17.08.2013 Views

Continuous and Discrete Optimization Methods in Computer Vision

Continuous and Discrete Optimization Methods in Computer Vision

Continuous and Discrete Optimization Methods in Computer Vision

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong><br />

<strong>Optimization</strong> <strong>Methods</strong><br />

<strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

Daniel Cremers<br />

Department of <strong>Computer</strong> Science<br />

University of Bonn<br />

Oxford, August 16 2007


Segmentation by Energy M<strong>in</strong>imization<br />

Given an image , m<strong>in</strong>imize the energy<br />

Blake, Zisserman ’87, Mumford, Shah ’89,<br />

Is<strong>in</strong>g ’27, Potts ’59, Geman, Geman ‘84<br />

boundary length<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

2


<strong>Cont<strong>in</strong>uous</strong> Versus <strong>Discrete</strong> <strong>Optimization</strong><br />

Osher, Sethian, J. of Comp. Phys. ’88<br />

M<strong>in</strong>. cut Max. flow<br />

Ford, Fulkerson ’59<br />

Greig et al. ’89<br />

Boykov, Kolmogorov ’02<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

3


Level Set Formulation of Mumford-Shah<br />

Chan & Vese ’99<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

4


Level Set Segmentation <strong>in</strong> Feature Space<br />

efficient coarse-to-f<strong>in</strong>e scheme<br />

Brox, Weickert ’04, ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

5


Motion segmentation<br />

Obstacle segmentation<br />

Prior shape knowledge<br />

Shape priors <strong>in</strong> global optimization<br />

Convex 3D reconstruction<br />

Overview<br />

Markerless human motion capture<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

6


Overview<br />

Motion segmentation<br />

Obstacle segmentation<br />

Prior shape knowledge<br />

Shape priors <strong>in</strong> global optimization<br />

3D reconstruction: a convex formulation<br />

Markerless human motion capture<br />

Cremers CVPR ’03, Cremers & Soatto IJCV ’05<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

7


Motion<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

8


Problem underconstra<strong>in</strong>ed (aperture problem).<br />

2. assumption: Velocity <strong>in</strong> each region is a<br />

Gaussian-distributed r<strong>and</strong>om variable<br />

M<strong>in</strong>imize<br />

Motion-based Image Segmentation<br />

1. assumption: Intensity of mov<strong>in</strong>g po<strong>in</strong>ts is preserved.<br />

Cremers CVPR ’03, Cremers & Soatto IJCV ’05<br />

Segmentation<br />

&<br />

Motion<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

9


Motion Estimation<br />

Motion Competition<br />

Segmentation<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

10


Motion Competition via Level Sets<br />

Cremers, Yuille, ’04<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

11


Motion Competition via Level Sets<br />

What is mov<strong>in</strong>g?<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

12


Motion Competition via Level Sets<br />

Cremers, Yuille, ’04<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

13


Motion Competition via Level Sets<br />

Cremers, Soatto, IJCV ’05: Piecewise Parametric Motion<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

14


Motion Competition via Graph Cuts<br />

piecewise constant piecewise aff<strong>in</strong>e<br />

Schoenemann & Cremers, DAGM ’06<br />

up to 30 fps<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

15


Overview<br />

Motion segmentation<br />

Obstacle segmentation<br />

Prior shape knowledge<br />

Shape priors <strong>in</strong> global optimization<br />

3D reconstruction: a convex formulation<br />

Markerless human motion capture<br />

Wedel, Schoenemann, Brox, Cremers DAGM ’07<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

16


WarpCut: Obstacle Segmentation<br />

Segmentation of obstacles <strong>in</strong> monocular video<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

17


WarpCut: Obstacle Segmentation<br />

Local scale changes depend on distance from the camera.<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

18


WarpCut: Obstacle Segmentation<br />

Compet<strong>in</strong>g hypotheses: Obstacle or road?<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

19


WarpCut: Obstacle Segmentation<br />

Wedel, Schoenemann, Brox, Cremers DAGM ’07<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

20


Overview<br />

Motion segmentation<br />

Obstacle segmentation<br />

Prior shape knowledge<br />

Shape priors <strong>in</strong> global optimization<br />

3D reconstruction: a convex formulation<br />

Markerless human motion capture<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

21


Statistical Priors for Image Segmentation<br />

<strong>in</strong>itial contour no prior with prior<br />

with prior with prior scale <strong>in</strong>variance<br />

Cremers, Kohlberger, Schnörr, ECCV 2002<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

22


Statistical Learn<strong>in</strong>g of Familiar Shapes<br />

Cremers, Osher, Soatto, IJCV ’06<br />

Rosenblatt ’56,<br />

Parzen ’62<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

23


Statistical Learn<strong>in</strong>g of Implicit Shapes<br />

Without statistical prior<br />

Cremers, Osher, Soatto, IJCV ’06<br />

With statistical prior<br />

Sequence data courtesy of Aless<strong>and</strong>ro Bissacco.<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

24


Statistical Priors for Image Segmentation<br />

Purely geometric prior<br />

Nonparametric prior<br />

Cremers, Osher, Soatto, IJCV ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

25


Dynamical Models for Implicit Shapes<br />

Tra<strong>in</strong><strong>in</strong>g sequence<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

26


Dynamical Models for Implicit Shapes<br />

1. Dimensionality reduction by PCA (Leventon et al. ’00, Tsai et al. ’01):<br />

2. Autoregressive model for the shape vectors:<br />

mean eigen modes<br />

3. Synthesized sequence of shape vectors <strong>and</strong> embedd<strong>in</strong>g functions:<br />

mean transition matrices Gaussian noise<br />

Cremers, IEEE Trans. on PAMI ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

27


Statistically Sampled Embedd<strong>in</strong>g Functions<br />

Cremers, IEEE Trans. on PAMI ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

28


Dynamical Models for Implicit Shapes<br />

1. Low-dim. representation via PCA (Leventon et al. ’00, Tsai et al. ’01):<br />

2. Autoregressive model for the shape coefficients:<br />

3. Synthesize shape vectors <strong>and</strong> embedd<strong>in</strong>g surfaces:<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

29


Dynamical Models for Implicit Shapes<br />

1. Low-dim. representation via PCA (Leventon et al. ’00, Tsai et al. ’01):<br />

2. Autoregressive model for the shape coefficients:<br />

3. Synthesize shape vectors <strong>and</strong> embedd<strong>in</strong>g surfaces:<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

30


Dynamical Priors for Level Set Segmentation<br />

Bayesian Aposteriori Maximization:<br />

Image formation model Dynamical shape model<br />

(color, texture, motion,…)<br />

<strong>Optimization</strong> by gradient descent:<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

31


Dynamical Priors for Level Set Segmentation<br />

Input sequence with 90% uniform noise<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

32


Dynamical Priors for Level Set Segmentation<br />

Cremers, IEEE Trans. on PAMI ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

33


Dynamical Priors for Level Set Segmentation<br />

Pure deformation model<br />

Cremers, IEEE Trans. on PAMI ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

34


Dynamical Priors for Level Set Segmentation<br />

Model of jo<strong>in</strong>t deformation <strong>and</strong> transformation<br />

Cremers, IEEE Trans. on PAMI ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

35


Overview<br />

Motion segmentation<br />

Obstacle segmentation<br />

Prior shape knowledge<br />

Shape priors <strong>in</strong> global optimization<br />

3D reconstruction: a convex formulation<br />

Markerless human motion capture<br />

Schoenemann & Cremers ICCV ‘07<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

36


Limitations of Previous Approaches<br />

• Local optimization<br />

• Simple geometric distances<br />

• Little generalization<br />

• Requires large tra<strong>in</strong><strong>in</strong>g sets<br />

• Po<strong>in</strong>t correspondence,<br />

• Miss<strong>in</strong>g parts,<br />

• Stretch<strong>in</strong>g/shr<strong>in</strong>k<strong>in</strong>g,...<br />

• Comb<strong>in</strong>atorial problem<br />

Goal: Comb<strong>in</strong>atorial solution for jo<strong>in</strong>t segmentation <strong>and</strong> alignment<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

37


The Product Space of Image <strong>and</strong> Template<br />

Each node of the graph represents an image pixel <strong>and</strong> a po<strong>in</strong>t on the template.<br />

All template po<strong>in</strong>ts S are allowed to stretch over at most K image pixels.<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

38


The Product Space of Image <strong>and</strong> Template<br />

Each node of the graph represents an image pixel <strong>and</strong> a po<strong>in</strong>t on the template.<br />

All template po<strong>in</strong>ts S are allowed to stretch over at most K image pixels.<br />

A cycle <strong>in</strong> this graph def<strong>in</strong>es an assignment of template po<strong>in</strong>ts to image pixels.<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

39


Segmentation & Alignment by Energy M<strong>in</strong>.<br />

Data term Alignment with template Stretch<strong>in</strong>g cost<br />

Favors strong gradients. Favors m<strong>in</strong>imal stretch<strong>in</strong>g / shr<strong>in</strong>k<strong>in</strong>g.<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

40


Segmentation with a S<strong>in</strong>gle Template<br />

Template<br />

Segmentation results<br />

<strong>Optimization</strong> by M<strong>in</strong>imum Ratio Cycles on GPU: ~15 sec / frame<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

41


No rotational <strong>in</strong>variance<br />

Rotational Invariance<br />

Rotational <strong>in</strong>variance<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

42


Input sequence<br />

Track<strong>in</strong>g<br />

Globally optimal segmentations<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

43


Overview<br />

Motion segmentation<br />

Obstacle segmentation<br />

Prior shape knowledge<br />

Shape priors <strong>in</strong> global optimization<br />

3D reconstruction: a convex formulation<br />

Markerless human motion capture<br />

Kolev, Klodt, Brox, Esedoglu & Cremers EMMCVPR ‘07<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

44


3D Reconstruction<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

45


Probabilistic Formulation<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

46


Probabilistic Formulation<br />

Kolev, Brox, Cremers DAGM ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

47


<strong>Cont<strong>in</strong>uous</strong> Convex Formulation<br />

Introduce b<strong>in</strong>ary variable:<br />

Relax b<strong>in</strong>ary constra<strong>in</strong>t:<br />

weighted TV norm<br />

Convex functional optimized over a convex set.<br />

Solution of b<strong>in</strong>ary-valued problem by threshold<strong>in</strong>g.<br />

Global m<strong>in</strong>ima by gradient descent (or SOR).<br />

Kolev, Klodt, Brox, Esedoglu & Cremers EMMCVPR ‘07<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

48


Multiview 3D Reconstruction<br />

Kolev, Klodt, Brox, Esedoglu & Cremers EMMCVPR ‘07<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

49


Level sets<br />

<strong>Cont<strong>in</strong>uous</strong><br />

Local optima<br />

Comparison<br />

Convex formulation<br />

<strong>Cont<strong>in</strong>uous</strong><br />

Global optima*<br />

* for certa<strong>in</strong> cost functionals only<br />

Graph cuts<br />

<strong>Discrete</strong><br />

Global optima*<br />

Memory limitations<br />

Metrication errors<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

50


Metrication Errors <strong>in</strong> <strong>Discrete</strong> Energies<br />

Synthetic data:<br />

<strong>Discrete</strong> graph cut optimization<br />

blank out data term<br />

<strong>in</strong> upper octant<br />

<strong>Cont<strong>in</strong>uous</strong> convex optimization<br />

Kolev, Klodt, Brox, Esedoglu & Cremers EMMCVPR ‘07<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

51


Overview<br />

Motion segmentation<br />

Obstacle segmentation<br />

Prior shape knowledge<br />

Shape priors <strong>in</strong> global optimization<br />

3D reconstruction: a convex formulation<br />

Markerless human motion capture<br />

Brox et al. DAGM 2005<br />

Brox, Rosenhahn, Cremers & Seidel, ECCV ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

52


Human Motion Track<strong>in</strong>g<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

53


Human Motion Track<strong>in</strong>g<br />

Brox et al. DAGM 2005<br />

Brox, Rosenhahn, Cremers & Seidel, ECCV ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

54


Coupled Segmentation <strong>and</strong> 3D Track<strong>in</strong>g<br />

Brox et al. DAGM 2005<br />

Brox, Rosenhahn, Cremers & Seidel, ECCV ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

55


3D Track<strong>in</strong>g with Statistical Priors<br />

T. Brox, B. Rosenhahn, U. Kerst<strong>in</strong>g, D. Cremers, DAGM ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

56


Human Motion Track<strong>in</strong>g<br />

T. Brox, B. Rosenhahn, U. Kerst<strong>in</strong>g, D. Cremers, DAGM ’06<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

57


Motion competition<br />

3D reconstruction<br />

Summary<br />

Obstacle segmentation<br />

Human motion track<strong>in</strong>g<br />

Dynamical shape priors<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

58


Announcement: IPAM Workshop<br />

Boykov, Cremers, Darbon, Ishikawa, Kolmogorov, Osher:<br />

IPAM Workshop on “Graph Cuts <strong>and</strong> Related <strong>Discrete</strong> or<br />

<strong>Cont<strong>in</strong>uous</strong> <strong>Optimization</strong> Problems”, Feb. 25-29 2008<br />

https://www.ipam.ucla.edu/programs/gc2008/<br />

Daniel Cremers <strong>Cont<strong>in</strong>uous</strong> <strong>and</strong> <strong>Discrete</strong> <strong>Optimization</strong> <strong>in</strong> <strong>Computer</strong> <strong>Vision</strong><br />

59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!