, the mRNA splicing factor domain, located between a.a. 13-112 in the<br />

C1 of purplepittu rice (www.ncbi.nlm.nih.gov/structure/cdd/). This finding bring out<br />

one possibility that C1 may function as splicing factor specifically for the DFR<br />

36


(Figure 18). This hypothesis was supported by Saitoh et al. (2001). In this study the<br />

stable transgenic white rice (Tp309) with C1 gene from color maize produced purple<br />

seeds. However, the expression of DFR in the transgenic plants was not monitored.<br />

In arabidopsis, the temperature-sensitive mutant for floral homeotic genes, ap3-1, was<br />

caused by unstable base pairing between mRNA and snRNAs (Sablowski and<br />

Meyerowitz, 1998). The temperature-sensitivity of the anthocyanin accumulation<br />

open a unique opportunity to study the regulation of both transcription and posttranscription<br />

by a single regulatory protein. Understanding of this defective<br />

processing may point out ways to develop a more intensive anthocyanin content in<br />

rice grains without less in summer where high temperature is not permissive to<br />

produce anthocyanin-densed grains.<br />

Chromosome 6<br />

Figure 18 Comparison between REB1 domain of C1 Nipponbare with C1 Purpleputu.<br />

REB1, Myb superfamily proteins, including transcription factors and<br />

mRNA splicing factors (Transcription /RNA processing and modification /<br />

Cell division and chromosome partitioning) and temperature sensitive.<br />

37


ANS3 fragment determine the sequence variation related with anthocyanin<br />

pigmentation<br />

The amplified ANS3 fragment will be used to determine the sequence<br />

variation related with anthocyanin pigmentation in giving various pericarp color.<br />

Anthocyanidin synthase (ANS) is a non-haem iron(II)-dependent dioxygenase<br />

reported to catalyse the conversion of leucoanthocyanidins to anthocyanidins (Figure<br />

19) (Nakajima et al., 2001). Anthocyanidins are precursors of anthocyanins, which<br />

are a major family of pigments in higher plants. Mutation in this region would effect<br />

anthocyanin biosynthesis. Therefore, detection of variation in ANS gene may be used<br />

for identification of low anthocyanin plants. The structure of ANS provides a template<br />

for the ubiquitous family of plant nonhaem oxygenases for future engineering and<br />

inhibition studies.<br />

38


Figure 19 Mechanism of anthocyanin formation, leucoanthocyanidin to<br />

anthocyanidin 3-glucoside, catalyzed by ANS and 3-GT, and transport to<br />

vacuoleds (Nakajima et al., 2001).<br />

39


CONCLUSION<br />

Anthocyanin and proanthocyanidin biosyntheses in rice are regulated by either<br />

regulatory or structural genes. A regulatory gene, OSB1, which was in silico mapped<br />

near the major QTL for rice grain pericarp color on chromosome 4, was investigated<br />

between KDML105 (white rice) and Jao Hom Nin (JHN, deep-purple rice). Sequence<br />

analysis revealed that 2-bp deletion found in the exon 11 of this gene in JHN was<br />

associated with the pericarp color. DFR, an important structural gene, is necessary for<br />

anthocyanin biosynthesis. The expression of this gene was highly regulated by<br />

temperature. In JHN, DFR highly expressed at low temperature (20 °C) but was<br />

suppressed at high temperature (34 °C). Moreover, 506-bp pre-mRNA containing the<br />

intron 1 was detected at high temperature in JHN and it mutant with brown pericarp,<br />

BW4. On the other hand, in KDML105 and BW1, a JHN mutant with white pericarp,<br />

506-bp mature mRNA was not detected; only pre-mRNA containing the intron 1 was<br />

accumulated. Another structural gene, ANS, is a key gene reacting for coloring in<br />

anthocyanin biosynthesis. Sequence analysis of the ANS3 fragments, 3’ UTR of this<br />

gene, among rice strains that have pericarp colors varying from white to deep-purple<br />

revealed that these strains can be grouped according to the sequence variations found<br />

in this region. Understanding the genetic bases of anthocyanin and proanthocyanidin<br />

pigmentation is helpful for rice breeders to improve rice grain color as well as plant<br />

molecular biologists to develop a regulatory anthocyanin gene as a reporter in plant<br />

transformation.<br />

40


LITERATURE CITED<br />

Abedel, E. S. M. and P. Hucl. 1999. A rapid method for quantifying total<br />

anthocyanins in bluealeurone and purple pericarp wheats. Cereal Chem. 76<br />

(3): 350-354.<br />

Ahn, S. and S.D. Tanksley. 1993. Comparative linkage maps of the rice and maize<br />

genomes. Proc. Natl. Acad. Sci. USA. 90: 7980-7984.<br />

Betget, S.M. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:<br />

2411-2414.<br />

Canada, A.T., E. Gianmella, J.D. Nguyen, and R.P. Mason. 1990. The production<br />

of reactive oxygene species by dietary flavonolds. Free Radic Biol Med. 9<br />

(5): 441-449.<br />

Chang, T.T. and N.E. Jordan. 1963. Monitoring of gene symbols in rice. Int. Rice<br />

Commun. Newsl. 12(4): 18-24.<br />

Coe, E.H., M.G. Neuffer and D.A. Hoisington. 1988. The genetics of corn, pp. 81-<br />

258. In: Sprague, G.F. and J.W. Dudley, editors. Corn and corn<br />

improvement. Madison (Wisconsin): American Society of Agronomy.<br />

Harborne, J.B. and C.A. Williams. 2000. Advances in flavonoid research since<br />

1992. Phytochemistry 55: 481–504.<br />

Holton, T.A, F. Bruguiera and Y.Tanaka. 1993. Cloning and expression of flavonol<br />

synthase from Petunia hybrida. Plant J. 4: 1003-1010.<br />

Holton, T.A. and E.D. Cornish. 1995. Genetics and biochemistry of anthocyanin<br />

biosynthesis. The Plant Cell 7: 1071-1083.<br />

41


Hu, J., B. Anderson and S.R. Wessler. 1996. Isolation and characterization of rice R<br />

genes: Evidence for distinct evolutionary paths in rice and maize. Genetics<br />

142: 1021-1031.<br />

Isshiki, M., Y. Yamanoto, H. Satoh and K. Shimamoto. 2001. Nonsense-mediated<br />

decay of mutant waxy mRNA in rice. Plant Physiol. 125(3): 1388-1395.<br />

Kadam, B.S. 1974. Patterns of anthocyanin inheritance in rice. V. Purple plant.<br />

Indian J. Genet. Plant Breed. 34(1): 100-117.<br />

Kinoshita, T. and M. Takahashi. 1991. The one hundredth report of genetical studies<br />

on the riceplant. Linkage studies and future prospects. J. Fac. Agric.<br />

Hokkaido Univ. 65: 1-61.<br />

Koes, R.E., F. Quattrocchio and J.N.M. Mol. 1994. The flavonoid biosynthetic<br />

pathway in plants: Function and evolution. BioEssays 16: 123–132.<br />

Koide, T., H. Kamei, Y. Hashimoto, T. Kojima and M. Hasegawa. 1996. Antitumor<br />

effect of hydrolyzed anthocyanin from grape rinds and rice. Cancer Biother<br />

Radiopharm. 11(4): 273-277.<br />

Lamb, C.J., M.A. Lawton, M. Dron and R.A. Dixon. 1989. Signal transduction<br />

mechanisms for activation of plant defences againt microbial attack. Cell 56:<br />

215-224.<br />

Maekawa, M. and F. Kita. 1987. Response of three purple leaf genes of rice and their<br />

characteristic expressions to environments. Res. Bull. Farm Hokkaido Univ.<br />

25: 25-32.<br />

Madhuri, G. and A. R. Reddy. 1999. Plat biotechnology of flavonoid. Plant<br />

Biotechology 16(3): 179-199.<br />

42


Mol, J., E. Grotewold and R. Koes. 1998. How genes paint flowers and seeds.<br />

Trends Plant Sci. 3: 212–217.<br />

Myara, I., I. Pico, B. Vedie and N. Moatti. 1993. A method to screen for the<br />

antioxidant effect of compounds on low density lipoprotein (LDL): illustration<br />

with flavonoids. J Pharmacol Toxicol Methods. 30(2): 69-73.<br />

Nakajima, J., Y. Tanaka, M. Yamazaki and K. Saito. 2001. Reaction mechanism<br />

from leucoanthocyanidin to anthocyanidin 3-Glucoside, a key reaction for<br />

coloring in anthocyanin biosynthesis. The Journal of Biological Chemistry<br />

276(28): 25797-25809.<br />

Nagao, S., M. Takahashi and T. Kinoshita. 1962. Genetical studies on rice plants.<br />

XXVI. Mode of inheritance and casual genes for one type of anthocyanin<br />

color character in foreign rice varieties. J. Fac. Agric. Hokkaido Univ.<br />

52: 20-50.<br />

Paz Ares J, D. Ghosal, U. Weinand, P.A. Peterson and H. Saedler. 1987. The<br />

regulatory c1 locus of Zea mays encodes a protein with homology to myb<br />

protoncogene products and with structural similarities to transcriptional<br />

activators. EMBO J. 6: 3553-3558.<br />

Reddy, A.R. 1996. Genetic and molecular analysis of the anthocyanin pigmentation<br />

in rice. Rice Genetics III : 341–352.<br />

Reddy A.R., B. Scheffler, G. Madhuri, M.N. Srivastava, K. Arvind, P.V.<br />

Sathyanarayana, S. Nair and M. Mohan. 1997. Chalcone synthase in rice<br />

(Oryza sativa L.): detection of CHS protein in seedlings and molecular<br />

mapping of the Chs locus. Plant Mol. Biol. 32: 735–743.<br />

43


Reddy AR, B. Scheffler, M.N. Srivastava, K. Arvind, P.V. Satyanarayan, N. Suresh<br />

and M. Madan. 1996c. Chalcone synthase (CHS) gene in rice (Oryza sativa<br />

L.): expression and molecular mapping. Plant Genome IV, San Diego,<br />

California, USA. p 57.<br />

Reddy V.S., B.E. Scheffler, U. Weinand and A.R. Reddy. 1996b. Dfr from rice cv.<br />

Purple puttu. Plant Mol. Biol. 32: 1235–1237.<br />

Reddy V.S., S. Dash and AR. Reddy. 1995. Anthocyanin pathway in rice (Oryza<br />

sativa L.): Identification of a mutant showing dominant inhibition of<br />

anthocyanin in leaf blade and accumulation of proanthocyanidins in the<br />

pericarp. Theor. Appl. Genet. 91: 301-312.<br />

Reddy V.S, K.V. Goud, R.P. Sharma and A.R. Reddy. 1994. UV-B responsive<br />

anthocyanin productionin a rice cultivar is associated with a specific phase of<br />

phenylalanine ammonia lyasebiosynthesis. Plant Physiol. 105: 1059-1066.<br />

Reddy V.S., B.E. Scheffler, U. Weinand, S.R Wessler and A.R. Reddy 1998.<br />

Cloning and characterization of the rice homologue of the maize C1<br />

anthocyanin regulatory gene, EMBL accession number Y15219.<br />

Plant Mol. Biol. 36: 497–498.<br />

Robbins, T.P., E.L. Walker, J.L. Kermicle, M. Alleman and S.L. Dellaporta.<br />

1991. Meiotic instability of the R-r complex arising from displaced intragenic<br />

exchange and intrachromosomal rearrangement. Genetics 129: 271-283.<br />

Rogers, S.O. and A.J. Bendich. 1994. Extraction of total cellular DNA from plants,<br />

algae and fungi. Plant Mol. Biol. Manual. DI: 1-8.<br />

Sablowski, R.W.M. and E.M. Meyerowitz. 1998. Temperature-sensitive splicing in<br />

the floral homeotic mutant apetala3-1. Plant Cell 10: 1453-1464.<br />

44


Saitoh, K., K. Onishi, I. Mikami, K. Thidar and Y. Sano. 2004. Allelic<br />

diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide<br />

changes associated with phenotypes. Genetics 168: 997-1007.<br />

Sakamoto, W., T. Ohmori, K. Kageyama, C. Miyazaki, A. Saito, M. Murata, K. Noda<br />

and M. Maekawa. 2001. The purple leaf (Pl) locus of rice: the Pl w allele has a<br />

complex organization and includes two genes encoding basic helix-loop-helix<br />

proteins involved in anthocyanin biosynthesis. Plant Cell Physiol. 42(9):<br />

982-991.<br />

Scalbert A. 1991. Antimicrobial properties of tannins. Phytochemistry 30: 3875-<br />

3883.<br />

Scheffle, B.E., A.R. Reddy, I. Hoffman and U. Weinand. 1995. Chalcone synthase<br />

form O. sativa (X89859). Plant Physil. 107: 687-690.<br />

Shirley, B.W. 1996. Flavonoid biosynthesis: "New" functions for an "old" pathway.<br />

Trends Plant Sci. 1: 377–382.<br />

Snyder, B.E., B. Lette, J. Hipskind, L.G. Butler and R. Nicholson. 1991.<br />

Accumulation of Sorghum phytoalexins induced by Colletotrichum<br />

graminicola at the infection site. Physiol. Mol. Plant Pathol. 39: 463-470.<br />

Takahashi, M. 1957. Analysis of apiculus color genes essential to anthocyanin<br />

coloration in rice. J. Fac. Agric. Hokkaido Univ. 50: 266-362.<br />

Yoshimura, A., O. Ideta and N. Iwata. 1997. Linkange map of phenotype and RFLP<br />

markers in rice. Plant Mol. Biol. 35: 49-60.<br />

45


APPENDIX<br />

46


Multiplex SSLP fluorescence-labeled<br />

RM 243<br />

RM212<br />

RM 246<br />

RM 259<br />

APPENDIX<br />

RM 104<br />

Graphical of SSLP marker on chromosome 1 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

RM 110<br />

RM 29<br />

RM 341<br />

RM 250 RM 53<br />

RM146 RM 166<br />

Graphical of SSLP marker on chromosome 2 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

47


RM 132<br />

RM 85<br />

Graphical of SSLP marker on chromosome 3 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

RM 335<br />

RM 282<br />

RM 7<br />

RM 323<br />

RM 231<br />

RM 16<br />

RM 273<br />

RM 261 RM 252 RM 142<br />

RM 131<br />

RM 317<br />

RM 280<br />

RM 55<br />

Graphical of SSLP marker on chromosome 4 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

48


RM 178<br />

RM 13<br />

RM 173<br />

RM 334<br />

RM169<br />

RM 164<br />

Graphical of SSLP marker on chromosome 5 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

RM 111<br />

RM 00<br />

RM 253<br />

RM 121<br />

RM 162<br />

RM 204<br />

RM 103<br />

Graphical of SSLP marker on chromosome 6 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

49


RM 214<br />

RM 2<br />

RM 125 RM 234<br />

RM 172<br />

RM 182<br />

Graphical of SSLP marker on chromosome 7 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

RM 256<br />

RM 44<br />

RM 310<br />

EO3-92.0<br />

RM 337 RM 38<br />

RM 264<br />

Graphical of SSLP marker on chromosome 8 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

50


aa<br />

RM 205<br />

RM 257<br />

RM 105<br />

RM 215<br />

RM 219<br />

RM 242<br />

Graphical of SSLP marker on chromosome 9 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

RM 294<br />

RM 147<br />

RM 244<br />

RM 239RM 222<br />

RM 271<br />

RM 171<br />

Graphical of SSLP marker on chromosome 10 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

51


RM 286<br />

RM 206<br />

RM 287<br />

RM 202<br />

Graphical of SSLP marker on chromosome 11 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

RM 235<br />

RM 247<br />

RM 309<br />

RM20<br />

RM 332<br />

RM 20<br />

RM 139<br />

Graphical of SSLP marker on chromosome 12 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

52


RM 132 RM 232 RM 7<br />

Graphical of SSLP marker on chromosome 3 deteced by program GeneScan<br />

(Aplied Biosystem)<br />

Blue = florescence-labeled primer with Fam<br />

Green = florescence-labeled primer with Tet<br />

Black = florescence-labeled primer with Hex<br />

RM 231<br />

53


SSLP marker fluorescence-labeled<br />

marker size rang (bp) fluorescencelabeled<br />

Chromosome 1 RM259 156-175 Hex<br />

RM5 108-130 Tet<br />

RM246 97-118 Hex<br />

RM212 112-134 Fam<br />

RM104 222-238 Fam<br />

Chromosome 2 RM110 138-156 Fam<br />

RM53 168-208 Fam<br />

RM29 188-200 Tet<br />

RM341 136-172 Tet<br />

RM106 288-297 Fam<br />

RM250 154-174 Hex<br />

RM166 203-217 Hex<br />

Chromosome 3 RM132 83-83 Tet<br />

RM231 169-191 Hex<br />

RM7 168-182 Fam<br />

RM232 142-166 Tet<br />

RM282 128-136 Fam<br />

RM16 168-230 Tet<br />

RM55 217-235 Fam<br />

RM85 85-107 Fam<br />

54


(Continued)<br />

marker size rang (bp) fluorescencelabeled<br />

Chromosome 4 RM335 104-155 Tet<br />

RM261 122-126 Fam<br />

RM142 235-238 Fam<br />

RM273 199-207 Fam<br />

RM252 193-262 Tet<br />

RM317 146-166 Fam<br />

RM131 209-217 Hex<br />

RM280 148-181 Hex<br />

Chromosome 5 RM13 131-147 Tet<br />

RM169 164-194 Hex<br />

RM164 246-304 Fam<br />

RM173 186-188 Tet<br />

RM178 117-123 Fam<br />

RM334 146-197 Fam<br />

Chromosome 6 RM00 226-232 Fam<br />

RM204 106-194 Fam<br />

RM111 118-148 Tet<br />

RM253 217-239 Hex<br />

RM121 258-264 Tet<br />

RM162 119-189 Hex<br />

RM103 334-340 Fam<br />

Chromosome 7 RM125 124-136 Fam<br />

RM214 114-152 Tet<br />

RM2 144-153 Hex<br />

RM182 336-346 Fam<br />

RM234 133-163 Hex<br />

RM172 159-165 Fam<br />

55


(Continued)<br />

marker size rang (bp) fluorescencelabeled<br />

Chromosome 8 RM337 159-192 Fam<br />

RM38 246-278 Fam<br />

RM310 85-120 Fam<br />

RM44 93-131 Tet<br />

E03-92.0 200 Hex<br />

RM256 107-139 Hex<br />

RM264 148-178 Tet<br />

Chromosome 9 RM219 192-222 Tet<br />

aa<br />

(126G1R)<br />

100-118 Fam<br />

RM105 131-140 Fam<br />

RM257 121-173 Tet<br />

RM242 193-225 Hex<br />

RM215 147-153 Fam<br />

RM205 123-161 Hex<br />

Chromosome 10 RM222 199-215 Fam<br />

RM244 157-165 Fam<br />

RM239 164-186 Tet<br />

RM271 92-105 Fam<br />

RM171 318-343 Hex<br />

RM294<br />

(A,B)<br />

100-180 Hex<br />

RM147 94-97 Tet<br />

Chromosome 11 RM286 99-128 Hex<br />

RM332 162-183 Tet<br />

RM202 158-186 Hex<br />

RM287 98-118 Tet<br />

RM206 128-202 Fam<br />

RM139 396-410 Fam<br />

56


(Continued)<br />

marker size rang (bp) fluorescencelabeled<br />

Chromosome 12 RM20(A,B) 162-198, 116-<br />

140<br />

Fam<br />

RM247 130-176 Hex<br />

RM309 165-169 Tet<br />

RM235 96-134 Tet<br />

57


Primer used in overlapping strategy for entirely sequencing of the rice<br />

anthocyanin biosynthetic genes<br />

OSB1-AF 5’ GAGAAGCTCAACGAGATGTT 3’<br />

OSB1-AR 5’ CTAGCTAGCTAGCTTGCTATAGC 3’<br />

ANS1-F 5’ CACGCAGCTCATCTACTAGC 3’<br />

ANS1-R 5’ AGTTGATCTTGAGCTGGAGG 3’<br />

ANS2-F 5’ GCCTGAGAGGACATGAGCTG 3’<br />

ANS2-R 5’ GTTATCATTCCGTTCGATGC 3’<br />

ANS3-F 5’ GCAACGCAAGCTGTTCAAG 3’<br />

ANS3-R 5’ GGGATGGAAAGACTCGGTG 3’<br />

DFR1-F 5’ AAACCGGTTCATTCTGTCTC 3’<br />

DFR1-R 5’ GCAAGCGGCATATATAATTG 3’<br />

DFR2-F 5’ ATATATAGGCGAGCCAACG 3’<br />

DFR2-R 5’ CGTTTCGTTTTATGTACGTG 3’<br />

DFR3-F 5’ CGTTCAAACTCACCCTTAAG 3’<br />

DFR3-R 5’ GTGAAATAGACGAAGCCAAC 3’<br />

DFR4-F 5’ CGTTGGTCAAATGAGTGTTG 3’<br />

DFR4-R 5’ CACGACTTAGAATCGCACAC 3’<br />

DFR-1IF 5’ CTCGTCATGAAGCTCCTC 3’<br />

DFR-1IR 5’ AGTCGATGTCGCTCCAGT 3’<br />

58


CLUSTAL W (1.82) multiple sequence alignment of DFR gene<br />

KDML105_DNA TGCGAATCCAACACAAGCACCGCGGCGTAGTACTACTACTTGCGCGCGCGTGTTAGATTC 60<br />

BW1_DNA TGCGAATCCAACACAAGCACCGCGGCGTAGTACTACTACTTGCGCGCGCGTGTTAGATTC 60<br />

Mura_DNA TGCGAATCCAACACAAGCACCGCGGCGTAGTACTACTACTTGCGCGCGCGTGTTAGATTC 60<br />

Nip_DNA TGCGAATCCAACACAAGCACCGCGGCGTAGTACTACTACTTGCGCGCGCGTGTTAGATTC 60<br />

Mura_cDNA TGCGAATCCAACACAAGCACCGCGGCGTAGTACTACTACTTGCGCGCGCGTGTTAGATTC 60<br />

Purple_cDNA TGCGAATCCAACACAAGCACCGCGGCGTAGTACTACTACTTGCGCGCGCGTGTTAGATTC 60<br />

JHN_DNA TGCGAATCCAACACAAGCACCGCGGCGTAGTACTACTACTTGCGCGCGCGTGTTAGATTC 60<br />

#3_DNA TGCGAATCCAACACAAGCACCGCGGCGTAGTACTACTACTTGCGCGCGCGTGTTAGATTC 60<br />

************************************************************<br />

KDML105_DNA GCGTGCGAATCCAACACAAGCAGATCGATCACGCACGGTACGCCATGGGCGAGGCGGTGA 120<br />

BW1_DNA GCGTGCGAATCCAACACAAGCAGATCGATCACGCACGGTACGCCATGGGCGAGGCGGTGA 120<br />

Mura_DNA GCGTGCGAATCCAACACAAGCAGATCGATCACGCACGGTACGCCATGGGCGAGGCGGTGA 120<br />

Nip_DNA GCGTGCGAATCCAACACAAGCAGATCGATCACGCACGGTACGCCATGGGCGAGGCGGTGA 120<br />

Mura_cDNA GCGTGCGAATCCAACACAAGCAGATCGATCACGCACGGTACGCCATGGGCGAGGCGGTGA 120<br />

Purple_cDNA GCGTGCGAATCCAACACAAGCAGATCGATCACGCACGGTACGCCATGGGCGAGGCGGTGA 120<br />

JHN_DNA GCGTGCGAATCCAACACAAGCAGATCGATCACGCACGGTACGCCATGGGCGAGGCGGTGA 120<br />

#3_DNA GCGTGCGAATCCAACACAAGCAGATCGATCACGCACGGTACGCCATGGGCGAGGCGGTGA 120<br />

************************************************************<br />

KDML105_DNA AGGGGCCAGTGGTGGTGACGGCCGCGTCGGGCTTCGTCGGCTCATGGCTCGTCATGAAGC 180<br />

BW1_DNA AGGGGCCAGTGGTGGTGACGGGCGCGTCGGGCTTCGTCGGCTCATGGCTCGTCATGAAGC 180<br />

Mura_DNA AGGGGCCAGTGGTGGTGACGGGCGCGTCGGGCTTCGTCGGCTCATGGCTCGTCATGAAGC 180<br />

Nip_DNA AGGGGCCAGTGGTGGTGACGGGCGCGTCGGGCTTCGTCGGCTCATGGCTCGTCATGAAGC 180<br />

Mura_cDNA AGGGGCCAGTGGTGGTGACGGGCGCGTCGGGCTTCGTCGGCTCATGGCTCGTCATGAAGC 180<br />

Purple_cDNA AGGGGCCAGTGGTGGTGACGGGCGCGTCGGGCTTCGTCGGCTCATGGCTCGTCATGAAGC 180<br />

JHN_DNA AGGGGCCAGTGGTGGTGACGGGCGCGTCGGGCTTCGTCGGCTCATGGCTCGTCATGAAGC 180<br />

#3_DNA AGGGGCCAGTGGTGGTGACGGGCGCGTCGGGCTTCGTCGGCTCATGGCTCGTCATGAAGC 180<br />

********************* **************************************<br />

KDML105_DNA TCCTCCAGGCCGGCTACACCGTCCGCGCCACAGTGCGCGACCCCTGTGAGCTCTCTCATC 240<br />

BW1_DNA TCCTCCAGGCCGGCTACACCGTCCGCGCCACAGTGCGCGACCCCTGTGAGCTCTCTCATC 240<br />

Mura_DNA TCCTCCAGGCCGGCTACACCGTCCGCGCCACAGTGCGCGACCCCTGTGAGCTCTCTCATC 240<br />

Nip_DNA TCCTCCAGGCCGGCTACACCGTCCGCGCCACAGTGCGCGACCCCTGTGAGCTCTCTCATC 240<br />

Mura_cDNA TCCTCCAGGCCGGCTACACCGTCCGCGCCACAGTGCGCGACCCCT--------------- 225<br />

Purple_cDNA TCCTCCAGGCCGGCTACACCGTCCGCGCCACAGTGCGCGACCCCT--------------- 225<br />

JHN_DNA TCCTCCAGGCCGGCTACACCGTCCGCGCCACAGTGCGCGACCCCTGTGAGCTCTCTCATC 240<br />

#3_DNA TCCTCCAGGCCGGCTACACCGTCCGCGCCACAGTGCGCGACCCCTGTGAGCTCTCTCATC 240<br />

*********************************************<br />

KDML105_DNA GTGCACTCTAGCTCTCTCCTCGTAGTTTACTGACTCCAATTATATATGCCGCTTGCTTGA 300<br />

BW1_DNA GTGCACTCTAGCTCTCTCCTCGTAGTTTACTGACTCCAATTATATATGCCGCTTGCTTGA 300<br />

Mura_DNA GTGCACTCTAGCTCTCTCCTCGTAGTTTACTGACTCCAATTATATATGCCGCTTGCTTGA 300<br />

Nip_DNA GTGCACTCTAGCTCTCTCCTCGTAGTTTACTGACTCCAATTATATATGCCGCTTGCTTGA 300<br />

Mura_cDNA ------------------------------------------------------------<br />

Purple_cDNA ------------------------------------------------------------<br />

JHN_DNA GTGCACTCTAGCTCTCTCCTCGTAGTTTACTGACTCCAATTATATATGCCGCTTGCTTGA 300<br />

#3_DNA GTGCACTCTAGCTCTCTCCTCGTAGTTTACTGACTCCAATTATATATGCCGCTTGCTTGA 300<br />

KDML105_DNA CTCTGACAAGTGTACGTGTTGTTGTTGTTGTTTTCAGCTAACGTTGGGAAGACGAAGCCG 360<br />

BW1_DNA CTCTGACAAGTGTACGTGTTGTTGTTGTTGTTTTCAGCTAACGTTGGGAAGACGAAGCCG 360<br />

Mura_DNA CTCTGACAAGTGTACGTGTTGTTGTTGTTGTTTTCAGCTAACGTTGGGAAGACGAAGCCG 360<br />

Nip_DNA CTCTGACAAGTGTACGTGTTGTTGTTGTTGTTTTCAGCTAACGTTGGGAAGACGAAGCCG 360<br />

Mura_cDNA -------------------------------------CTAACGTTGGGAAGACGAAGCCG 248<br />

Purple_cDNA -------------------------------------CTAACGTTGGGAAGACGAAGCCG 248<br />

JHN_DNA CTCTGACAAGTGTACGTGTTGTTGTTGTTGTTTTCAGCTAACGTTGGGAAGACGAAGCCG 360<br />

#3_DNA CTCTGACAAGTGTACGTGTTGTTGTTGTTGTTTTCAGCTAACGTTGGGAAGACGAAGCCG 360<br />

***********************<br />

59


KDML105_DNA TTGCTGGAGCTGGCGGGGTCGAAGGAGAGGCTGACGCTGTGGAAGGCCGACCTGGGCGAG 420<br />

BW1_DNA TTGCTGGAGCTGGCGGGGTCGAAGGAGAGGCTGACGCTGTGGAAGGCCGACCTGGGCGAG 420<br />

Mura_DNA TTGCTGGAGCTGGCGGGGTCGAAGGAGAGGCTGACGCTGTGGAAGGCCGACCTGGGCGAG 420<br />

Nip_DNA TTGCTGGAGCTGGCGGGGTAGAAGGAGAGGCTGACGCTGTGGAAGGCCGACCTGGGCGAG 420<br />

Mura_cDNA TTGCTGGAGCTGGCGGGGTCGAAGGAGAGGCTGACGCTGTGGAAGGCCGACCTGGGCGAG 308<br />

Purple_cDNA TTGCTGGAGCTGGCGGGGTCGAAGGAGAGGCTGACGCTGTGGAAGGCCGACCTGGGCGAG 308<br />

JHN_DNA TTGCTGGAGCTGGCGGGGTCGAAGGAGAGGCTGACGCTGTGGAAGGCCGACCTGGGCGAG 420<br />

#3_DNA TTGCTGGAGCTGGCGGGGTCGAAGGAGAGGCTGACGCTGTGGAAGGCCGACCTGGGCGAG 420<br />

******************* ****************************************<br />

KDML105_DNA GAAGGCAGCTTCGACGCGGCGATCAGGGGTTGCACGGGCGTGTTCCACGTCGCGACGCCC 480<br />

BW1_DNA GAAGGCAGCTTCGACGCGGCGATCAGGGGTTGCACGGGCGTGTTCCACGTCGCGACGCCC 480<br />

Mura_DNA GAAGGCAGCTTCGACGCGGCGATCAGGGGTTGCACGGGCGTGTTCCACGTCGCGACGCCC 480<br />

Nip_DNA GAAGGCAGCTTCGACGCGGCGATCAGGGGTTGCACGGGCGTGTTCCACGTCGCGACGCCC 480<br />

Mura_cDNA GAAGGCAGCTTCGACGCGGCGATCAGGGGTTGCACGGGCGTGTTCCACGTCGCGACGCCC 368<br />

Purple_cDNA GAAGGCAGCTTCGACGCGGCGATCAGGGGTTGCACGGGCGTGTTCCACGTCGCGACGCCC 368<br />

JHN_DNA GAAGGCAGCTTCGACGCGGCGATCAGGGGTTGCACGGGCGTGTTCCACGTCGCGACGCCC 480<br />

#3_DNA GAAGGCAGCTTCGACGCGGCGATCAGGGGTTGCACGGGCGTGTTCCACGTCGCGACGCCC 480<br />

************************************************************<br />

KDML105_DNA ATGGACTTCGAGTCCGAGGACCCGGAGAACGAGGTGATCAAGCCCACCGTGGAAGGGATG 540<br />

BW1_DNA ATGGACTTCGAGTCCGAGGACCCGGAGAACGAGGTGATCAAGCCCACCGTGGAAGGGATG 540<br />

Mura_DNA ATGGACTTCGAGTCCGAGGACCCGGAGAACGAGGTGGTCAAGCCCACCGTGGAAGGGATG 540<br />

Nip_DNA ATGGACTTCGAGTCCGAGGACCCGGAGAACGAGGTGGTCAAGCCCACCGTGGAAGGGATG 540<br />

Mura_cDNA ATGGACTTCGAGTCCGAGGACCCGGAGAACGAGGTGGTCAAGCCCACCGTGGAAGGGATG 428<br />

Purple_cDNA ATGGACTTCGAGTCCGAGGACCCGGAGAACGAGGTGATCAAGCCCACCGTGGAAGGGATG 428<br />

JHN_DNA ATGGACTTCGAGTCCGAGGACCCGGAGAACGAGGTGATCAAGCCCACCGTGGAAGGGATG 540<br />

#3_DNA ATGGACTTCGAGTCCGAGGACCCGGAGAACGAGGTGATCAAGCCCACCGTGGAAGGGATG 540<br />

************************************ ***********************<br />

KDML105_DNA CTGAGCATCATGCGGGCCTGCAGGGACGCCGGCACCGTCAAGCGCATCGTCTTCACCTCC 600<br />

BW1_DNA CTGAGCATCATGCGGGCCTGCAGGGACGCCGGCACCGTCAAGCGCATCGTCTTCACCTCC 600<br />

Mura_DNA CTGAGCATCATGCGGGCCTGCAGGGACGCCGGCACCGTCAAGCGCATCGTCTTCACCTCC 600<br />

Nip_DNA CTGAGCATCATGCGGGCCTGCAGGGACGCCGGCACCGTCAAGCGCATCGTCTTCACCTCC 600<br />

Mura_cDNA CTGAGCATCATGCGGGCCTGCAGGGACGCCGGCACCGTCAAGCGCATCGTCTTCACCTCC 488<br />

Purple_cDNA CTGAGCATCATGCGGGCCTGCAGGGACGCCGGCACCGTCAAGCGCATCGTCTTCACCTCC 488<br />

JHN_DNA CTGAGCATCATGCGGGCCTGCAGGGACGCCGGCACCGTCAAGCGCATCGTCTTCACCTCC 600<br />

#3_DNA CTGAGCATCATGCGGGCCTGCAGGGACGCCGGCACCGTCAAGCGCATCGTCTTCACCTCC 600<br />

************************************************************<br />

KDML105_DNA TCCGCCGGGACCGTCAACATCGAGGAGCGGCAGCGCCCCTCCTACGACCACGACGACTGG 660<br />

BW1_DNA TCCGCCGGGACCGACAACATCGAGGAGCGGCAGCGCCCCTCCTACGACCACGACGACTGG 660<br />

Mura_DNA TCCGCCGGGACCGTCAACATCGAGGAGCGGCAGCGCCCCTCCTACGACCACGACGACTGG 660<br />

Nip_DNA TCCGCCGGGACCGTCAACATCGAGGAGCGGCAGCGCCCCTCCTACGACCACGACGACTGG 660<br />

Mura_cDNA TCCGCCGGGACCGTCAACATCGAGGAGCGGCAGCGCCCCTCCTACGACCACGACGACTGG 548<br />

Purple_cDNA TCCGCCGGGACCGTCAACATCGAGGAGCGGCAGCGCCCCTCCTACGACCACGACGACTGG 548<br />

JHN_DNA TCCGCCGGGACCGTCAACATCGAGGAGCGGCAGCGCCCCTCCTACGACCTCGACGACTGG 660<br />

#3_DNA TCCGCCGGGACCGTCAACATCGAGGAGCGGCAGCGCCCCTCCTACGACCACGACGACTGG 660<br />

************* *********************************** **********<br />

KDML105_DNA AGCGACATCGACTTCTGTCGCCGCGTCAAGATGACCCGATGGGTCTATATCGAGAATGTC 720<br />

BW1_DNA AGCGACATCGACTTCTGTCGCCGCGTCAAGATGACCCGATGGGTCTATATCGAGAATGTC 720<br />

Mura_DNA AGCGACATCGACTTCTGCCGCCGCGTCAAGATGACCGGATGGGTATGTATCGAAAATGTT 720<br />

Nip_DNA AGCGACATCGACTTCTGCCGCCGCGTCAAGATGACCGGATGGGTATGTATCGAAAATGTT 720<br />

Mura_cDNA AGCGACATCGACTTCTGCCGCCGCGTCAAGATGACCGGATGG------------------ 590<br />

Purple_cDNA AGCGACATCGACTTCTGTCGCCGCGTCAAGATGACCGGATGG------------------ 590<br />

JHN_DNA AGCGACATCGACTTCTGTCGCCGCGTCAAGATGACCCGATGGGTATGTATCGAAAATGTT 720<br />

#3_DNA AGCGACATCGACTTCTGTCGCCGCGTCAAGATGACCCGATGGGTATGTATCGAAAATGTT 720<br />

***************** ****************** *****<br />

KDML105_DNA GTCCTGTGTTAAGAACCTCAATCCTTCACCTACATAATCGAAAACGATATCTTCCTCTGA 780<br />

BW1_DNA GTCCTGTGTTAAGAACCTCAATCCTTCACCTACATAATCGAAAACGATATCTTCCTCTGA 780<br />

Mura_DNA GTCGTGGGTTAGGAACAACGATCCTCCACGTACATAAAACGAAACGATAAGTTAACATGA 780<br />

Nip_DNA GTCGTGGGTTAGGAACAACGATCCTCCACGTACATAAAACGAAACGATAAGTTAACATGA 780<br />

Mura_cDNA ------------------------------------------------------------<br />

Purple_cDNA ------------------------------------------------------------<br />

JHN_DNA GTCGTGGGTTAGGAACAACGATCCTCCACGTACATAAAACGAAACGATAAGTTAACATGA 780<br />

#3_DNA GTCGTGGGTTAGGAACAACGATCCTCCACGTACATAAAACGAAACGATAAGTTAACATGA 780<br />

60


KDML105_DNA GCGTGATCAATATTAGTATGGTATAATTGATATTTGTTTAAAAATCTAAAAAATATTAAT 840<br />

BW1_DNA GCGTGATCAATATTAGTATGGTATAATTGATATTTGTTTAAAA-TCTAAAAAATATTAAT 839<br />

Mura_DNA GCATGATTAATATTAGTATGGTATAATTGATATTTGTTTAAAAATCTAAAAAATATTAAT 840<br />

Nip_DNA GCATGATTAATATTAGTATGGTATAATTGATATTTGTTTAAAAATCTAAAAAATATTAAT 840<br />

Mura_cDNA ------------------------------------------------------------<br />

Purple_cDNA ------------------------------------------------------------<br />

JHN_DNA GCATGATTAATATTAGTATGGTATAATTGATATTTGTTTAAAA-TCTAAAAAATATTAAT 839<br />

#3_DNA GCATGATTAATATTAGTATGGTATAATTGATATTTGTTTAAAA-TCTAAAAAATATTAAT 839<br />

KDML105_DNA ATGATTTTTAAATAACTATTTTATA-AATTTTTTTTATGAAAACACAAGGAAACAGAAAT 899<br />

BW1_DNA ATGATTTTTAAATAACTATTTTATAGAATTTTTTTTATGAAAACACAAGGAAACAGAAAT 899<br />

Mura_DNA ATGATTTTTAAATAACTATTTTATAGAATTTTTTTTATGAAAACACAAGGAAACAGAAAT 900<br />

Nip_DNA ATGATTTTTAAATAACTATTTTATAGAATTTTTTTTATGAAAACACAAGGAAACAGAAAT 900<br />

Mura_cDNA ------------------------------------------------------------<br />

Purple_cDNA ------------------------------------------------------------<br />

JHN_DNA ATGATTTTTAAATAACTATTTTATAGAATTTTTTTTATGAAAACACAAGGAAACAGAAAT 899<br />

#3_DNA GTGATTTTTAAATAACTATTTTATAGAATTTTTTTTATGAAAACACAAGGAAACAGAAAT 899<br />

KDML105_DNA TGAGAAATAGTACGTTCAAACTCACCCTTAAGCAACTGAAACTAGCTTAGCACGTGAATT 959<br />

BW1_DNA TGAGAAATAGTACGTTCAAACTCACCCTTAAGCAACTGAAACTAGCTTAGCACGTGAATT 959<br />

Mura_DNA TGAGAAATAGTACGTTCAAACTCACCCTTAAGCAACTGAAACTAGCTTAGCACGTGAATT 960<br />

Nip_DNA TGAGAAATAGTACGTTCAAACTCACCCTTAAGCAACTGAAACTAGCTTAGCACGTGAATT 960<br />

Mura_cDNA ------------------------------------------------------------<br />

Purple_cDNA ------------------------------------------------------------<br />

JHN_DNA TGAGAAATAGTACGTTCAAACTCACCCTTAAGCAACTGAAACTAGCTTAGCACGTGAATT 959<br />

#3_DNA TGAGAAATAGTACGTTCGAACTCACCCTTAAGCAACTGAAACTAGCTTAGCACGTGAATT 959<br />

KDML105_DNA TGGCCGTGCGAGTCATATGATATGAAGGTCGGGGAT-GTTTTTTTTTTTTGGGGGGGAGG 1018<br />

BW1_DNA TGGCCGTGCGAGTCATATGATATGAAGGTCGGGGACCGTTTTTTTTTTTTTGGGGGGATG 1019<br />

Mura_DNA TGGCCGTGTGAGTCATATGATATGAAGGTCGGGGATGTTTTTTTTTTTTTTGCGGGGATG 1020<br />

Nip_DNA TGGCCGTGTGAGTCATATGATATGAAGGTCGGGGATGTTTTTTTTTTTTTTGCGGGGATG 1020<br />

Mura_cDNA ------------------------------------------------------------<br />

Purple_cDNA ------------------------------------------------------------<br />

JHN_DNA TGGCCGTGCGAGTCATATGATATGAAGGTCGGGGAT-GTTTTTTTTTTTTGGGGGGGAGG 1018<br />

#3_DNA TGGCCGTGCGAGTCATATGATATGAAGGTCGGGGAT-GTTTTTTTTTTTTGGGGGGGAGG 1018<br />

KDML105_DNA TAATTAACTAATTTTGTAAACCATTTCTATTGTTTAAAAAAAGTTAGCAAGTGATAATGG 1078<br />

BW1_DNA TAATTAACTAATTTTGTAAACCATTTTTATTGGTTAAAAAAAGTTAGCAAGTGATAATTG 1079<br />

Mura_DNA TAATTAACTAATTATGTAAACCATTTCTATTGTCTAAAAGAAGTTAGCAAGTGATAATTG 1080<br />

Nip_DNA TAATTAACTAATTATGTAAACCATTTCTATTGTCTAAAAGAAGTTAGCAAGTGATAATTG 1080<br />

Mura_cDNA ------------------------------------------------------------<br />

Purple_cDNA ------------------------------------------------------------<br />

JHN_DNA TAATTAACTAATTATGGAAACCATTTTTATGGGTAAAAAAAAGTTAGCAGGGGGTAATTG 1078<br />

#3_DNA TAATTAACTAATTTTGTAAACCATTTCTATTGCTTAAAAAAAGTTACCAAGTTTTAATTG 1078<br />

KDML105_DNA GGGGGGCAGATGTACTTCGGGTCCAAGTCATTGGCCGAAAAGGCCGCCATGGAATACGCG 1138<br />

BW1_DNA GGGGGGCAGATGTACTTCGGGTCCAAGTCATTGGCGGAAAAGGCCCCCTTGGAATACGCG 1139<br />

Mura_DNA TGGTGGCAGATGTACTTCGTGTCCAAGTCATTGGCGGAGAAGGCCGCCATGGAATACGCG 1140<br />

Nip_DNA TGGTGGCAGATGTACTTCGTGTCCAAGTCATTGGCGGAGAAGGCCGCCATGGAATACGCG 1140<br />

Mura_cDNA ---------ATGTACTTCGTGTCCAAGTCATTGGCGGAGAAGGCCGCCATGGAATACGCG 641<br />

Purple_cDNA ---------ATGTACTTCGTGTCCAAGTCATTGGCGGAGAAGGCCGCCATGGAATACGCG 641<br />

JHN_DNA TGGGGGCAAATGTCCTTCGGGCCCAACCCATTGGGGGAAAAGGCCCCCTTGGAATACCCG 1138<br />

#3_DNA GGGGGGGGGATGTTCTTTGGGTCCAAGTAATTGGGGGAAAAGGCCCCCTTGGAATACCCG 1138<br />

**** *** * * **** ***** ** ****** ** ******** **<br />

KDML105_DNA AGGGAGCACGGGCTGGACCTCATCAGCGTCATCCCCACGCTCGTCGTCGGGCCCTTCATC 1198<br />

BW1_DNA AGGGAGCACGGGTTGGACCTCATCAGCGTCATCCCCACGCTCGTCGTCGGGCCCTTCATC 1199<br />

Mura_DNA AGGGAGCACGGGCTGGACCTCATCAGCGTCATCCCCACGCTCGTCGTCGGGCCCTTCATC 1200<br />

Nip_DNA AGGGAGCACGGGCTGGACCTCATCAGCGTCATCCCCACGCTCGTCGTCGGGCCCTTCATC 1200<br />

Mura_cDNA AGGGAGCACGGGCTGGACCTCATCAGCGTCATCCCCACGCTCGTCGTCGGGCCCTTCATC 701<br />

Purple_cDNA AGGGAGCACGGGCTGGACCTCATCAGCGTCATCCCCACGCTCGTCGTCGGGCCCTTCATC 701<br />

JHN_DNA AGGGAGCCCGGGTTGGACCTTATAAGGGTAATCCCCACCCTCGTGGGGGGGCCTTTCATC 1198<br />

#3_DNA AGGGAGCCCGGGTTGGACCTTATAAGGGTAATCCCCACCCTCGTGGGGGGGCCCTTAATT 1198<br />

******* **** ******* ** ** ** ******** ***** * ***** ** **<br />

61


KDML105_DNA AGCAACGGGATGCCGCCGAGCCACGTCACCGCGCTGGCGCTGCTCACGGGGAACGAGGCC 1258<br />

BW1_DNA AGCAACGGGATGCCGCCGAGCCACGTCACCGCGCTGGCGCTGCTCACGGGGAACGAGGCC 1259<br />

Mura_DNA AGCAACGGGATGCCGCCGAGCCACGTCACCGCGCTGGCGCTGCTCACGGGGAACGAGGCC 1260<br />

Nip_DNA AGCAACGGGATGCCGCCGAGCCACGTCACCGCGCTGGCGCTGCTCACGGGGAACGAGGCC 1260<br />

Mura_cDNA AGCAACGGGATGCCGCCGAGCCACGTCACCGCGCTGGCGCTGCTCACGGGGAACGAGGCC 761<br />

Purple_cDNA AGCAACGGGATGCCGCCGAGCCACGTCACCGCGCTGGCGCTGCTCACGGGGAACGAGGCC 761<br />

JHN_DNA AGCAACGGGATGCCGCCGAGCCACGTAACCGCGCTGGCGCTGCTCACGGGGAACGAGGCC 1258<br />

#3_DNA AGAAACGGGATGCCGCCGAGCCACGTAACCGGGCTGGGGTTGTTTACGGGGAACAAGGCC 1258<br />

** *********************** **** ***** * ** * ********* *****<br />

KDML105_DNA CACTACTCGATCCTGAAGCAGGTGCAGTTCGTCCACCTCGACGACCTCTGCGATGCCGAG 1318<br />

BW1_DNA CACTACTCGATCCTGAAGCAGGTGCAGTTCGTCCACCTCGACGACCTCTGCGATGCCGAG 1319<br />

Mura_DNA CACTACTCGATCCTGAAGCAGGTGCAGTTCGTCCACCTCGACGACCTCTGCGACGCCGAG 1320<br />

Nip_DNA CACTACTCGATCCTGAAGCAGGTGCAGTTCGTCCACCTCGACGACCTCTGCGACGCCGAG 1320<br />

Mura_cDNA CACTACTCGATCCTGAAGCAGGTGCAGTTCGTCCACCTCGACGACCTCTGCGACGCCGAG 821<br />

Purple_cDNA CACTACTCGATCCTGAAGCAGGTGCAGTTCGTCCACCTCGACGACCTCTGCGATGCCGAG 821<br />

JHN_DNA CACTACTCGATCCTGAAGCAGGTGCAGTTCGTCCACCTCGACGACCTCTGCGATGCCGAA 1318<br />

#3_DNA CATTATTTGATCTTGAAGCAGGGGCAGTTGGTCCACCTCGACAACCTTTGGGATGCCGAA 1318<br />

** ** * **** ********* ****** ************ **** ** ** *****<br />

KDML105_DNA ATCTTCCTCTTCGAGAGCCCCGAGGCGCGCGGCCGCTACGTCTGCTCCTCCCACGACGCC 1378<br />

BW1_DNA ATCTTCCTCTTCGAGAGCCCCGAGGCGCGCGGCCGCTACGTCTGCTCCTCCCACGACGCC 1379<br />

Mura_DNA ATCTTCCTCTTCGAGAGCCCCGAGGCGCGCGGCCGCTACGTCTGCTCCTCCCACGACGCC 1380<br />

Nip_DNA ATCTTCCTCTTCGAGAGCCCCGAGGCGCGCGGCCGCTACGTCTGCTCCTCCCACGACGCC 1380<br />

Mura_cDNA ATCTTCCTCTTCGAGAGCCCCGAGGCGCGCGGCCGCTACGTCTGCTCCTCCCACGACGCC 881<br />

Purple_cDNA ATCTTCCTCTTCGAGAGCCCCGAGGCGCGCGGCCGCTACGTCTGCTCCTCCCACGACGCC 881<br />

JHN_DNA ATTTTCCTCTTCGAGAGCCCCGAGGCGCGCGGCCGCTACGTCTGCTCCTCCCACGACGCC 1378<br />

#3_DNA ATTTTCTTTTTTAAAAGCCCCAAGGGGCGCGGCCGTTACGTTTGTTTTTCCCACAACGCC 1378<br />

** *** * ** * ****** *** ********* ***** ** * ****** *****<br />

KDML105_DNA ACCATCCACGGCCTCGCGACGATGCTCGCGGACATGTTCCCGGAGTACGACGTGCCGCGG 1438<br />

BW1_DNA ACCATCCACGGCCTCGCGACGATGCTCGCGGACATGTTCCCGGAGTACGACGTGCCGCGG 1439<br />

Mura_DNA ACCATCCACGGCCTCGCGACGATGCTCGCGGACATGTTCCCGGAGTACGACGTGCCGCGG 1440<br />

Nip_DNA ACCATCCACGGCCTCGCGACGATGCTCGCGGACATGTTCCCGGAGTACGACGTGCCGCGG 1440<br />

Mura_cDNA ACCATCCACGGCCTCGCGACGATGCTCGCGGACATGTTCCCGGAGTACGACGTGCCGCGG 941<br />

Purple_cDNA ACCATCCACGGCCTCGCGACGATGCTCGCGGACATGTTCCCGGAGTACGACGTGCCGCGG 941<br />

JHN_DNA ACCATCCACGGCCTCGCGACGATGCTCGCGGACATGTTCCCGGAGTACGACGTGCCGCGG 1438<br />

#3_DNA ACCATTCACGGCCTTGGAACAATGTTTGGGGACATGTTCCCGGAGTACAACGTGCCGGGG 1438<br />

***** ******** * ** *** * * ******************* ******** **<br />

KDML105_DNA AGCTTT-CCCGGGATCGACGCCGACCACCTCCAGCCGGTGCACTTCTCGTCGTGGAAGCT 1497<br />

BW1_DNA AGCTTT-CCCGGGATCGACGCCGACCACCTCCAGCCGGTGCACTTCTCGTCGTGGAAGCT 1498<br />

Mura_DNA AGCTTT-CCCGGGATCGACGCCGACCACCTCCAGCCGGTGCACTTCTCGTCGTGGAAGCT 1499<br />

Nip_DNA AGCTTT-CCCGGGATCGACGCCGACCACCTCCAGCCGGTGCACTTCTCGTCGTGGAAGCT 1499<br />

Mura_cDNA AGCTTT-CCCGGGATCGACGCCGACCACCTCCAGCCGGTGCACTTCTCGTCGTGGAAGCT 1000<br />

Purple_cDNA AGCTTT-CCCGGGATCGACGCCGACCACCTCCAGCCGGTGCACTTCTCGTCGTGGAAGCT 1000<br />

JHN_DNA AGCTTT-CCCGGGATCGACGCCGACCACCTCCAGCCGGTGCACTTCTCGTCGTGGAAGCT 1497<br />

#3_DNA AGCTTTTCCCGGGATCGACGCCGACCCCCTCCAGCCGGGGCATTTTTGGTGGGGGAAGCT 1498<br />

****** ******************* *********** *** ** * ** * *******<br />

KDML105_DNA CCTCGCCCACGGGTTCAGGTTCAGGTACACGCTGGAGGACATGTTCGAGGCCGCCGTCCG 1557<br />

BW1_DNA CCTCGCCCACGGGTTCAGGTTCAGGTACACGCTGGAGGACATGTTCGAGGCCGCCGTCCG 1558<br />

Mura_DNA CCTCGCCCACGGGTTCAGGTTCAGGTACACGCTGGAGGACATGTTCGAGGCCGCCGTCCG 1559<br />

Nip_DNA CCTCGCCCACGGGTTCAGGTTCAGGTACACGCTGGAGGACATGTTCGAGGCCGCCGTCCG 1559<br />

Mura_cDNA CCTCGCCCACGGGTTCAGGTTCAGGTACACGCTGGAGGACATGTTCGAGGCCGCCGTCCG 1060<br />

Purple_cDNA CCTCGCCCACGGGTTCAGGTTCAGGTACACGCTGGAGGACATGTTCGAGGCCGCCGTCCG 1060<br />

JHN_DNA CCTCGCCCACGGGTTCAGGTTCAGGTACACGCTGGAGGACATGTTCGAGGCCGCCGTCCG 1557<br />

#3_DNA CCTCGCCCACGGGTTCAGGTTCAGGTACACGCTGGAGGACATGTTCGAGGCCGCCGTCCG 1558<br />

************************************************************<br />

KDML105_DNA GACGTGCAGGGAGAAGGGGCTTCTCCCGCCGCTGCCGCCACCGCCGACGACGGCCGTGGC 1617<br />

BW1_DNA GACGTGCAGGGAGAAGGGGCTTCTCCCGCCGCTGCCGCCACCGCCGACGACGGCCGTGGC 1618<br />

Mura_DNA GACGTGCAGGGAGAAGGGGCTTCTCCCGCCGCTGCCGCCACCGCCGACGACGGCCGTGGC 1619<br />

Nip_DNA GACGTGCAGGGAGAAGGGGCTTCTCCCGCCGCTGCCGCCACCGCCGACGACGGCCGTGGC 1619<br />

Mura_cDNA GACGTGCAGGGAGAAGGGGCTTCTCCCGCCGCTGCCGCCACCGCCGACGACGGCCGTGGC 1120<br />

Purple_cDNA GACGTGCAGGGAGAAGGGGCTTCTCCCGCCGCTGCCGCCACCGCCGACGACGGCCGTGGC 1120<br />

JHN_DNA GACGTGCAGGGAGAAGGGGCTTCTCCCGCCGCTGCCGCCACCGCCGACGACGGCCGTGGC 1617<br />

#3_DNA GACGTGCAGGGAGAAGGGGCTTCTCCCGCCGCTGCCGCCACCGCCGACGACGGCCGTGGC 1618<br />

************************************************************<br />

62


KDML105_DNA CGGAGGAGACGACTCGGCGGGTGTGGCCGGCGAAAAGGAACCGATACTGGGGAGGGGGAC 1677<br />

BW1_DNA CGGAGGAGACGGCTCGGCGGGTGTGGCCGGCGAAAAGGAACCGATACTGGGGAGGGGGAC 1678<br />

Mura_DNA CGGAGGAGACGGCTCGGCGGGTGTGGCCGGCGAGAAGGAACCGATACTGGGGAGGGGGAC 1679<br />

Nip_DNA CGGAGGAGACGGCTCGGCGGGTGTGGCCGGCGAGAAGGAACCGATACTGGGGAGGGGGAC 1679<br />

Mura_cDNA CGGAGGAGACGGCTCGGCGGGTGTGGCCGGCGAGAAGGAACCGATACTGGGGAGGGGGAC 1180<br />

Purple_cDNA CGGAGGAGACGGCTCGGCGGGTGTGGCCGGCGAGAAGGAACCGATACTGGGGAGGGGGAC 1180<br />

JHN_DNA CGGAGGAGACGGCTCGACAGGTGTGGCCGGCGAGAAGGAACCGA-ATTGGGGAGGGGGAC 1676<br />

#3_DNA CGGAGGAGACGGCTCGGCGGGTGTGACCGGCGAGAAGGAACCGATACTGGGGAGGGGGAC 1678<br />

*********** **** * ****** ******* ********** * *************<br />

KDML105_DNA CGGGACGGCGGTTGGTGCTGAAACAGAAGCGTTGGTCAAATGAGAGTTGATTAGACTGTC 1737<br />

BW1_DNA CGGGACGGCGGTTGGTGCTGAAACAGAAGCGTTGGTCAAATGGGTGTTGACTAGACTGTC 1738<br />

Mura_DNA CGGGACGGCGGTTGGTGCTGAAACAGAAGCGTTGGTCAAATGAGTGTTGACTAGTGAGTC 1739<br />

Nip_DNA CGGGACGGCGGTTGGTGCTGAAACAGAAGCGTTGGTCAAATGAGTGTTGACTAGTGAGTC 1739<br />

Mura_cDNA CGGGACGGCGGTTGGTGCTGAAACAGAAGCGTTGGTCAAATGAGTGTTGACTAGTGAGTC 1240<br />

Purple_cDNA CGGGACGGCGGTTGGTGCTGAAACAGAAGCGTTGGTCAAATGAGTGTTGACTAGTGAGTC 1240<br />

JHN_DNA CGGGACGGCGGTTGGTGCTGAAACAGAAGCGTTGGTCAAATGAGTGTTGACACGTGAGTC 1736<br />

#3_DNA CGGGACGGCGGTTGGTGCTGAAACAGAAGCGTTGGTCGGATGAGTGTTGACACGTGAGTC 1738<br />

************************************* *** * ***** * ***<br />

KDML105_DNA CAGAGAACGGTATTGAAATTGATCGTGTTTCGCTGCTCCTAGCCTCGTTGGCTTCG-CTA 1796<br />

BW1_DNA CAGAGAACGGTATTGAAATTGATCGTGTTTCGCTGCGCCTAGACTCGTTGGCCTCGTCTA 1798<br />

Mura_DNA CAGAGAACGGTATTGAAATTGATCGTGTTTCGCTGCTCCTTGCCTCGTTGGCTTCGTCTA 1799<br />

Nip_DNA CAGAGAACGGTATTGAAATTGATCGTGTTTCGCTGCTCCTTGCCTCGTTGGCTTCGTCTA 1799<br />

Mura_cDNA CAGAGAACGGTATTGAAATTGATCGTGTTTCGCTGCTCCTTGCCTCGTTGGCTTCGTCTA 1300<br />

Purple_cDNA CAGAGAACGGTATTGAAATTGATCGTGTTTCGCTGCGCCTTGCCTCGTTGGCTTCGTCTA 1300<br />

JHN_DNA CAGAGAACGGTATTGAAATTGATCGTGTTTCGTGGCGACT-GCCTCGT-GGCTTCGTCTA 1794<br />

#3_DNA CAGAGAACGGTATTGAAATTGATCGTGTTTCGCTGCGCCTTGTCTAGTTGGCTTCCTCTA 1798<br />

******************************** ** ** * ** ** *** ** ***<br />

KDML105_DNA TTT-ACAATGCGAGATTTGGAATAAATCAGAGCGGTTAATCCTGTAAGTTCATATGTAAC 1855<br />

BW1_DNA TTT-ACAATGCGAGATTTGGAATAAATCAGAGCGGTTAATCCTGTAAGTTCATATGTAAC 1857<br />

Mura_DNA TTTCACAATGCGAGATTTGGAATAAATCAGAGCGGTTAATCCTGTAAGTTCATATGTAAC 1859<br />

Nip_DNA TTTCACAATGCGAGATTTGGAATAAATCAGAGCGGTTAATCCTGTAAGTTCATATGTAAC 1859<br />

Mura_cDNA TTTCACAATGCGAGATTTGGAATAAATCAGAGCGGTTAATCCTGTAAGTTCATATGTAAC 1360<br />

Purple_cDNA TTTCACAATGCGAGATTTGGAATAAATCAGAGCGGTTAATCCTGTAAGTTCATATGTAAC 1360<br />

JHN_DNA TTT-ACAATGCGAGATTTGGAATAAATCAGAGCGGTTAATCCTGTAAGATCATATGTAAC 1853<br />

#3_DNA TTTCACAATGCGAGATTTGGAATAAATCAGAGCGGTTAATCCTGTAAGTTCATATGTAAC 1858<br />

*** ******************************************** ***********<br />

KDML105_DNA GTACCCATTTGATTTTTTATTGGTTACATATGGTTACTCCCTCCGGTTTCATTTTAATTG 1915<br />

BW1_DNA GTACCCATTTGATTTTTTATTGGTTACATATGGTTACTCCCTCCGGTTTCATTTTAATTG 1917<br />

Mura_DNA GTACCCATTTGATTTTTTATTGGTTACATATGGTTACTCCCTCCGGTTTCATTTTAATTG 1919<br />

Nip_DNA GTACCCATTTGATTTTTTATTGGTTACATATGGTTACTCCCTCCGGTTTCATTTTAATTG 1919<br />

Mura_cDNA GTACCCATTTGATTTTTTATTGGTTACATATGGTTACTCCCTCCGGTTTCATTTTAATTG 1420<br />

Purple_cDNA GTACCCATTTGATTTTTTATTGGTTACATATGGTTACTCCCAAAAAAAAAAAAAAAAAAA 1420<br />

JHN_DNA GTACCCATTGGATTTTTTATTGGTTACATATGGTTACTCCCTCCGGTTTCATTTTAATTG 1913<br />

#3_DNA GTACCCATTTGATTTTTTATTGGGTACATATGGTTACTCCCTCCGGTTTCATTTTAATTG 1918<br />

********* ************* ***************** * **<br />

KDML105_DNA ACACTTTAAACAATAATACGCTTTACAAGATATACCTTTGACCTTATTTTTCTATTATAA 1975<br />

BW1_DNA ACACTTTGAACAATAATACGCTTTACAAGATATATCTTTGACCTTATTTTTCTATTATAA 1977<br />

Mura_DNA ACACTTTGAACAATAATACGTTTTACAAGATATACCTTTGACTTTATTTTTCTATTATAA 1979<br />

Nip_DNA ACACTTTGAACAATAATACGTTTTACAAGATATACCTTTGACTTTATTTTTCTATTATAA 1979<br />

Mura_cDNA ACACTTTGAACAATAATACGTTTTACAAGATATACCTTTGACTTTAAAAAAAAAAAAAAA 1480<br />

Purple_cDNA AA---------------------------------------------------------- 1422<br />

JHN_DNA ACACTTTGAACAATAATACGCTTTACAAGATATATCTTTGACCTTATTTTTCTATTATAA 1973<br />

#3_DNA ACACTTTGAACAATAATACGCTTTACAAGATATATCTTTGACCTTATTTTTCTATTATAA 1978<br />

*<br />

KDML105_DNA TATATACAATAAATAAATGCATGTT 2000<br />

BW1_DNA TATATACAATAAATAAATATATGTT 2002<br />

Mura_DNA TATATACAATAAATAAATGCATGTT 2004<br />

Nip_DNA TATATACAATAAATAAATGCATGTT 2004<br />

Mura_cDNA -------------------------<br />

Purple_cDNA -------------------------<br />

JHN_DNA TATATACAATAAATAAATATATGTT 1998<br />

#3_DNA TATATACAATAAATAAATATATGTT 2003<br />

63


Cultivated Rice shown in CLUSTAL W (1.82)<br />

KDML105 = Khao Dawk Mali 105<br />

BW1 = Jao Hom Nin mutant 1<br />

Mura = Murasaki<br />

Nip = Nipponbare<br />

Purple = Purple Puttu<br />

JNN = Jao Hom Nin<br />

#3 = Jao Hom Nin number 3<br />

64

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!