17.08.2013 Views

ST7 Biomechanics

ST7 Biomechanics

ST7 Biomechanics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ST7</strong> <strong>Biomechanics</strong><br />

- measurement tt technique h i and dsignal i lprocessing i<br />

Aim: to give the student knowledge and understanding of the technology used for<br />

recording and processing and biomechanical signals, and provide skills to use this<br />

knowledge for two- two and three dimensional recording of human movements movements.<br />

Additionally it is the aim to give the student an understanding of the<br />

anatomical/physiological interpretation of biomechanical signals.<br />

Content:<br />

- Sensor types and sensor technology for recording of biomechanical signals<br />

- Methods e ods for o processing p ocess g of o biomechanical b o ec c signals s g s<br />

- 3D kinematics and kinetics<br />

- Kinesiological EMG<br />

- Mechanical efficiency<br />

- Experimental methodology in connection with analysis of human movement<br />

- Practical data collection and analysis<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 1


<strong>ST7</strong> <strong>Biomechanics</strong><br />

- measurement technique and signal processing<br />

Topics – Kinematics – 2D and 3D<br />

• Some historical aspects<br />

• Recording of kinematic signals<br />

• Determination of marker positions<br />

– di direct li linear transformation f i (DLT)<br />

– error in determination of marker positions<br />

• Removal of noise in kinematic signals<br />

– filtering<br />

– determination of cutoff frequency for filtering<br />

• Filtering end effects<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 2


<strong>ST7</strong> <strong>Biomechanics</strong><br />

- measurement technique and signal processing<br />

http://www.hst.aau.dk/~mv/<strong>ST7</strong>_BMsig/<br />

Li Literature:<br />

- <strong>Biomechanics</strong> of the musculo-skeletal system, 2nd ed. editors Nigg,<br />

BM and Herzog W, Wiley 1999.<br />

-<strong>Biomechanics</strong> <strong>Biomechanics</strong> and control of mo movement ement 2nd ed ed. D.A. D A Winter Winter, Wiley- Wile<br />

Inter science Publications 1990<br />

Web resources: http://www http://www.isbweb.org/ isbweb org/<br />

Discussion forum: Biomech-L<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 3


Eadweard Muybridge (1830 – 1904)<br />

• ‘The father of cinematography’<br />

See e.g. http://www.muybridge.nl<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 4


Eadweard dwe d Muybridge uyb dge (1830 ( – 1904) )<br />

- Edward Muybridge, English by birth, immigrates to America in 1851.<br />

In the 1860s he photographs the landscape of the West. In the spring of<br />

1872 Leland Stanford invites him to photograph his horses. Stanford, set<br />

on developing the greatest racing stable in the West, uses every<br />

scientific research to reach his goal. At the time there is disagreement<br />

about whether or not all feet leave the ground at one time during the<br />

gallop.<br />

- In June 1878 six successful series are published on cards as “The<br />

horse in motion." It clearly shows the different stages of the horse's legs<br />

during the run, walk, trot and gallop. For this series Muybridge used 12<br />

cameras and does not use threads but a clockwork to trigger the<br />

sequence of shutters.<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 5


Eadweard Muybridge (1830 – 1904)<br />

- Kinematics of<br />

animal motion<br />

(parrot)<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 6


Eadweard Muybridge (1830 – 1904)<br />

- Kinematics of human performance (one legged jump)<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 7


Kinematics e cs – measurement techniques q<br />

• AAccelerometry l t<br />

• Potentiometers, flexible wire goniometers<br />

(angular information alone)<br />

• Chronocyclography<br />

• Light emitting diodes<br />

• St Stroboscopes b<br />

• Active markers<br />

• Magnetic systems<br />

• Motion film cameras and skin marker<br />

• Video cameras and skin markers<br />

• Video cameras + reflective skin markers<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 8


Accelerometry<br />

Mode of operation<br />

Uni axial – multi axial<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 9


Goniometry<br />

- Potentiometers (3 degrees of freedom (DOF))<br />

- The depicted type require no information about the position the of axes of<br />

rotations of the joint on which it is mounted<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 10


Goniometry<br />

- Flexible wire goniometers (2 DOF)<br />

- strain gauge technology<br />

The flexible wire<br />

Embedded electronics<br />

- htt http://www.biometricsltd.com // bi t i ltd - Cross-section of the flexible wire<br />

Resistances<br />

channel 2, 2 half bridge<br />

wire<br />

Resistances<br />

Channel 1, half bridge<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 11


Goniometry + foot switches – an example application<br />

- Application of flexible wire<br />

goniometers:<br />

Measurement of foot kinematics<br />

- Calcaneal angle in the frontal<br />

plane<br />

- Changes in navicular height<br />

Ref. file : MK030821002<br />

Data file : MK030821005<br />

blue line = average of 10 steps<br />

red line = + +- 1SD 1 SD<br />

calcaneus, frontal plane NB! for all goniometer channels: 0 = standing<br />

30<br />

positive = inversion/supination<br />

20<br />

10<br />

Mean 10.2<br />

Min -0.1<br />

Max 23 23.1 1<br />

+- 0.6 deg<br />

+- 0.7 deg<br />

+ +- 22.1 1 deg<br />

[deg]<br />

[cm]<br />

[V]<br />

0<br />

Calcaneus reference angle = 0 deg<br />

-10<br />

0<br />

navicular<br />

10<br />

heigth g<br />

20 30 40 50 60 70 80 90 100<br />

65<br />

dNavH stance = -3.7+- 0.7 mm<br />

dNavH total = 9.3 +- 0.4 mm<br />

mean NavH = 58.3 +- 0.3 mm<br />

NavH ref = 56 mm<br />

60<br />

55<br />

0 10 20 30 40 50 60 70 80 90 100<br />

10 footswitch<br />

8<br />

6<br />

4<br />

2<br />

Phases: heel,flat heel flat foot, foot forefoot/toe, forefoot/toe swing<br />

Cyclus time = 962 +- 8 ms<br />

Step freq = 1.04 +- 0.01 Hz<br />

Heel = 8 +- 1 % cyclus<br />

Flatfoot = 25 +- 1 % cyclus<br />

Forefoot = 57 +- 1 % cyclus<br />

0 10 20 30 40 50 60 70 80 90 100<br />

0<br />

gait cycle [%]<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 12


Chronocyclography<br />

C o ocyc og p y<br />

Chronocyclograph (approx. 100 Hz)<br />

- Shoulder and hand movement<br />

during gright g hand straight g ppunch<br />

- light source mounted on the<br />

shoulder and the hand<br />

(MV master thesis 1987)<br />

-setup<br />

- recording<br />

max. velocity<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 13


Light g emitting e g diodes d odes<br />

Weight lifting : clean & jerk technique<br />

+ flash 2. -flash<br />

44.<br />

1.<br />

55.<br />

3.<br />

- Still picture camera with open<br />

shutter<br />

- Flash<br />

- 50 Hz light emitting diodes<br />

mounted on the end of the<br />

barbell and on the floor<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 14


Stroboscopes<br />

S oboscopes<br />

- for quantitative measurements<br />

See e.g.<br />

http://www.elmed-stroboscopes.com/<br />

- for illustrative purposes<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 15


Motion o o film cameras c e s – intermittent pin p<br />

light : 8 kW !<br />

16 mm film 500 frs s-1 16 mm film, 500 frs s<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 16


Motion o o film cameras c e s – rotating gpprism<br />

For high speed cinematography products see e.g.<br />

http://www http://www.photosonics.com/<br />

photosonics com/<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 17


Motion o o film technology ec o ogy – film digitization g<br />

Manual:<br />

- PProjection j ti of f each h picture i t frame f onto t a digitizing di iti i<br />

tablet and manual digitization (custom made setup)<br />

Semi automatic:<br />

- Contrast enhanced field of view<br />

dduring i the h recording di<br />

- Frame-by- frame transfer of film to<br />

video (ElmoTM TRV-166)<br />

- Automatic tracking in video pictures<br />

bby PPeak k PPerformance f TTechnologies h l i TM<br />

motion capture system software<br />

http://www.peakperform.com<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 18


Magnetic sensors and systems<br />

11. Th They measure roll, ll pitch it h and d yaw and d X,Y,Z X YZ<br />

positions of segments<br />

2. Electromagnetic induction<br />

3. The transmitter is a triad of electromagnetic g<br />

coils, that emits the magnetic fields. The<br />

transmitter is the system’s reference frame.<br />

4. The receiver is a small triad of<br />

electromagnetic l t ti coils, il that th t detects d t t the th<br />

magnetic field emitted by the transmitter and<br />

the position and orientation is measured as<br />

the receiver is moved<br />

Positive: The body is ‘transparent’, real time<br />

recording<br />

NNegative: ti Obtrusive, Obt i rather th low l accuracy,<br />

sensitive to ferro-magnetic objects<br />

Fasttrack (120 Hz max.)<br />

h http://www.polhemus.com<br />

// lh<br />

Other systems:<br />

Flock of birds TM<br />

http://www.ascension-tech.com/<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 19


Optoelectronic systems<br />

– with active markers<br />

Optotrack PolarisTM Optotrack Polaris<br />

1. Markers consists of light emitting diodes<br />

(LED’s). ( )<br />

2. Up to three marker clusters.<br />

3. Time multiplexing for the markers 450 Hz<br />

or 750 Hz.<br />

44. PPower tto th the markers k is i provided id d through th h<br />

cables!<br />

5. No tracking – real time recording<br />

6. Very yhigh g accuracy y( (0.1 mm X,Y) , ) and 0.15<br />

mm (Z, depth). http://www.ndidigital.com<br />

Other (older) systems:<br />

Watsmart TM<br />

Selspot II TM<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 20


Video technology<br />

– with reflective markers and automatic detection<br />

1. Reflective markers are mounted on the target<br />

object.<br />

2. The camera emits infrared (IR) flashes from IR-<br />

diodes synchronized with the camera shutter. shutter<br />

3. In each ‘picture frame’ the camera records the<br />

reflected IR-light from the markers over a period<br />

determined by the shutter speed.<br />

4. The picture information is lost and only the bright<br />

spots corresponding to reflected light from the<br />

markers are ‘seen’ by the cameras.<br />

55. The video pictures are digitized. digitized<br />

6. The firmware in the cameras identifies the bright<br />

pixel clusters corresponding to the marker<br />

reflections and calculates the x-y coordinates of<br />

the centroid.<br />

7. The 2D camera coordinates are sent to a PC<br />

through a high speed serial connection. For further<br />

processing<br />

ProReflex cameras (1 1000 frs s )<br />

- ProReflex cameras (1 – 1000 frs s -1 )<br />

http://www.qualisys.se<br />

Other manufacturers:<br />

Vicon TM (http://www.oxfordmetrics.com)<br />

( p )<br />

Motion Analysis TM Corp.<br />

(http://motionanalysis.com)<br />

Elite TM (http://www.bts.it)<br />

Peak Performance TechnologiesTM processing. Peak Performance TechnologiesTM (http://www.peakperform.com)<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 21


Determination of marker positions in 3D<br />

- issues of accuracy<br />

• Accuracy of the calibration frame<br />

• Quality of the DLT reconstruction<br />

• Quality of the lenses<br />

• Deformation of the film in the image plane<br />

• Resolution of the light sensitive chip<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 22


Determination of marker positions in 3D<br />

- di direct t linear li transformation<br />

t f ti<br />

- provides a linear relationship between two dimensional coordinates (x,y) of<br />

a marker i = (1,…..,m), the cameras (n cameras (1,….,j)) and the coordinates<br />

on the film and its location in the three dimensional space.<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 23


Determination of marker positions in 3D<br />

- direct linear transformation<br />

- A calibration lib ti of f N points i t with ith known k coordinates di t xr,yr,zr ( (r = 1,….,N) 1 N) iis<br />

used for determination of coefficients akj for each camera<br />

- 11 coefficients have to be determined<br />

- each camera is described by two equations<br />

- as long as a minimum of two cameras are used<br />

6 calibration points gives therefore 12 equations<br />

- the over-determined over determined of system of linear equations is solved by least<br />

squares technique<br />

- the solution is not unique since the measurements<br />

are not perfect and the solution is approximated<br />

by minimizing errors (∆j) i.e. the ‘norm of residuals’<br />

(NR) ( ) defined as:<br />

(N=12)<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 24


Marker positions<br />

- potential sources of error<br />

• Errors implicit in the direct linear<br />

transformation<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 25


Determination of marker positions in 3D<br />

- lens correction<br />

Correction term in the DLT<br />

Calc.<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 26


Determination of marker positions in 3D<br />

- potential sources of error<br />

• errors due to relative camera placement<br />

- cameras should be placed at<br />

angle near 90o and not less than<br />

60o 60<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 27


Errors in rigid body motion<br />

-using i markers k<br />

- marker movement (skin ( mounted markers) )<br />

- errors due to relative marker movement<br />

(movement of markers in relative to each other)<br />

- can be solved by using marker attachment systems/frames<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 28


Errors in rigid body motion<br />

-using i markers k<br />

- absolute marker movement<br />

(movement ( of markers in relation<br />

to anatomical landmarks)<br />

- can bbe solved l db by using i bone b<br />

fixed markers<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 29


Using bone mounted markers<br />

- for more accurate kinematics<br />

KK-wires i 2 mm diam. di<br />

Marker cluster<br />

(19 mm reflective<br />

markers)<br />

Insertion pin p<br />

(tibia, calcaneus)<br />

Insertion pin<br />

(navicula)<br />

90 deg adapter<br />

(navicula)<br />

Calcaneus<br />

PPoint i tof fi insertion ti<br />

(navicula) - Ready to go<br />

Local anaesthesia<br />

(calcaneus)<br />

X-ray guided insertion<br />

Insertion depth 20-25 mm<br />

Tibia<br />

Navicula<br />

(Voigt, Christensen and Simonsen XX ISB Conference 2005 )<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 30<br />

30


Sampling S p g frequency eque cy<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 31


Kinematic e cs signals g s<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 32


Kinematic e cs signals g s – and noise<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 33


Kinematics e cs – effects of high g frequent q noise<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 34


Kinematic e cs signals g s – smoothing gtechniques q<br />

e.g.<br />

• least squares polynomial fitting<br />

• spline interpolation<br />

• filtering<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 35


Kinematics e cs – smoothing gtechniques q<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 36


Kinematic e cs signals g s – filtering gand cut off frequency q y<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 37


Kinematics e cs – smoothing gtechniques q<br />

• for most applications a 2nd order digital Butterworth filter,<br />

performed f d bidirectionally bidi i ll has h proven to be b adequate. d The Th procedure d<br />

gives a ’zerolag 4th order Butterworth filter’<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 38


Kinematics e cs – smoothing gtechniques q<br />

• determination of the cutoff frequency for the filter<br />

– Frequency analysis (Fast Fourier Transform)<br />

– A residual analysis<br />

filtering frequency<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 39


Kinematics e cs – calculation of velocity y and acceleration<br />

- velocity<br />

- acceleration<br />

or<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 40


Segment Seg e and d Jo Joint angles g es – 2D<br />

Segment angles:<br />

- in relation to horizontal<br />

- counter clockwise = positive<br />

Joint angles: e.g.<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 41


Opgaver pg<br />

1. Signalfil : DJ_toe_marker.txt, en manuelt digitaliseret 2D-koordinat (i m) af 5. metatarsalled<br />

filmet med mekanisk filmkamera med 500 Hz i sagittalplanet.<br />

- implementer en Matlab-funktion, der filtrerer med et 4. ordens Butterworth filter med en cut off<br />

frekvens på 6 Hz og g plot signalet g for den filtrerede y-koordinat y ovenpå det rå signal g for samme<br />

koordinat. Bemærk forskellen mellem det rå og det filtrerede signal i ved slutningen af signalet<br />

for y-koordinaten. Hvad skyldes denne forskel.<br />

- Lav en Matlab – rutine der løser dette problem med ’end effects’.<br />

- Giv et kvalificeret bud på hvilken cutoff frekvens, der skal bruges til filtrering af signalerne for<br />

hhv hhv. x og y koordinaterne<br />

koordinaterne.<br />

- Hvorledes vil du afgøre om de cutoff frekvenser du har valgt er i orden m.h.t. til videre<br />

kinematisk analyse?<br />

2. Signalfil g : kdat.mat, , 3D-koordinater af markører ø på p venstre ben under et fodboldspark p (optaget ( p g med<br />

ProReflex med 240 Hz, angivet i mm). (m-fil (kick_input.m) medfølger med beskrivelse af<br />

koordinaterne i datafilen (kin_dat.mat). XZ-planet svarer til sagittal planet. Signalerne er ikke<br />

filtrerede.<br />

- forsøg at tegne et såkaldt stick-diagram af bevægelse for at visualisere bevægelsen, der sparkes<br />

fra venstre måde højre)<br />

- beregn knævinklen i xz planet og udtryk den som anatomisk vinkel (0 grader er strakt ben og<br />

fleksion er positiv)<br />

- beregn hoftevinklen i xz- planet og udtryk den som anatomisk vinkel (0 grader er strakt ben og<br />

fleksion er<br />

- beregn knævinkel- og hoftevinkelhastigheder og plot dem i samme koordinatststem som<br />

funktion af tiden<br />

- Hvilke problemer kan der opstå når en hastighed beregnes simpelt med finite differences ( (x 1x<br />

2)/dt )?<br />

Data findes på http://www.hst.aau.dk/~mv/<strong>ST7</strong>_BMsig/Litt<br />

<strong>ST7</strong>_BM_Meas&Sign MM4,2010 42

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!