17.08.2013 Views

Point pattern analysis

Point pattern analysis

Point pattern analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Forest ecosystems in the conditions of climate change:<br />

biological productivity, monitoring and adaptation<br />

28 June - 2 July, 2010<br />

Yoshkar-Ola, Russia<br />

A.Tenca, PhD Student, TeSAF Dept., University of Padua, Italy<br />

alessandro.tenca@unipd.it


Brief intro on the importance of the high altitude<br />

environments for monitoring and survey;<br />

overview of the high altitude survey areas and<br />

experiences set by UniPD in the last 15 years;<br />

examples/preliminary results obtained in the<br />

Himalayan area.


Why surveying at the treeline??<br />

Really “sensitive” ecotone:<br />

monitoring global warming and climate change<br />

effects<br />

Physiological driving forces still not well-known<br />

Need and technical possibilities of long term<br />

monitoring


Long term monitoring sites in:<br />

Dolomites, NE Italy<br />

Karakoram, Pakistan<br />

E Himalayas, Nepal


Treeline with Larch and Swiss Stone Pine, 2200 m asl, Dolomites, Italy<br />

Mean temperature MJJAS 7.5 C<br />

JJA precipitation 500 mm<br />

Max Vapour pressure deficit (VPD) < 12 hPa<br />

Discontinuous, well draining soils<br />

Really sparse trees<br />

(low competition)


Treeline with Spruce, Betula and Rhododendron, 4100 m asl, Khumbu valley, Nepal


Treeline with Betula (and Juniper), 3800 m asl, Karakoram, Pakistan


Since 1996 we’ve been monitoring the most important ecophysiological<br />

parameters of Pinus sylvestris, Larix decidua, Pinus cembra, Picea abies.<br />

4 (along an altitudinal gradient) remote-controlled stations:<br />

San Vito di Cadore (1100m asl)<br />

Monte Croce (1600m asl)<br />

5 Torri (2000 + 2100m asl)<br />

and experiments on growth limitation factors at:<br />

San Vito di Cadore (1100m asl)<br />

Monte Rite (2100m asl)


Parameter St. 1 St. 2 Sensors When Type of sampling<br />

T e umidità dell'aria ● ● Termo-igrometro Rotronic Tutto l'anno Media 15' dei valori misurati sul minuto<br />

T del suolo ● ● Termocoppie Tutto l'anno Media 15' dei valori misurati sul minuto<br />

T foglie, fusti e rami ● ● Termocoppie Tutto l'anno Media 15' dei valori misurati sul minuto<br />

Flusso calore del suolo ● Heat flux plate HUKSEFLUX Tutto l'anno Media 15' dei valori misurati sul minuto<br />

Radiazione netta ● Radiometro netto NR-Lite Tutto l'anno Media 15' dei valori misurati sul minuto<br />

Radiazione globale ● ● Piranometro Li-Cor Tutto l'anno Media 15' dei valori misurati sul minuto<br />

Rad. Fotosintetic. attiva ● Quantum sensor Li-Cor Fino al 1999 Media 15' dei valori misurati sul minuto<br />

Velocità e dir. vento ● ● Gonio-anemometro Young Tutto l'anno<br />

Media 15' dei valori misurati sul minuto<br />

Umidità del suolo ● ● Sonda TDR Tutto l'anno Valore orario<br />

Pioggia ● ● Pluviometro Micros Estate-autunno Valore cumulato nell'ora<br />

Densità flusso di linfa<br />

(dm h -1 )<br />

● ● Sensori di Granier Periodo estivo Media 15' dei valori misurati sul minuto<br />

Accrescim. fusto (mm) ● ● Dendrometri Tutto l'anno<br />

Form. cellule legnose ● Trephor<br />

Allung getti e foglie ●<br />

Conduttanza stomatica<br />

e fotosintesi<br />

●<br />

Sensore di fotosintesi LCi,<br />

ADC Bioscientific<br />

Periodo<br />

vegetativo<br />

Periodo<br />

vegetativo<br />

Occasionale<br />

Periodo<br />

vegetativo<br />

Settimanale<br />

Settimanale<br />

variabile


Micro-cores collection,<br />

for wood formation<br />

studies<br />

Rossi et al 2006,<br />

IAWA J.<br />

Trephor<br />

Patent UniPD<br />

www.tesaf.unipd.it/Sanvito/index.htm


5 Torri 1 (2082m asl)


5 Torri 2 (2122 m asl)


Monitoring all the year round…


Growth limiting factors at the treeline: temperature


GROWTH LIMITATION AT THE TREELINE<br />

At the treeline, tree growth is limited by low temperatures: there is a thermal<br />

boundary layer above which (T< 6-7°C) the formation of new cells is inhibited (e.g.<br />

Rossi et al. 2007).<br />

Trees at the treeline seemed to have a sub-optimal degree of conduit tapering<br />

(Coomes et al. 2007).<br />

Hypothesis<br />

• Apical buds are the thermo-sensitive organs.<br />

• Apical buds control the formation of the xylem structure along the stem (Aloni<br />

2001, 2004).<br />

• Approaching the TBL, the optimization of the xylem structure cannot be<br />

maintained and hence the reduced compensation for the effect of hydraulic<br />

resistance with the increased height would lead to limitations to tree growth.<br />

By enhancing the thermal conditions of the apical buds of trees at the treeline:<br />

• The xylem structure should enhance (convergence to optimal conduit tapering<br />

and/or increase in dimension of apical conduits).<br />

• Tree growth (especially in height) should increase.


GROWTH LIMITATION AT THE TREELINE<br />

Heating system<br />

Policarbonate<br />

cilinder with<br />

internal<br />

resistance<br />

ΔT=10-5 C<br />

Picea abies Karst.<br />

Forest Treeline<br />

Cold Heated Cold Heated<br />

5 5 5 5<br />

Heating experiment: Matherials & Methods<br />

MEASUREMENTS:<br />

---- Species<br />

---- Environments<br />

---- Treatments<br />

---- Replicates<br />

Experiment repeated in 2006 and 2007<br />

• Annual longitudinal increments<br />

• Dh at different distances along the stem


GROWTH LIMITATION AT THE TREELINE<br />

L (cm)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

MONTE RITE<br />

MONTE RITE<br />

1F 2F 3F 4F 5F 1R 2R 3R 4R 5R<br />

Paired T-Test: Incr. 2007 vs Avg. Incr. (2001-2005)<br />

COLD: p = 0.146<br />

HEATED: p = 0.024<br />

Longitudinal increment<br />

2001-2005<br />

2007<br />

L (cm)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

SAN VITO<br />

SAN VITO<br />

Heating experiment: Results<br />

2001-2005<br />

2007<br />

1F 2F 3F 4F 5F 1R 2R 3R 4R 5R<br />

COLD HEATED COLD HEATED<br />

COLD: p = 0.346<br />

HEATED: p = 0.239<br />

Artificial warming promoted shoot elongation only at the treeline.


LTER AREAS TODAY<br />

More interest for:<br />

-Description of stand development and spatial<br />

structures<br />

-Description of stand dynamics<br />

-Ecological role of disturbances<br />

-Application for close to nature selviculture<br />

Availabilty<br />

of new technologies<br />

- Precision<br />

- Fast sampling<br />

- Low costs


LTER area<br />

- Big extensions<br />

- Tree to tree approach<br />

- Different information layers<br />

- Optimal time-scale to study<br />

slow changing ecosystems,<br />

with the “lowest noise”<br />

Intensive monitored<br />

area,<br />

along many years<br />

(regular intervals sampling)


Monitoring along gradients<br />

Positive<br />

(spatial attraction)<br />

SPATIAL INTERACTIONS<br />

Intra- inter- specific<br />

Negative<br />

(spatial repulsion)<br />

Facilitation Competition<br />

Constant in time and space??


Treeline Timberline Subalpine forest


Since 1993 we’ve been monitoring the most important ecological processes<br />

and dynamics throughout LTER areas.<br />

LTER areas (along altitudinal gradient) in “Croda da Lago”:<br />

- 1ha 2200m asl,<br />

- 1ha 2000m asl<br />

- 4ha, 2100m asl<br />

3088 trees h>130cm<br />

Sp.,<br />

dbh,<br />

h tot,<br />

canopy h and depth, age, position


Altitude: 3800m asl<br />

Surface: 1.7ha<br />

Rakaposhi 1<br />

# of trees: 402 Density: 236 trees/ha<br />

Slope aspect: WNW<br />

Features: mainly Himalayan birch and<br />

Juniper<br />

Rakaposhi 2<br />

Altitude: 3500m asl<br />

Surface: 0.65<br />

# of trees: 346 Density: 530 t/ha<br />

Slope aspect: W<br />

Features: mainly Himalayan blue<br />

pine


Himalaya<br />

Study areas: SNP


Ama Dalbam 2, 3820m<br />

Ama Dablam 1<br />

Ama Dalbam 1, 4050m<br />

Ama Dablam 2


AMA DABLAM 1 AMA DABLAM 2<br />

Localizzazione area: Pangboche<br />

Altitudine massima: 4050 m s.l.m.<br />

Esposizione: NW<br />

Pendenza: 25°<br />

Estensione: 1ha<br />

N piante: 444<br />

27%<br />

47%<br />

25%<br />

1%<br />

Sorbus microphylla<br />

Juniperus recurva<br />

Betula utilis<br />

Abies spectabilis<br />

Localizzazione area: Deboche<br />

Altitudine massima: 3820 m s.l.m.<br />

Esposizione: NW<br />

Pendenza: 26°<br />

Estensione: 1ha<br />

N piante: 1029<br />

35%<br />

14%<br />

27%<br />

24%<br />

Sorbus microphylla<br />

Acer campbelii<br />

Betula utilis<br />

Abies spectabilis


Spatial statistics creates statistical models analysing data with<br />

geographical coordinates.<br />

In ecology we study the biological phenomena in their own spatial<br />

reference, to understand how space influences, drives and characterizes<br />

every single observation.<br />

How is a biological phenomenon distributed?<br />

With groups? With gradients?


Spatial statistical <strong>analysis</strong> is divided in two categories:<br />

POINT PATTERN<br />

ANALYSIS<br />

Spatial <strong>Point</strong> Patterns (x,y)<br />

Just the position of every<br />

single tree is considered<br />

Methods:<br />

K-Ripley<br />

O-ring<br />

SURFACE PATTERN<br />

ANALYSIS<br />

Geostatistical data (x, y, z)<br />

It considers the position<br />

and another variable<br />

(z=age, height, diameter<br />

) of each tree<br />

Methods:<br />

Moran’s I<br />

Local G


<strong>Point</strong> <strong>pattern</strong> <strong>analysis</strong><br />

O-ring statistics<br />

While Ripley’s K function determines aggregation or segregation up to a<br />

certain distance,<br />

O-ring statistics,<br />

using rings instead of circles,<br />

is able to determine aggregation o segregation at any given distance (r).<br />

That’s why O-ring is considere<br />

an “upgraded” method compared to Ripley’s K,<br />

which allows having<br />

a better overview and interpretation of the results.


O 11 (r)<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

Ama Dablam 2<br />

AD2 O-ring<br />

Aggregation<br />

Segregation<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m)<br />

<strong>Point</strong> <strong>pattern</strong> <strong>analysis</strong><br />

O 11 (r)<br />

0,12<br />

0,1<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

0<br />

Ama Dablam 1<br />

AD1 O-ring<br />

Aggregation<br />

Segregation<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m)<br />

Aggregating trends at all the distance classes:<br />

A first common <strong>pattern</strong> with the Alpine Areas.


O 11 (r)<br />

O 11 (r)<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

0,06<br />

0,05<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0<br />

<strong>Point</strong> <strong>pattern</strong> <strong>analysis</strong> for the main species<br />

Ama Dablam 2 Ama Dablam 1<br />

AD2 Abies O-ring<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m)<br />

AD2 Betula O-ring<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m)<br />

O11 (r)<br />

O 11 (r)<br />

0,05<br />

0,045<br />

0,04<br />

0,035<br />

0,03<br />

0,025<br />

0,02<br />

0,015<br />

0,01<br />

0,005<br />

0,1<br />

0,09<br />

0,08<br />

0,07<br />

0,06<br />

0,05<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0<br />

0<br />

AD1 Abies O-ring<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m)<br />

AD1 Betula O-ring<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m)


O11 (r)<br />

0,09<br />

0,08<br />

0,07<br />

0,06<br />

0,05<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0<br />

<strong>Point</strong> <strong>pattern</strong> <strong>analysis</strong>, Dbh classes<br />

AD1 Betula<br />

AD1 Betula Small<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m)<br />

O11 (r)<br />

0,035<br />

0,03<br />

0,025<br />

0,02<br />

0,015<br />

0,01<br />

0,005<br />

0<br />

Dbh 10


O11 (r)<br />

0,3<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

<strong>Point</strong> <strong>pattern</strong> <strong>analysis</strong>, Dbh classes<br />

AD2 Abies<br />

AD2 Abies Small<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m) 0,045<br />

O11 (r)<br />

0,04<br />

0,035<br />

0,03<br />

0,025<br />

0,02<br />

0,015<br />

0,01<br />

0,005<br />

0<br />

Dbh 10<br />

Considering the main species of the stands we analysed within different<br />

size classes (Dbh > or < 10), the aggregation trend reaches lower<br />

distance the bigger are trees: as in the Alps.


o 12 (r)<br />

O 12 (r)<br />

0,045<br />

0,04<br />

0,035<br />

0,03<br />

0,025<br />

0,02<br />

0,015<br />

0,01<br />

0,005<br />

0,014<br />

0,012<br />

0,01<br />

0,008<br />

0,006<br />

0,004<br />

0,002<br />

0<br />

0<br />

<strong>Point</strong> <strong>pattern</strong> <strong>analysis</strong>, bivariate, intraspecific, both the areas<br />

Treeline Betula Big vs Small<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m)<br />

Timberline Abies Big vs Small<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Distanza (m)


O 12 (r)<br />

O12 (r)<br />

0,018<br />

0,0250,016<br />

0,014<br />

0,020,012<br />

0,01<br />

0,015<br />

0,008<br />

0,006<br />

0,01<br />

0,004<br />

0,0050,002<br />

0<br />

0<br />

<strong>Point</strong> <strong>pattern</strong> <strong>analysis</strong>, bivariate, interspecific, treeline<br />

AD1 Abies Big vs Betula Big<br />

AD1 Abies Big vs Betula Small<br />

0 5 10 15 20 25 30 35 40 45 50<br />

0 5 10 15 20 25<br />

Distanza<br />

30<br />

(m)<br />

35 40 45 50<br />

L(t)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

Distanza (m)<br />

Croda da Lago C2<br />

0 10 20 30 40<br />

Distanza (m)<br />

L(t)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

Aggregation: as it<br />

happens for Swiss<br />

stone pine and<br />

Larch in the Alps.<br />

Facilitation more than<br />

competition?<br />

Latemar<br />

0 10 20 30 40<br />

Distanza (m)


Z (I)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

Surface <strong>pattern</strong> <strong>analysis</strong><br />

Moran’s I<br />

It determines the spatial autocorrelation:<br />

how a variable correlates with itself ,<br />

in order to predict this variable’s values in given spatial points.<br />

Moran's I<br />

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40<br />

Distanza (m)<br />

POSITIVE AUTOCORRELATION /<br />

ATTRACTION<br />

Similar values gruop together<br />

NEGATIVE AUTOCORRELATION /<br />

REPULSION<br />

Similar values do not gruop together


Correlograms, diameter<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

8<br />

2<br />

6<br />

10<br />

14<br />

18<br />

22<br />

26<br />

30<br />

34<br />

38<br />

42<br />

46<br />

50<br />

54<br />

58<br />

62<br />

66<br />

70<br />

74<br />

78<br />

82<br />

86<br />

90<br />

94<br />

98<br />

Area timberline dbh<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

2<br />

6<br />

10<br />

14<br />

18<br />

22<br />

26<br />

30<br />

34<br />

38<br />

42<br />

46<br />

50<br />

54<br />

58<br />

62<br />

66<br />

70<br />

74<br />

78<br />

82<br />

86<br />

90<br />

94<br />

98<br />

Abies dbh<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

2<br />

6<br />

10<br />

14<br />

18<br />

22<br />

26<br />

30<br />

34<br />

38<br />

42<br />

46<br />

50<br />

54<br />

58<br />

62<br />

66<br />

70<br />

74<br />

78<br />

82<br />

86<br />

90<br />

94<br />

98<br />

Betula dbh<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

8<br />

2<br />

6<br />

10<br />

14<br />

18<br />

22<br />

26<br />

30<br />

34<br />

38<br />

42<br />

46<br />

50<br />

54<br />

58<br />

62<br />

66<br />

70<br />

74<br />

78<br />

82<br />

86<br />

90<br />

94<br />

98<br />

-6<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

6<br />

2<br />

6<br />

10<br />

14<br />

18<br />

22<br />

26<br />

30<br />

34<br />

38<br />

42<br />

46<br />

50<br />

54<br />

58<br />

62<br />

66<br />

70<br />

74<br />

78<br />

82<br />

86<br />

90<br />

94<br />

98<br />

Abies dbh<br />

-5<br />

-4<br />

-3<br />

-2<br />

-1<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

2<br />

6<br />

10<br />

14<br />

18<br />

22<br />

26<br />

30<br />

34<br />

38<br />

42<br />

46<br />

50<br />

54<br />

58<br />

62<br />

66<br />

70<br />

74<br />

78<br />

82<br />

86<br />

90<br />

94<br />

98<br />

Area treeline dbh<br />

Betula dbh


Conclusions<br />

<strong>Point</strong> <strong>pattern</strong> <strong>analysis</strong><br />

General aggregation trend,<br />

decrising with bigger individuals, as it happens in the Alps, and<br />

observed in all the specific and dimensional classes.<br />

Surface <strong>pattern</strong> <strong>analysis</strong><br />

A homogeneous group structure, typical of the subalpine forests,<br />

lights up within the timberline area, while at higher altitude, with more<br />

limiting factors, the groups are not homogeneous.<br />

Just with 200m gradient it has been possible to catch and analyse<br />

differences within survey areas close to each other, but also to make<br />

comparisons with areas far away from each other, but really similar<br />

from the ecological points of view:<br />

a great feature in monitoring hign altitude ecosystems.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!