Slides (.pdf) - EPFL

Slides (.pdf) - EPFL Slides (.pdf) - EPFL

17.08.2013 Views

Demonstration of a novel PET concept Chiara Casella, ETH Zurich EPFL Lausanne, March 12 th 2012 . .

Demonstration of a<br />

novel PET concept<br />

Chiara Casella, ETH Zurich<br />

<strong>EPFL</strong> Lausanne, March 12 th 2012<br />

. .


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Outline<br />

AX-PET : AXial Positron Emission Tomography (PET)<br />

•Brief introduction about PET (Positron Emission Tomography)<br />

•Axial concept<br />

What is it ? Why?<br />

•AX-PET detector<br />

choice of the detector elements<br />

AX-PET modules<br />

“demonstrator” for a PET scanner<br />

•AX-PET detector performance<br />

from characterization measurements with 22-Na sources<br />

•Simulations<br />

•Tomographic image reconstruction<br />

description of the reconstruction methods<br />

measurements campaigns with phantoms and radiotracers<br />

reconstructed images<br />

•Perspectives<br />

preliminary results with Digital Si-PM as alternative photodetectors<br />

•Conclusions<br />

Chiara Casella, 12/3/2012 1


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

AX-PET in the context of HEP<br />

‣ Long tradition of using technologies from High Energy Physics into other fields,<br />

and particularly medical applications.<br />

‣ AX-PET : small size calorimeter, using scintillating crystals, WLS, photodetectors<br />

“borrowed” from HEP<br />

Selection of most relevant AX-PET papers :<br />

Novel Geometrical Concept of a High Performance Brain PET Scanner<br />

Principle, Design and Performance Estimates<br />

J. Seguinot et al, Nuovo Cimento C Vol 29, No 4, pp 429-463 (2006)<br />

High precision axial coordinate readout for an axial 3-D PET detector<br />

module using a wave length shifter strip matrix<br />

A. Braem et al, NIM A 580 (2007), 1513-1521<br />

Wavelength shifter strips and G-APD arrays for the read-out of the<br />

z-coordinate in axial PET modules<br />

A. Braem et al, NIM A 586 (2008), 300-308<br />

The AX-PETdemonstrator—Design, construction and characterization<br />

P. Beltrame et al, NIM A 654 (2011) 546-559<br />

The AX–PET Concept: New Developments And Tomographic Imaging<br />

P.Beltrame et al, 2011 IEEE NSS Conference Record MIC 22-5<br />

axial concept,<br />

HPD readout<br />

WLS strips<br />

G-APD as photodetectors<br />

Characterization<br />

& performance<br />

Tomographic images<br />

for more details : https://twiki.cern.ch/twiki/bin/view/AXIALPET/WebHome<br />

2


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Positron emission / annihilation<br />

‣ basis of the PET system Positron Emission :<br />

‣ β + decay of different radionuclides<br />

Radionuclide Half life Emax_e+(MeV)<br />

11 C 20.4 min 0,96<br />

15 O 122 sec 1,73<br />

18 F 109,8 min 0,63<br />

22 Na 2.6 years 0,55<br />

‣ Positron Annihilation :<br />

2 photons emitted<br />

‣“back - to - back”<br />

‣ Eγ = 511 keV<br />

Unstable<br />

parent<br />

nucleus<br />

p → n + e + + νe<br />

e + e − → γγ<br />

(Eγ = 511 keV )<br />

p → n + e + + νe<br />

e + e − → γγ<br />

(Eγ = 511 keV )<br />

positron<br />

annihilation<br />

positron emission<br />

Physics of the positron annihilation => fundamental limits to the spatial resolution of PET<br />

‣ Finite positron range (ρ)<br />

annihilation position ≠ emission point<br />

ρ depends on the energy of the positron (i.e. on the radioisotope)<br />

‣ Non-collinearity of the 2 photons<br />

residual momentum of the e+e- at the annihilation<br />

the 2 photons are emitted with a small deviation from 180˚ (Δθ ~ 0.5˚)<br />

blurring of the spatial resolution R_FWHM ~ 0.0022 x D [mm]<br />

3


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Positron Emission Tomography : General principles<br />

PET detector principle :<br />

coincidence of 2 photons of defined energy (511 keV) and emitted on the same line (“back to back”)<br />

(3)<br />

(2)<br />

(1)<br />

(5)<br />

(4)<br />

(1) Inject the radiotracer into the body<br />

(2) Wait for uptaking period<br />

(3) Start the acquisition (i.e. detection of coinc. events)<br />

(4) Feed the data into the reconstruction algorithms<br />

(5) image of the activity concentration<br />

‣ PET : “in-vivo” functional imaging technique<br />

‣ get a (quantitative) image of the radio-tracer concentration<br />

A.Del Guerra, CERN Academic Training 2009<br />

4


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Requirements for an ideal PET<br />

number of counts does matter !!!<br />

50000 counts 100000 counts 200000 counts 500000 counts 1M counts 2M counts<br />

‣ how to improve counting statistics ?<br />

‣ increase radio-tracer concentration<br />

‣ extend the scan duration time<br />

‣ OPTIMIZED DETECTOR SENSITIVITY<br />

( geometry / materials )<br />

‣ HIGH SPATIAL RESOLUTION (=> be able to resolve small structures)<br />

‣ GOOD TIMING RESOLUTION (small coincidence window => reduce random coincidences)<br />

‣ GOOD ENERGY RESOLUTION (=> reject scattering events in the body)<br />

A.Del Guerra, CERN Academic Training 2009<br />

5


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Requirements for an ideal PET<br />

number of counts does matter !!!<br />

2009<br />

Training Academic CERN Guerra,<br />

50000 counts 100000 counts 200000 counts 500000 counts 1M counts 2M counts A.Del<br />

‣ how to improve counting statistics ?<br />

‣ increase radio-tracer concentration<br />

‣ extend the scan duration time<br />

‣ OPTIMIZED DETECTOR SENSITIVITY<br />

( geometry / materials )<br />

‣ HIGH SPATIAL RESOLUTION (=> be able to resolve small structures)<br />

‣ GOOD TIMING RESOLUTION (small coincidence window => reduce random coincidences)<br />

‣ GOOD ENERGY RESOLUTION (=> reject scattering events in the body)<br />

5


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

δp<br />

High resolution vs high sensitivity<br />

in “conventional”<br />

PET scanners :<br />

θ<br />

‣ always a compromise between<br />

!"<br />

δp = L · sinθ<br />

‣ solution : add DOI (Depth Of Interaction) information<br />

‣ several attempts / different strategies<br />

scintillator based<br />

radial arrangement<br />

ɛ =1− e −µ·L max interaction efficiency,<br />

long L<br />

min parallax error<br />

- deterioration of the spat. resol.<br />

- non uniformity in the field of view<br />

short L<br />

‣ good spatial resolution (small L, small δp)<br />

‣ good detection efficiency (long L)<br />

6


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

DOI attempts :<br />

(a) multiple<br />

crystals/<br />

photodetector<br />

layers<br />

Conventional PET schemes<br />

(b) dual-ended<br />

photodetectors<br />

DOI from the ratio of<br />

the 2 PD responses<br />

only partial DOI information !<br />

(c) Phoswich design<br />

different types of<br />

crystals with diff decay<br />

times<br />

=> DOI from pulse<br />

shape discrimination<br />

(e) dual layer offset<br />

position.<br />

DOI from different light output<br />

profiles<br />

need a precise 3D identification of the photon interaction point<br />

(d) monolithic. Iterative stat.<br />

models with DOI from light output<br />

intensity and/or light spread profiles<br />

Peng, Levin - Current Pharmaceutical<br />

Biotechnology, 2010, Vol 11, No. 6<br />

7


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

The AXIAL concept<br />

AX-PET approach to the DOI problem : change the geometry !<br />

from radial ... ... to axial !<br />

‣ long and axially oriented crystals<br />

‣ DOI information = position of the hit crystal<br />

8


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

axial direction<br />

The detector concept<br />

(1) TRANSAXIAL COORDINATE (x,y)<br />

scintillator crystals<br />

- Transaxial coordinate: from position of the hit crystal<br />

- Transaxial resolution = d/√12 FWHM<br />

Y<br />

- To increase spatial resolution => Reduce crystals size (d)<br />

- To increase sensitivity => Add additional layers<br />

Z<br />

X<br />

d<br />

9


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

axial direction<br />

The detector concept<br />

(1) TRANSAXIAL COORDINATE (x,y)<br />

scintillator crystals<br />

- Transaxial coordinate: from position of the hit crystal<br />

- Transaxial resolution = d/√12 FWHM<br />

Y<br />

- To increase spatial resolution => Reduce crystals size (d)<br />

- To increase sensitivity => Add additional layers<br />

Z<br />

X<br />

d<br />

WLS (Wave Length Shifter) array<br />

w<br />

(2) AXIAL COORDINATE (z)<br />

scintillation<br />

process<br />

wls<br />

photodetector<br />

ʻescaping coneʼ<br />

(outside total<br />

internal reflection)<br />

crystal<br />

reflective Al<br />

coating<br />

- Axial coordinate : center of gravity method<br />

- Axial resolution < w<br />

Z<br />

9


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

axial direction<br />

The detector concept<br />

(1) TRANSAXIAL COORDINATE (x,y)<br />

scintillator crystals<br />

- Transaxial coordinate: from position of the hit crystal<br />

- Transaxial resolution = d/√12 FWHM<br />

Y<br />

- To increase spatial resolution => Reduce crystals size (d)<br />

- To increase sensitivity => Add additional layers<br />

Z<br />

X<br />

3D localization of the photon interaction point<br />

without compromising between spatial resolution and sensitivity<br />

d<br />

WLS (Wave Length Shifter) array<br />

w<br />

(2) AXIAL COORDINATE (z)<br />

scintillation<br />

process<br />

wls<br />

photodetector<br />

ʻescaping coneʼ<br />

(outside total<br />

internal reflection)<br />

Z<br />

crystal<br />

reflective Al<br />

coating<br />

- Axial coordinate : center of gravity method<br />

- Axial resolution < w<br />

9


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

AX-PET Collaboration<br />

10


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

AX-PET GOAL : PET demonstrator<br />

Goal of the AX-PET collaboration:<br />

Build and fully characterize a “demonstrator” for a PET<br />

scanner based on the axial concept. Assess its performances.<br />

Demonstrator =><br />

Two identical AX-PET modules, used in coincidence<br />

Characterization / Performance =><br />

- test each individual module in a dedicated setup<br />

- characterization in the coincidence setup<br />

- reconstruction of the images of extended objects<br />

- simulations<br />

11


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

detect photons, Eγ = 511 keV =><br />

bare scintillating crystals with escaping light =><br />

Detector choice: Scintillator<br />

• inorganic scintillator<br />

• high Z, high ρ<br />

• non hygroscopic<br />

• nude crystals (i.e. unwrapped, uncoated)<br />

• perfectly polished surfaces ; sharp edges<br />

LYSO crystals (Lu1.8Y0.2SiO5: Ce) Prelude 420 from Saint Gobain :<br />

ZLu = 71<br />

ZLu = 71<br />

176-Lu is a naturally radioactive β emitter:<br />

• lyso bars : 3 x 3 x 100 mm (A ~ 39 Bq/g; β-decay followed by a γ-cascade)<br />

useful for the calibration<br />

3 each<br />

• Al coated on the non-readout face (R ~ 80-85%)<br />

• measured : λ_opt = (412 ± 31) mm ; (ΔE/E)_intr = (8.3 ± 0.5) % FWHM , @511 keV<br />

12


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

• requirement : high absorption of the crystal<br />

scintillation photons (blue)<br />

• EJ-280-10x from Eljen Technology<br />

• blue to green WLS<br />

• highly doped (x10 higher dye concentration<br />

than standard) to maximize the absorption<br />

(absorption length _ blue light ~ 0.4 mm)<br />

• each WLS strip : 3 x 0.9 x 40 mm 3<br />

• decay time = 8.5 ns<br />

Detector choice: WLS strips<br />

• measurements : λ_opt = (188 ± 36) mm 4 cm<br />

photodetector side<br />

mirror coated side<br />

13


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

‣ newest frontier in photo-detection:<br />

‣ excellent photon counting capabilities<br />

Detector choice: Photodetectors<br />

‣ array of commonly biased APD used in Geiger mode<br />

‣ output : analogue sum of all the firing APD cells<br />

‣ high gain (10 5 to 10 6 ) at low bias V (~ 70 V)<br />

‣ advantages of a Si sensor:<br />

‣ high QE √<br />

‣ compactness √<br />

‣ insensitive to magnetic field (MRI comp.)<br />

‣ temperature dependent √<br />

‣ dark rate (~ 1 MHz @ thr = 0.5 pe)<br />

SiPM (Si photomultipliers)<br />

also called G-APD (Geiger-mode APD)<br />

also called MPPC (Multi Pixel Photon Counter) - from Hamamatsu<br />

√<br />

√<br />

√<br />

√<br />

for crystals for WLS<br />

~ 1000 pe ~ 10 - 50 pe<br />

MPPC S10362‐33‐050C :<br />

• 3x3 mm 2 ac(ve area<br />

• 50 μm x 50 μm pixel<br />

• 3600 pixels<br />

MPPC 3.22×1.19 Octagon‐SMD :<br />

• 1.2 x 3.2 mm 2 ac(ve area<br />

• 70 μm x 70 μm pixel<br />

• 782 pixels<br />

• custom made units<br />

AX-PET operational<br />

parameters<br />

14


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

LYSO crystals<br />

3 mm<br />

10 cm<br />

3.5 cm<br />

2.8 cm<br />

WLS<br />

The AX-PET module<br />

MODULE<br />

• 6 layers<br />

• 8 crystals / layer<br />

• 26 WLS / layer<br />

• 48 crystals + 156 WLS = 204 channels<br />

• staggering in the crystals layout to optimize photon interaction probability<br />

• optical separation between layers<br />

• each crystal and WLS strip individually coupled to its photodetector<br />

• crystals / WLS strips readout on alternate sides (to optimize packing density)<br />

15


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

The AXPET module<br />

16


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Individual analogue readout of MPPC output<br />

Custom designed DAQ system<br />

‣ fully analogue readout chain<br />

‣ not optimized at all for this specific<br />

application<br />

‣ Amplifiers: OPA486 (Lyso) / OPA487<br />

(WLS)<br />

‣ Fast energy sum for all the crystals in<br />

the module<br />

‣ VATA GP5 chip<br />

- 128 ch charge sensitive integrating<br />

- fast (~ 50ns shaper + discriminator) /<br />

slow (~ 250ns shaper) branches<br />

- sparse readout mode: only the<br />

channels above thr are multiplexed into<br />

the output<br />

‣ analogue info processed by custom made<br />

VME ADC<br />

Readout & DAQ<br />

17


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Individual analogue readout of MPPC output<br />

Custom designed DAQ system<br />

‣ fully analogue readout chain<br />

‣ not optimized at all for this specific<br />

application<br />

‣ Amplifiers: OPA486 (Lyso) / OPA487<br />

(WLS)<br />

‣ Fast energy sum for all the crystals in<br />

the module<br />

‣ VATA GP5 chip<br />

- 128 ch charge sensitive integrating<br />

- fast (~ 50ns shaper + discriminator) /<br />

slow (~ 250ns shaper) branches<br />

- sparse readout mode: only the<br />

channels above thr are multiplexed into<br />

the output<br />

‣ analogue info processed by custom made<br />

VME ADC<br />

Readout & DAQ<br />

17


PPC<br />

PPC<br />

intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

‣ analogue sum of the whole module<br />

(i.e. total energy over 48 crystals)<br />

Fast energy sum & Trigger<br />

‣ with a proper threshold choice (LL x HL X notHHL)<br />

=> select only events with 511 keV total<br />

energy deposition<br />

TRIGGER<br />

OPA486<br />

OPA486<br />

test<br />

! E (crystals only)<br />

test<br />

ΣE_Mod1<br />

! E (crystals only)<br />

MODULE1<br />

fast<br />

ΣE_Mod2<br />

LYSO SUM<br />

MODULE2<br />

LYSO SUM<br />

fast<br />

‘slow’<br />

VATAGP5 (128 ch.)<br />

‘slow’<br />

VATAGP5 (128 ch.)<br />

First estimate of the time resolution:<br />

•! measure delay of coincidence wrt Module2<br />

•! measurement from the scope [Lecroy Waverunner LT584 L 1GHz]<br />

S&H<br />

S&H<br />

Channels<br />

above threshold<br />

Analog Channels output:<br />

above Light threshold per<br />

crystal / WLS<br />

Analog output:<br />

Light per<br />

crystal / WLS<br />

LL<br />

HL<br />

HHL<br />

Mod 1, energy sum (scope measurement), 22 Na source<br />

TRIGGER = 2 modules<br />

- each one discriminated @ 511 keV energy sum<br />

- used in coincidence<br />

=> Selection of the good events<br />

18


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Compton scattering in the detector<br />

‣ fast energy sum & trigger<br />

‣ high granularity in the module<br />

‣ good energy resolution<br />

Compton scattering<br />

E1 + E2 = 511 keV<br />

if the event is :<br />

• correctly identifiable (e.g. Compt. kinematics)<br />

=> the event can be included in the reconstruction => improved sensitivity<br />

• ambiguous (1-2 OR 2-1 ?)<br />

=> the event is rejected => improved resolution<br />

}<br />

Compton scattering in the body<br />

Events killed by the trigger !<br />

Possibility to tag Compton scattered events<br />

in the detector<br />

“Inter-Crystal Scattering” events (ICS)<br />

E1 + E2 = 511 keV<br />

win - win situation !<br />

Esum = 511 keV Esum < 511 keV<br />

19


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

AX-PET inspired other developments<br />

COMPET :<br />

University of Oslo, Norway - E. Bolle et al.<br />

research project for a pre-clinical PET scanner with high sensitivity,<br />

high resolution. MRI compatible<br />

- no axial geometry<br />

- 3D reco of photon interaction point with LYSO + WLS + G-APD<br />

E. Bolle et al, NIM A 648(2011) S93-S95<br />

Tampere University (Finland) :<br />

build a small specific scanner based on AX-PET (toward possible commercialization...)<br />

Low cost planar detector for PET<br />

Triumph, Canada - F. Retiere et al.<br />

F. Retiere, NIM A (2011) doi:10.1016/j.nima.2011.12.084<br />

20


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

single module<br />

characterization<br />

Characterization measurements<br />

with point-like 22 Na source (diam = 0.25 mm, A~900 kBq) , @ CERN<br />

2-D<br />

moving<br />

station<br />

tagger<br />

PMT<br />

22Na source<br />

module<br />

- two different taggers<br />

- different distances tagger / source / module<br />

=> both uniform illumination of the module and precisely collimated beam spot<br />

module<br />

22Na source<br />

2-D<br />

moving<br />

station<br />

module<br />

characterization<br />

of modules<br />

in coincidence<br />

AX-PET performance:<br />

NIM A 654 (2011) 546-559<br />

1. Energy measurement / energy calibration => LYSO response<br />

2. Position measurement / spatial resolution => WLS response<br />

21


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

LYSO No. 21 - 22Na coinc. trigger<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Lu X-ray<br />

photopeak<br />

Compton<br />

0 100 200 300 400 500 600 700<br />

ADC counts<br />

typical energy spectrum of one LYSO inside the<br />

module :<br />

‣ photopeak (511 keV)<br />

‣ Compton continuum (0 - 340 keV)<br />

‣ Lu X-ray peak (~ 55 keV)<br />

LYSO energy response<br />

511 keV<br />

all events<br />

N_lyso = 1<br />

fit: gaussian<br />

55 keV<br />

511<br />

keV 511<br />

keV<br />

Light yield at 511 keV ~ 1000 pe<br />

(from independent calibration measurements)<br />

< 511 keV<br />

R_FWHM (@511 keV) [%]<br />

Energy resolution<br />

14<br />

13.5<br />

13<br />

12.5<br />

12<br />

11.5<br />

11<br />

10.5<br />

Energy resolution<br />

‣ from gaussian fit of the photopeak<br />

‣ AFTER ENERGY CALIBRATION<br />

Module 1<br />

Module 2<br />

10<br />

0 20 40 60 80 100<br />

LYSO_ID<br />

< R_FWHM > ~ 11.8% @511 keV<br />

(averaged on 96 LYSO crystals)<br />

22


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

LYSO energy calibration<br />

Photopeak + Intrinsic Lu radioactivity: very good tool for the energy calibration<br />

‣ LYSO contains Lu-176<br />

‣ A ~ 39 cps/g<br />

=> ~ 250 Bq / bar<br />

=> ~ 12 kHz / module<br />

LYSO No. 21 - 22Na coinc. trigger<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300 400 500 600 700<br />

LYSO No. 21 - intrinsic radioactivity<br />

[511 keV]<br />

ADC counts<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

with source,<br />

coincidence<br />

0 100 200 300 400 500 600 700<br />

[303 keV]<br />

ADC counts<br />

[55 keV]<br />

[202 keV]<br />

all events<br />

no source,<br />

internal trg.<br />

N_lyso = 1<br />

fit: gaussian<br />

Peak position [ADC counts]<br />

Energy Calibration ( LYSO No. 21)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

same procedure applied<br />

identically for every channel<br />

deviation from linearity<br />

(~ 5% effect)<br />

<br />

En(ADC) =E0 − a × ln 1 − ADC<br />

<br />

b<br />

0<br />

0 100 200 300 400 500<br />

Energy [ keV ]<br />

MPPC saturation. Due to:<br />

- limited nr of cells in the MPPC (3200)<br />

- important light yield in the scintillator (~1000).<br />

23


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

WLS response<br />

typical integrated raw spectra of few WLS strips<br />

• beam spot collimated at the center of the module (WLS 13)<br />

• 511 keV energy deposition in the LYSO<br />

Collimated beam spot, WLS response<br />

1800 WLS Nr. 13 (central)<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

WLS Nr. 14 (side)<br />

WLS Nr. 24 (peripheral)<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

ADC counts<br />

• more than1 WLS participate to the event (typically 2-4)<br />

• noise should not be included<br />

WLS cluster: Summed ADC counts<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

ADC counts<br />

Light yield in WLS cluster ~ 100 pe<br />

@511 keV LYSO energy deposition<br />

(from independent calibration measurements: 1pe ~ 4 ADC)<br />

axial coordinate :<br />

derived from center of gravity method<br />

from all the WLS participating to the cluster<br />

cluster<br />

noise<br />

24


layer1<br />

clustPPLayCutsum_Zmm_lay1<br />

Z c.grav. in layer 1 (PPeak samelay 1!cutsum)<br />

Entries 4032<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Mean 48.4<br />

RMS 3.356<br />

2<br />

! / ndf 253.2 / 10<br />

Prob 0<br />

p0 304.8 ± 7.5<br />

p1 48.13 ± 0.06<br />

p2 2.213 ± 0.066<br />

35 40 45 50 55 60<br />

z [mm]<br />

clustPPLayCutsum_Zmm_lay4<br />

Z c.grav. in layer 4 (PPeak samelay 1!cutsum)<br />

Entries 9623<br />

Mean 48.08<br />

RMS 2.868<br />

2<br />

! / ndf 10.71 / 7<br />

Prob 0.152<br />

p0 1056 ± 16.9<br />

p1 47.91 ± 0.02<br />

p2 1.501 ± 0.026<br />

35 40 45 50 55 60<br />

z [mm]<br />

layer2<br />

layer4 layer5<br />

z coordinate (COG) :<br />

clustPPLayCutsum_Zmm_lay2<br />

Z c.grav. in layer 2 (PPeak samelay 1!cutsum)<br />

Entries 5716<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Mean 48.47<br />

RMS 3.017<br />

2<br />

! / ndf 17.16 / 8<br />

Prob 0.02848<br />

p0 561.3 ± 11.8<br />

p1 48.4 ± 0.0<br />

p2 1.744 ± 0.043<br />

35 40 45 50 55 60<br />

z [mm]<br />

clustPPLayCutsum_Zmm_lay5<br />

Z c.grav. in layer 5 (PPeak samelay 1!cutsum)<br />

Entries 10762<br />

Mean 48.32<br />

RMS 3.37<br />

2<br />

! / ndf 30.27 / 6<br />

Prob 3.489e-05<br />

p0 1218 ± 19.0<br />

p1 48.24 ± 0.02<br />

p2 -1.391 ± 0.024<br />

35 40 45 50 55 60<br />

z [mm]<br />

layer3<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Axial spatial resolution<br />

clustPPLayCutsum_Zmm_lay3<br />

Z c.grav. in layer 3 (PPeak samelay 1!cutsum)<br />

900<br />

Entries<br />

Mean<br />

7442<br />

48.36<br />

800<br />

RMS<br />

2<br />

! / ndf<br />

3.099<br />

73.49 / 8<br />

700<br />

Prob<br />

p0<br />

9.906e-13<br />

765.8 ± 13.9<br />

600<br />

p1 48.17 ± 0.03<br />

p2 1.587 ± 0.029<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

35 40 45 50 55 60<br />

z [mm]<br />

layer6<br />

clustPPLayCutsum_Zmm_lay6<br />

Z c.grav. in layer 6 (PPeak samelay 1!cutsum)<br />

Entries 17215<br />

each measured σz includes :<br />

• intrinsic spatial resolution<br />

• positron range (ρ ~ 0.54 mm)<br />

• non collinearity (÷d)<br />

• beam divergency (÷d)<br />

• (source dimensions; ø=250μm)<br />

Mean 48.08<br />

RMS 3.356<br />

2<br />

! / ndf 39.68 / 3<br />

Prob 1.248e-08<br />

p0 2854 ± 36.7<br />

p1 48.07 ± 0.01<br />

p2 -0.876 ± 0.012<br />

35 40 45 50 55 60<br />

z [mm]<br />

Intrinsic axial spatial resolution<br />

Mod 1 : 1.75 mm FWHM<br />

Mod 2 : 1.83 mm FWHM<br />

Trans-axial spatial resolution<br />

• = d/√12 = 0.87 mm (digital) ; FWHM ~ 2 mm<br />

• = d/√12 = 0.87 mm (digital) ; FWHM ~ 2 mm<br />

z<br />

x<br />

y<br />

layer6<br />

layer1<br />

25


Y[mm]<br />

intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

TOP View - d(Mod1,Mod2) = 150 mm<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

N_coinc_evts=1<br />

-100 -50 0 50 100<br />

X[mm]<br />

Two modules coincidences<br />

Z[mm]<br />

SIDE View - d(Mod1,Mod2) = 150 mm<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

AX-PET very first coincidence event !<br />

N_coinc_evts=1<br />

-100 -50 0 50 100<br />

X[mm]<br />

26


Y[mm]<br />

intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

TOP View - d(Mod1,Mod2) = 150 mm<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-100 -50 0 50 100<br />

X[mm]<br />

Two modules coincidences<br />

N_coinc_evts=10<br />

Z[mm]<br />

SIDE View - d(Mod1,Mod2) = 150 mm<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

N_coinc_evts=10<br />

-100 -50 0 50 100<br />

X[mm]<br />

26


Y[mm]<br />

intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

TOP View - d(Mod1,Mod2) = 150 mm<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-100 -50 0 50 100<br />

X[mm]<br />

Two modules coincidences<br />

N_coinc_evts=100<br />

Z[mm]<br />

SIDE View - d(Mod1,Mod2) = 150 mm<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

N_coinc_evts=100<br />

-100 -50 0 50 100<br />

X[mm]<br />

26


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Z[mm]<br />

SIDE View - d(Mod1,Mod2) = 150 mm<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-100 -50 0 50 100<br />

X[mm]<br />

Rintr =<br />

N_coinc_evts=100<br />

Z_projection with X= 0.00<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

<br />

R 2 meas − R 2 ρ − R 2 180<br />

(0.54 mm) 2<br />

Axial resolution<br />

Intersection of LOR with central plane<br />

no tomographic reconstruction Z_proj Z_proj !!!<br />

Entries Entries 20000 20000<br />

Mean Mean 0.1968 0.1968<br />

RMS RMS 1.104 1.104<br />

22<br />

! ! / / ndf ndf 53.9 53.9 / / 21 21<br />

Prob Prob 0.0001019 0.0001019<br />

Constant Constant 1125 1125 ± ± 11.7 11.7<br />

Mean Mean 0.1977 0.1977 ± ± 0.0059 0.0059<br />

Sigma Sigma 0.6485 0.6485 ± ± 0.0064 0.0064<br />

0<br />

-10 -5 0 5 10<br />

Z[mm]<br />

≈ 1.35 mm<br />

[0.0022 x Diam = 0.33 mm] 2<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

(R_FWHM)z 1200 ~ 1.5 mm<br />

Y_projection with X= 0.0<br />

1000<br />

including :<br />

• intrinsic resolution 800<br />

• positron range<br />

600<br />

• non collinearity<br />

• (source dimensions 400 ; ø=250μm)<br />

∼<br />

200<br />

0<br />

-10 -5 0<br />

<br />

<br />

(R F W MH)z SingleMod<br />

<br />

(2)<br />

27


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

δp<br />

F2F<br />

OBL<br />

θ<br />

!"<br />

Parallax free demonstration<br />

parallax error is more<br />

and more important<br />

outside the center of<br />

the FOV<br />

intersection of LORs with the plane containing the source<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

3<br />

" 10<br />

Z_projection with X'= 0.00<br />

axial trans-axial<br />

Z_proj<br />

Entries 226472<br />

Mean 0.07255<br />

RMS 0.9407<br />

2<br />

! / ndf<br />

438 / 22<br />

Prob 0<br />

Constant 1.264e+04 ± 3.845e+01<br />

Mean 0.07968 ± 0.00172<br />

Sigma 0.6546 ± 0.0018<br />

-4 -2 0 2 4<br />

Z[mm]<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

Y'_projection with X'= 0.00 and expected Y'= 0.00<br />

0<br />

Y_proj<br />

Entries 226472<br />

Mean -0.079<br />

RMS 0.8928<br />

-4 -2 0 2 4<br />

Y'[mm]<br />

Z_projection with X'= 0.00 Z_proj<br />

Y'_projection 3 with X'= 0.00 and expected Y'=-45.00<br />

" 10<br />

Y_proj<br />

Entries 2875919<br />

Mean 0.1839<br />

RMS 0.9481<br />

2<br />

! / ndf<br />

1540 / 21<br />

Prob 0<br />

Constant 1.62e+05 ± 1.39e+02<br />

Mean 0.1946 ± 0.0005<br />

Sigma 0.6431 ± 0.0005<br />

-4 -2 0 2 4<br />

Z[mm]<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Entries 2875919<br />

Mean -44.65<br />

RMS 0.9086<br />

-49<br />

0<br />

-48 -47 -46 -45 -44 -43 -42 -41 -40<br />

Y'[mm]<br />

-50<br />

-50 -40 -30 -20 -10 0 10 20 30 40 50<br />

Y'[mm]<br />

Intrinsic resolution is not degraded by parallax effects, even in very oblique configuration !<br />

Z[mm]<br />

Z[mm]<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-30<br />

-40<br />

ZY'_projection with X'= 0.00 and expected Y'= 0.00<br />

X_proj<br />

Entries 226472<br />

Mean x<br />

Mean y<br />

-0.08777<br />

8000<br />

0.07623<br />

RMS x<br />

RMS y<br />

1.103<br />

1.818 7000<br />

axial transaxial<br />

F2F σ=0.655 RMS=0.893<br />

ZY'_projection with X'= 0.00 and expected Y'=-45.00<br />

X_proj<br />

50<br />

40<br />

30<br />

Entries<br />

Mean x<br />

Mean y<br />

RMS x<br />

RMS y<br />

2875919<br />

-44.61 45000<br />

0.1884<br />

1.115 40000<br />

1.835<br />

35000<br />

20<br />

10<br />

OBL 0 σ=0.643<br />

30000<br />

25000<br />

RMS=0.909<br />

-10<br />

20000<br />

-20<br />

15000<br />

-50<br />

-50 -40 -30 -20 -10 0 10<br />

Y'[mm]<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

10000<br />

5000<br />

0<br />

28


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

AX-PET is a fully simulated system<br />

Simulations<br />

Dedicated Monte Carlo simulations for AX-PET .<br />

Why? (1) get a better understanding of the detector<br />

(2) train Compton reconstruction algorithms<br />

(3) support image reconstruction<br />

(4) simulate an hypothetical full ring scanner<br />

and estimate its potential performance<br />

GATE simulation package (Geant4 application for tomographic emission)<br />

Non conventional nature of AX-PET<br />

=> several challenges for simulations (standard templates could not be applied)<br />

- geometry (axial; staggering; layered structure)<br />

- WLS modeling<br />

- dedicated sorter for the coincidences<br />

(module sum; trigger logic... up to DAQ rate modeling)<br />

29


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Simulations: some results<br />

Excellent agreement data / simulations :<br />

One AXPET Module<br />

illuminated by a collimated<br />

511 keV gamma beam :<br />

Data and Simulations<br />

Two AXPET Modules in coincidences<br />

!"#$%&'()%*%+,)%-($,(&$.'+-(/).0+)%-($$<br />

LYSO energy spectrum LYSO multiplicity<br />

1%**'.'()$%&'()%*%+,)%-($,23-.%)45/$,.'$)'/)'&$,(&$)4'%.$'**%+%'(+6$%($$!"#$<br />

.'+-(/).0+)%-($%/$'/)%5,)'&$-($/%502,)%-(/7<br />

! 82'%(9:%/4%(, ;,/'& -( 3'-5').6 -. '('.36<<br />

! =,>%505 ?('.36<<br />

! "-5@)-( 8%('5,)%+/ A"8B<<br />

! :'0.,2 :')C-.D7<br />

#%502,)%-($%/$@'.*-.5'&$;6$0/%(3$EFP$'('.36$.'/-20)%-($,)$QEE$D'ST$C%)4$@-%()92%D'$/-<br />

%($)4'$+'().'$-*$)4'$UVST$;,+D9)-9;,+D$3,55,$'5%//%-(T$F$5-&02'/$,)$WQ$55$&%/),(+<br />

• identify ICS events before image reconstruction.<br />

• several identification algorithms tested<br />

axial resolution from WLS strips Inter-Crystal Scattering (ICS)<br />

!"#$%& '()*+(,%-$ -./0,120340," 2/56". 2/+7(683<br />

OEP OQP9OOP OEP9OIP RQP<br />

• identification rate for ICS ~ 60%<br />

very incomplete collection of results here !<br />

simulations paper is in preparation !<br />

EFGHIGHJ #%502,)%-($,(&$%5,3'$.'+-(/).0+)%-($*-.$KL9M?N<br />

30


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Towards a tomographic reconstruction...<br />

How to mimic a full scanner with 2 modules only available?<br />

Central FOV :<br />

rotating the phantom...<br />

θ = 0˚, 20˚, 40˚... 180˚ (9 steps)<br />

1 tomographic acquisition<br />

= 27 steps acquisition<br />

φ = 0˚<br />

Extended FOV :<br />

...and rotating also the module<br />

φ = 20˚<br />

θ = 0˚, 20˚, 40˚... 360˚ (18 steps)<br />

mimics a 18-modules<br />

ring, with coincidences<br />

between face-to-face ±<br />

one adjacent modules<br />

31


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

FE<br />

G-APD bias<br />

Setup for tomographic reconstruction<br />

Module1<br />

trigger NIM crate<br />

source<br />

rotating<br />

table<br />

setup @ CERN, Blg 304<br />

Module2<br />

power supply box<br />

ADC VME crate<br />

FE<br />

The two modules are mounted on top of a portable<br />

platform, which houses also the electronics, power<br />

supply, etc...<br />

• One rotating motor for<br />

the source / phantom<br />

• One module fixed (Mod1);<br />

the other rotating (Mod2)<br />

32


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Measurements with phantoms<br />

Three different measurement campaigns :<br />

@ ETH Zurich (CH), Radio-Pharmaceutical Institute - Apr 2010<br />

@ AAA (Advanced Acceleration Applications) St. Genis-Pouilly (FR) - July 2010<br />

@ AAA (Advanced Acceleration Applications) St. Genis-Pouilly (FR) - July 2011<br />

in-situ cyclotron production of the radiotracer.<br />

- Phantoms filled with F-18 based tracers (F-18 in water solution)<br />

- t1/2 ~ 110 mins<br />

- Concentration diluted in water; A0: few MBq up to ~ 100 MBq<br />

- Analysis restricted to photoelectric absorption events only (no ICS events for the moment)<br />

33


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Measurements with phantoms<br />

Three different measurement campaigns :<br />

@ ETH Zurich (CH), Radio-Pharmaceutical Institute - Apr 2010<br />

@ AAA (Advanced Acceleration Applications) St. Genis-Pouilly (FR) - July 2010<br />

@ AAA (Advanced Acceleration Applications) St. Genis-Pouilly (FR) - July 2011<br />

in-situ cyclotron production of the radiotracer.<br />

- Phantoms filled with F-18 based tracers (F-18 in water solution)<br />

- t1/2 ~ 110 mins<br />

- Concentration diluted in water; A0: few MBq up to ~ 100 MBq<br />

- very first measurements with high activity and extended objects<br />

- limited to the central FOV (i.e. fixed modules, rotating source)<br />

- extended FOV coverage (one module rotating, rotating source)<br />

- larger phantoms / placed off-centered phantoms<br />

- extended FOV as before<br />

- improved DAQ performance<br />

- improved acquisition methods<br />

33


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

(1) capillaries<br />

L = 3cm ;<br />

Diam = 1.4 mm ;<br />

Pitch = 5 mm<br />

(2) micro Derenzo<br />

H = 1.5 cm ;<br />

Diam = 2 cm;<br />

Rods_Diam = 0.8÷2 mm<br />

(3) mini DeLuxe<br />

H = 5 cm ;<br />

Diam = 7.5 cm;<br />

Rods_Diam = 1.2÷4 mm<br />

Phantoms for reconstruction<br />

(4) homogeneous cylinder<br />

H = 9 cm ;<br />

Diam = 6 cm;<br />

(5) NEMA phantom<br />

H = 6.3 cm ;<br />

Diam = 3.3 cm;<br />

pictures not on scale!<br />

34


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Image reconstruction<br />

Goal :<br />

recover the activity distribution, starting from the acquired data<br />

Data :<br />

LOR of the various coincidence events i.e. projections<br />

(typically organized in “sinograms”)<br />

Angle θ<br />

Two different approaches :<br />

projections<br />

g(s,θ)<br />

Displacement s<br />

ANALYTICAL METHOD ITERATIVE METHOD<br />

• Filtered Back Projection (FBP) :<br />

1) Fourier analysis of the projection data<br />

2) Different weight to different frequencies (“filtering”)<br />

3) “Back-Project”<br />

• simple and fast<br />

☺ ☹<br />

• not extremely accurate<br />

• assumption : measured data are perfectly consistent with the<br />

source object (never true: e.g. noise, gaps between detector...)<br />

• slow and CPU consuming<br />

• accurate model of the emission and<br />

detection processes<br />

• accurate reconstruction<br />

• optimization procedure until the best<br />

estimate is found<br />

• several optimization strategies exist<br />

activity<br />

f(x,y)<br />

☹<br />

☺<br />

35


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Iterative reconstruction method<br />

36


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Iterative reconstruction method<br />

(2)<br />

obtain the projection that would<br />

derive from such an object<br />

(1)<br />

initial estimate of the<br />

object count distribution<br />

(typically: uniform)<br />

36


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Iterative reconstruction method<br />

(2)<br />

obtain the projection that would<br />

derive from such an object<br />

(1)<br />

initial estimate of the<br />

object count distribution<br />

(typically: uniform)<br />

36


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Iterative reconstruction method<br />

(2)<br />

obtain the projection that would<br />

derive from such an object<br />

build up correction coefficients<br />

(1)<br />

initial estimate of the<br />

object count distribution<br />

(typically: uniform)<br />

36


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Iterative reconstruction method<br />

36


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Iterative reconstruction method<br />

requires a description of the<br />

physical model of emission<br />

and detection processes :<br />

SYSTEM MATRIX<br />

Mij<br />

probability of the activity<br />

in the j-voxel to be<br />

detected by the i-LOR<br />

includes :<br />

- geometry description<br />

- physics (e.g. : attenuation)<br />

- variable fraction of<br />

the voxel contributes to<br />

the counts<br />

- ...<br />

36


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

out of the many possible iterative methods<br />

AX-PET uses ML-EM<br />

Max Likelihood<br />

Iterative reconstruction method<br />

Expectation<br />

Maximization<br />

two steps per iteration :<br />

(1) Expectation step : form the<br />

likelihood of any reconstructed image<br />

given the measured data<br />

(2) Maximization step : find the<br />

image with the greatest likelihood<br />

requires a description of the<br />

physical model of emission<br />

and detection processes :<br />

SYSTEM MATRIX<br />

Mij<br />

probability of the activity<br />

in the j-voxel to be<br />

detected by the i-LOR<br />

includes :<br />

- geometry description<br />

- physics (e.g. : attenuation)<br />

- variable fraction of<br />

the voxel contributes to<br />

the counts<br />

- ... 36


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives<br />

conclusion<br />

y<br />

y<br />

z<br />

z<br />

x<br />

Simple reconstructed images : capillaries<br />

x<br />

counts [a.u.]<br />

capillaries :<br />

L = 3 cm<br />

∅ = 1.4 mm<br />

pitch = 5 mm<br />

y<br />

y<br />

x<br />

x<br />

z<br />

z<br />

z<br />

z<br />

y<br />

y<br />

x<br />

x<br />

z<br />

z<br />

central FOV<br />

no modules rotation<br />

ETH 2010<br />

Profiling of the reconstructed capillaries (3 different measurements) and resolutions (FWHM) of<br />

reconstructed sources. The resolution still includes the capillary finite size (1.4 mm inner diameter).<br />

Profiling<br />

FWHM [mm]<br />

z<br />

z<br />

Resolution<br />

x<br />

x<br />

y<br />

y


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

extended FOV<br />

2nd module rotation<br />

NEMA phantom<br />

Three regions in the same phantom to<br />

address three different aspects<br />

Hot & Cold rods for contrast<br />

Homogeneous cylinder for assessing the<br />

ability to reconstruct<br />

homogeneous distributions<br />

Series of small rods for resolution<br />

{<br />

{<br />

{<br />

34 mm<br />

63 mm<br />

38


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

extended FOV<br />

2nd module rotation<br />

NEMA phantom uniformly filled - AAA 2010<br />

NEMA phantom hot / cold / warm - AAA 2011<br />

NEMA phantom<br />

Three regions in the same phantom to<br />

address three different aspects<br />

Hot & Cold rods for contrast<br />

Homogeneous cylinder for assessing the<br />

ability to reconstruct<br />

homogeneous distributions<br />

Series of small rods for resolution<br />

{<br />

{<br />

{<br />

34 mm<br />

2 mm<br />

63 mm<br />

38


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

extended FOV<br />

2nd module rotation<br />

NEMA phantom uniformly filled - AAA 2010<br />

NEMA phantom hot / cold / warm - AAA 2011<br />

NEMA phantom<br />

Three regions in the same phantom to<br />

address three different aspects<br />

Hot & Cold rods for contrast<br />

Homogeneous cylinder for assessing the<br />

ability to reconstruct<br />

homogeneous distributions<br />

Series of small rods for resolution<br />

{<br />

{<br />

{<br />

34 mm<br />

2 mm<br />

63 mm<br />

38


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

extended FOV<br />

2nd module rotation<br />

NEMA phantom uniformly filled - AAA 2010<br />

NEMA phantom hot / cold / warm - AAA 2011<br />

NEMA phantom<br />

Three regions in the same phantom to<br />

address three different aspects<br />

Hot & Cold rods for contrast<br />

Homogeneous cylinder for assessing the<br />

ability to reconstruct<br />

homogeneous distributions<br />

Series of small rods for resolution<br />

{<br />

{<br />

{<br />

34 mm<br />

different color scale !<br />

1 mm (i.e. < Resolution)<br />

5 mm<br />

4 mm<br />

3 mm<br />

2 mm<br />

Reconstructed 1 mm rod<br />

=> FWHM ~ 1.6 mm<br />

63 mm<br />

38


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

extended FOV<br />

2nd module rotation<br />

NEMA phantom uniformly filled - AAA 2010<br />

NEMA phantom hot / cold / warm - AAA 2011<br />

NEMA phantom<br />

Three regions in the same phantom to<br />

address three different aspects<br />

Hot & Cold rods for contrast<br />

Homogeneous cylinder for assessing the<br />

ability to reconstruct<br />

homogeneous distributions<br />

Series of small rods for resolution<br />

{<br />

{<br />

{<br />

34 mm<br />

different color scale !<br />

1 mm (i.e. < Resolution)<br />

5 mm<br />

4 mm<br />

3 mm<br />

2 mm<br />

Reconstructed 1 mm rod<br />

=> FWHM ~ 1.6 mm<br />

63 mm<br />

38


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Mini Deluxe phantom<br />

(A)<br />

Rods oriented parallel to Z axis<br />

Resolution phantom : Mini Deluxe<br />

extended FOV<br />

2nd module rotation<br />

AAA 2011<br />

(A) (B)<br />

39


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Mini Deluxe phantom<br />

(A)<br />

Rods oriented parallel to Z axis<br />

Resolution phantom : Mini Deluxe<br />

extended FOV<br />

2nd module rotation<br />

AAA 2011<br />

Rods oriented perpendicular to Z axis<br />

(B)<br />

(A) (B)<br />

Results presented in Valencia, IEEE 2011<br />

39


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

What’s next (1/3) ?<br />

40


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

What’s next (1/3) ?<br />

• improve the reconstruction algorithms<br />

• include ICS (Inter Crystal Scattering) events in the reconstruction<br />

preliminar!<br />

• ICS included:<br />

• only “triple” coinc. (1+2)<br />

• simplest weighting (50% ; 50%)<br />

• Simulated One-Pass List-mode<br />

reconstruction (SOPL)<br />

• No image deterioration when ICS<br />

events are included!<br />

40


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

What’s next (2/3) ?<br />

• full ring simulations:<br />

• performance of (hypothetical) full ring (e.g. resolution, sensitivity, NEC...)<br />

• two different approaches<br />

41


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

What’s next (3/3) ?<br />

• images of (probably dead) small animal<br />

• new measurement campaign<br />

• @ETH Zurich, Radiopharmaceutical Institute<br />

• Spring 2012 ?<br />

• F-18 (bone scan) or FDG ?<br />

Mouse bone scan,<br />

NanoSPECT (Bioscan)<br />

42


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives<br />

D-SiPM<br />

conclusion<br />

What’s next (3/3) ?<br />

• images of (probably dead) small animal<br />

• new measurement campaign<br />

• @ETH Zurich, Radiopharmaceutical Institute<br />

• Spring 2012 ?<br />

• F-18 (bone scan) or FDG ?<br />

• test digital Silicon Photomultipliers (from Philips)<br />

as alternative photodetectors<br />

• extremely good timing performance<br />

• GOAL : demonstrate the possibility<br />

a TOF-PET with the axial concept<br />

Mouse bone scan,<br />

NanoSPECT (Bioscan)<br />

42


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives<br />

D-SiPM<br />

conclusion<br />

Digital Silicon Photomultiplier (D-SiPM)<br />

D-SiPM :<br />

Single Photon Avalanche<br />

Photodiode (SPAD)<br />

integrated with<br />

conventional CMOS<br />

circuits on the same<br />

substrate.<br />

All SPADs (including<br />

their corresponding<br />

electronics) connected<br />

together<br />

- to photon counter<br />

- to TDC<br />

Thomas Frach,<br />

CERN Detector seminar, Oct 2011<br />

43


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives<br />

D-SiPM<br />

conclusion<br />

Digital Silicon Photomultiplier (D-SiPM)<br />

Advantages of D-SiPM for AX-PET:<br />

Intrinsically very fast photodetector (~ 50ps).<br />

Great potential for TOF-PET.<br />

Small size. High level of integration.<br />

Compactness.<br />

Interesting concept of simplifying the readout chain.<br />

Bias supply included.<br />

Early digitization of the cell output; integrated<br />

electronics on chip => low noise.<br />

Digital => Temperature and gain stability is less<br />

critical than in analogue SiPM.<br />

Possibility to disable cells with high Dark Count.<br />

MRI compatible.<br />

1 sensor<br />

full tile,<br />

64 sensors<br />

Technology Evaluation Kit (TEK) :<br />

MPPC :<br />

3200 cells<br />

3x3 mm 2<br />

- 4 tiles :<br />

DLS_6400 (x2 tiles) ; 6400 cells/sensor<br />

DLS_3200 (x2 tiles) ; 3200 cells/sensor<br />

- each tile : 8x8 sensors<br />

- 1 sensor : 3.9 x 3.3 mm 2<br />

received at CERN on Jan 12 th , 2012<br />

44


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives<br />

D-SiPM<br />

conclusion<br />

22 Na<br />

source<br />

• 2 LYSO scintillator crystals<br />

• non AX-PET standard<br />

• (2x2x12) mm 3 and (2x2x15) mm 3<br />

• wrapped with teflon<br />

• coupling done with optical grease<br />

• LYSO crystal placed in the center of the pixel<br />

(no precise mechanical alignment)<br />

D-SiPM: first preliminary results<br />

time difference between the two tiles for coincident events<br />

(coincidence window = 2 ns)<br />

#Events<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

PRELIMINARY !!!<br />

DLS 3200<br />

T ° C<br />

=5<br />

Peltier<br />

Entries 10964<br />

Constant 930.5 ± 13.1<br />

Mean 0.2449 ± 0.0011<br />

Sigma 0.08534 ± 0.00123<br />

Time resolution = 200 ps FWHM<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

Δt<br />

[ns]<br />

FWHM ~ 200 ps<br />

(cutting on events at the photopeak)<br />

45


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives<br />

D-SiPM<br />

conclusion<br />

D-SiPM: first preliminary results<br />

Minimal AX-PET like set-up<br />

WLS strip<br />

(3 x 0.9 x 40 mm 3 )<br />

DLS_3200<br />

(one pixel enabled)<br />

22-Na source<br />

(~ 3 MBq)<br />

LYSO crystal<br />

(3 x 3 x100 mm 3 )<br />

DLS_3200<br />

(1/2 pixel enabled)<br />

46


intro axial concept AXPET simulations 800 image reconstructions<br />

Raw LYSO spectrum, Na-22 source<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Raw spectrum<br />

600<br />

D-SiPM: first preliminary results<br />

400<br />

200<br />

511 keV<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

Nr photons<br />

Energy spectrum<br />

(calibrated, corrected<br />

for saturation)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

PRELIMINARY !!!<br />

50<br />

Nr photons<br />

1000<br />

AXPET performance perspectives<br />

D-SiPM<br />

conclusion<br />

LYSO light yield<br />

1.27 MeV<br />

LYSO energy spectrum, Na-22 source<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

Energy Calibration [0]*(1-TMath::Exp(-x*[1]/[0]))<br />

! / ndf<br />

5.868e-11 / 1<br />

p0 2767 ± 2.05e-05<br />

p1 4.453 ± 4.72e-08<br />

0<br />

0 200 400 600 800 1000 1200 1400<br />

300<br />

250<br />

200<br />

150<br />

100<br />

PRELIMINARY !!!<br />

0<br />

0 200 400 600 800 1000 1200 1400<br />

50<br />

ENERGY CALIBRATED SPECTRUM<br />

2<br />

Energy [keV]<br />

Entries<br />

Mean<br />

RMS 2<br />

! / ndf<br />

Constant<br />

Mean<br />

Sigma<br />

SpectTile4<br />

0<br />

0 200 400 600 800 1000 1200 1400<br />

Energy [keV]<br />

Energy [keV]<br />

R_FWHM ~ 12.3%<br />

47


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives<br />

D-SiPM<br />

conclusion<br />

• 2 tiles operated in coincidence<br />

Correlation<br />

LYSO / WLS response<br />

Still to do :<br />

- add more WLS strips<br />

- full WLS cluster<br />

- extract axial coordinate<br />

D-SiPM: first preliminary results<br />

LYSO Energy [keV]<br />

Minimal AX-PET Setup<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

PRELIMINARY !!!<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

WLS [Nr photons]<br />

48


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives<br />

D-SiPM<br />

conclusion<br />

two needed arrangements<br />

Questions to be answered :<br />

- light yield and ΔE/E from LYSO crystals ?<br />

- axial coordinate reconstruction: does it work ?<br />

- axial resolution through WLS readout ?<br />

- time resolution (long crystals) ?<br />

- cooling for DC reduction ?<br />

D-SiPM: Outlook<br />

AX-PET performance demonstration<br />

timing performance demonstration<br />

49


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Conclusions<br />

Axial concept for a PET scanner :<br />

i.e. long and axially oriented scintillation crystals<br />

Intrinsically parallax free system (DOI information directly from the axial geometry)<br />

Spatial resolution and sensitivity could both be optimized<br />

AX-PET implementation :<br />

3D spatial information of the photon interaction point with :<br />

matrix of LYSO crystals and WLS strips<br />

individual readout of each channel (Si-PM)<br />

Two modules built (i.e. AX-PET demonstrator)<br />

Energy resolution ~ 12% FWHM,@ 511 keV<br />

Spatial resolution ~ 1.35 mm FWHM<br />

(competitive with state of the art PET)<br />

Fully simulated device<br />

Simulations - fully validated on the demonstrator - will assess the final performance of an hypothetical full<br />

ring scanner. Flexible design: scalable in size / dimensions / nr. layers....<br />

=> flexibility in the final target of AX-PET (small animal PET / brain PET)<br />

AX-PET demonstrator :<br />

Extensively tested with sources and successfully used with phantoms !<br />

‣ calorimeter with tracking<br />

capabilities (granularity)<br />

‣ novelty as a PET detector :<br />

- geometry<br />

- WLS implementation<br />

- module sum / trigger<br />

- Compton scattering reconstruction<br />

Currently under test :<br />

Digital SiPM as alternative for photodetector for AX-PET (TOF capabilities)<br />

50


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Conclusions<br />

50


intro axial concept AXPET AXPET performance simulations image reconstructions perspectives conclusion<br />

Conclusions<br />

50


han s!<br />

51


AX-PET collaboration<br />

A. Braem, M. Heller, C. Joram, T. Schneider and J. Séguinot<br />

CERN, PH Department, CH-1211 Geneva, Switzerland<br />

V. Fanti<br />

Università e Sezione INFN di Cagliari, Italy.<br />

C. Casella, G. Dissertori, L. Djambazov, W. Lustermann, F. Nessi-Tedaldi, F. Pauss, D. Renker 1 , D. Schinzel 2<br />

ETH Zurich, CH-8092 Zurich, Switzerland<br />

1 Currently with Technical University München , D-80333 München, Germany<br />

2 Currently with Massachussetts Institute of Technology, Cambridge 02139-4307, USA.<br />

J.E. Gillam, J. F. Oliver, M. Rafecas, P. Solevi<br />

IFIC (CSIC / Universidad de Valencia), E-46071 Valencia, Spain<br />

R. De Leo, E. Nappi<br />

INFN, Sezione di Bari, I-70122 Bari, Italy<br />

E. Chesi, A. Rudge, P. Weilhammer<br />

Ohio State University, Columbus, Ohio 43210, USA<br />

E. Bolle, S. Stapnes<br />

University of Oslo, NO-0317 Oslo, Norway<br />

U. Ruotsalainen, U. Tuna<br />

Tampere University of Technology, FI-33100 Tampere, Finland<br />

Many thanks for the appreciated technical support from :<br />

Volker Commichau, Michael Droge, Hanspeter Von Gunten, Christian Haller,<br />

Urs Horisberger, Bozidar Panev (ETH Zurich)<br />

Jerome Bendotti, Bernard Cantin, Claude David, Niel Dixon, Didier Gabriele,<br />

Markus Joos, Miranda Van Stenis (CERN)<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!