17.08.2013 Views

Menp Ecologia 30-2 - Ecologia Mediterranea

Menp Ecologia 30-2 - Ecologia Mediterranea

Menp Ecologia 30-2 - Ecologia Mediterranea

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Tome <strong>30</strong><br />

Fascicule 2, 2004<br />

ISSN 0153-8756<br />

Revue internationale<br />

d’écologie méditerranéenne<br />

International Journal<br />

of <strong>Mediterranea</strong>n Ecology


ecologia<br />

mediterranea<br />

Revue internationale<br />

d’écologie méditerranéenne<br />

International Journal<br />

of <strong>Mediterranea</strong>n Ecology<br />

Tome <strong>30</strong> Fascicule 2 2004


Rédacteur en chef Managing editor Secrétariat Secretariat<br />

FRÉDÉRIC MÉDAIL MICHELLE DOUGNY<br />

Rédacteurs Editors<br />

LAURENCE AFFRE PHILIP ROCHE<br />

THIERRY DUTOIT THIERRY TATONI<br />

JÉRÔME ORGEAS ERIC VIDAL<br />

ARONSON J., CEFE-CNRS, Montpellier<br />

BARBERO M., IMEP, Université Aix-Marseille III<br />

BEAULIEU J.-L. DE, IMEP, Université Aix-Marseille III<br />

BROCK M., University of New England, Armidale, Australie<br />

CHEYLAN M., EPHE, Montpellier<br />

DEBUSSCHE M., CEFE-CNRS, Montpellier<br />

FADY B., INRA, Avignon<br />

GRILLAS P., Station biologique Tour du Valat, Arles<br />

GUIOT J., CEREGE-CNRS, Aix-en-Provence<br />

HOBBS R. J., CSIRO, Midland, Australie<br />

KREITER S., ENSA-M-INRA, Montpellier<br />

LE FLOC’H E., CEFE-CNRS, Montpellier<br />

Fondateur Founder<br />

PROFESSEUR PIERRE QUÉZEL<br />

Comité de lecture Advisory board<br />

ecologia mediterranea<br />

MARGARIS N. S., University of the Aegean, Mytilène, Grèce<br />

OVALLE C., CSI-Quilamapu, INIA, Chili<br />

PEDROTTI F., Universita degli Studi, Camerino, Italie<br />

PLEGUEZUELOS J. M., Université de Grenade, Espagne<br />

PONEL P., IMEP, CNRS, Marseille<br />

PRODON R., EPHE, Montpellier<br />

RIDCHARSON D. M., University Cape Town, Afrique du Sud<br />

SANS F. X., Université de Barcelone, Espagne<br />

SHMIDA A., Hebrew University of Jérusalem, Israël<br />

Abonnements Subscription (contacter Edisud)<br />

Un an : 2 numéros One year : 2 issues<br />

— France : 61 € + 9,12 € de frais de port<br />

— Europe : 61 € + 12,2 € de frais de port<br />

— Amérique, Afrique, Asie : 61 € + 18,3 € de frais de port<br />

TROUMBIS A., University of the Aegean Mytilene, Grèce<br />

URBINATI C., Agripolis, Legnaro, Italie<br />

<strong>Ecologia</strong> <strong>Mediterranea</strong><br />

Europôle méditerranéen de l’Arbois, Bâtiment Villemin, B.P. 80<br />

F-13545 Aix-en-Provence CEDEX 04, France<br />

Tél. : + 33 04 42 90 84 06 – Fax : + 33 04 91 28 80 51<br />

Internet : http://www.imep-cnrs.com/ecologia/ – e-mail : f.medail@univ.u-3mrs.fr<br />

Éditions Édisud / Atelier graphique Édisud<br />

3120 route d’Avignon, F-1<strong>30</strong>90 Aix-en-Provence, France<br />

Tél. : 00 33 04 42 21 61 44 – Fax : 00 33 04 42 21 56 20<br />

Internet : http://www.edisud.com – e-mail : info@edisud.com<br />

© Édisud, 2004, tous droits réservés.<br />

ISSN 0153-8756


ecologia<br />

mediterranea<br />

Revue internationale<br />

d’écologie méditerranéenne<br />

International Journal<br />

of <strong>Mediterranea</strong>n Ecology<br />

Tome <strong>30</strong> Fascicule 2 2004


Wood pasture in an ancient submediterranean oak forest<br />

(Peloponnese, Greece)<br />

Sylvopastoralisme dans une ancienne forêt méditerranéenne<br />

de chênes (Péloponnèse, Grèce)<br />

P. D. Dimopoulos 1 , E. Bergmeier 2<br />

1. Department of Environmental and Natural Resources Management, University of Ioannina,<br />

Seferi 2, GR-<strong>30</strong>100 Agrinio, Greece; Fax +<strong>30</strong> 641 39576: E-mail: pdimopul@cc.uoi.gr<br />

2. Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen,<br />

Germany; Fax +49 551 39 2287; E-mail: erwin.bergmeier@bio.uni-goettingen.de *corresponding author<br />

Abstract<br />

In this study the effects of wood-pasturage on species composition<br />

and forest structure in the Quercus frainetto forest of Folói are described.<br />

This is the most extensive broadleaved forest of Peloponnese<br />

and southern Greece and unique in that there is evidence of several<br />

thousand years of existence. The variation in plant species composition<br />

among, and the differences between, grazed and ungrazed<br />

forest stands are analysed by means of ordination (correspondence<br />

analysis). Species indicative for grazing or its withdrawal are listed.<br />

Annuals and certain perennials with good regeneration capacity are<br />

indicative for grazed plots, while a dense shrub layer with Arbutus<br />

unedo and Erica arborea is related to ungrazed plots. Generally, in<br />

the absence of grazing the development of the herb and shrub layer<br />

is enhanced. Forest stands in exclosures tend to produce denser canopies,<br />

oak rejuvenation is more abundant, and the trees are higher<br />

and more vital than outside. In grazed woodland, litter and organic<br />

matter are less abundant and the degree of parasitism by Loranthus<br />

europaeus is higher. Our results suggest two possible conservation<br />

options for the study area, viz. (a) controlled grazing regime in the<br />

framework of a traditional but sustainable agro-silvopastoralistic<br />

system or (b) a concept towards a natural forest ecosystem.<br />

Key-words<br />

Grazing, Greece, Old forest, Quercus frainetto, Silvopastoralism<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 137-146<br />

Résumé<br />

Dans la présente étude sont décrits les effets du sylvopastoralisme<br />

sur la composition spécifique et la structure de peuplements dans<br />

la forêt à Quercus frainetto de Folói. Cette forêt, la plus étendue<br />

du Péloponnèse et du sud de la Grèce, est unique par le fait de son<br />

existence probablement plurimillénaire. La variation de la composition<br />

spécifique au sein de peuplements pâturés ou non, et les<br />

différences entre ces deux types de peuplements ont été analysées par<br />

ordination (analyse des correspondances). Des espèces indicatrices<br />

du pâturage et de son absence sont listées. Les espèces annuelles et<br />

certaines vivaces avec une bonne capacité de régénération sont liées<br />

aux placettes pâturées, tandis qu’une strate arbustive dense formée<br />

par Arbutus unedo et Erica arborea caractérise les placettes non<br />

pâturées. De façon générale, en l’absence de pâturage, les strates<br />

herbacées et arbustives sont mieux développées. Les forêts à l’intérieur<br />

des enclos ont tendance à produire des canopées plus denses,<br />

la régénération des chênes y est plus abondante, et les arbres sont<br />

plus hauts et plus vigoureux qu’à l’extérieur. Dans les peuplements<br />

pâturés, la litière et la matière organique sont moins abondantes, et<br />

le degré de parasitisme par Loranthus europaeus est plus élevé. Nos<br />

résultats suggèrent deux options possibles pour la conservation de la<br />

zone étudiée : a) un régime de pâturage contrôlé dans le cadre d’un<br />

système agropastoral traditionnel mais durable ou b) un régime<br />

visant un écosystème forestier à caractère naturel.<br />

Mots-clés<br />

Pâturage, Grèce, vieille forêt, Quercus frainetto,<br />

Sylvopastoralisme<br />

137


138<br />

◆ P. D. DIMOPOULOS & E. BERGMEIER<br />

INTRODUCTION<br />

Interest in wood pasture has increased a great deal<br />

lately in many European countries (Papanastasis et al.,<br />

1999; Redecker et al., 2002). In western and central<br />

Europe re-introduction of wood pasture is currently<br />

under discussion, with the principal aims of enhancing<br />

forest dynamics and increasing biodiversity (Pott, 1999;<br />

Vera, 2000; Schmidt & Heile, 2001; Spencer, 2002).<br />

Modern forestry supports tall dense forest for economic<br />

reasons and, owing to the browsing of seedlings and juvenile<br />

trees, considers wood-pasturage as detrimental to the<br />

forest and chiefly responsible for the decline of wooded<br />

areas and the structural senescence of the tree stands.<br />

Present silvopastoralism in Europe is largely restricted to<br />

countries of the wider <strong>Mediterranea</strong>n and the Balkans.<br />

Grazing by domestic animals has widely been practiced<br />

in virtually all forests except for the most remote ones.<br />

In traditional silvopastoral farming systems, submediterranean<br />

deciduous and mediterranean sclerophyllous<br />

woodlands are chiefly involved. Deciduous oak forest is<br />

highly esteemed due to its mast production in autumn<br />

as food for pigs. But also other domestic animals such<br />

as sheep, goats and cattle benefit from the relatively light<br />

conditions in oak woodlands which support a fairly dense<br />

and plant-rich ground vegetation.<br />

For the present study, the forest of Folói (Kápellis;<br />

Pholóë in antiquity; Ilía, Peloponnisos, Greece) was chosen.<br />

It has been used for charcoal burning and pasturage<br />

for centuries, as travellers’ reports suggest (Philippson,<br />

1892; Pritzel, 1908; Rothmaler, 1943). The major part<br />

has been used as wood pasture for sheep and pigs within<br />

the local rural economies but remote parts show little or<br />

no signs of grazing at present.<br />

In Greece, as elsewhere in the <strong>Mediterranea</strong>n, most<br />

oak woodlands have been, or still are, subject to coppicing<br />

at more or less regular intervals. Single-stemmed<br />

old-growth oak woodlands as in our study area, however,<br />

are exceedingly rare (Bergmeier et al., 2004). The forest<br />

of Folói is the most extensive submediterranean non-coppiced<br />

oak forest in Peloponnisos, and certainly among the<br />

oldest existing. It was known already in Greek mythology,<br />

according to which it was frequented by centaurs, horses<br />

with human body, the personifications of mountain<br />

forest wilderness. Among the many myths around the<br />

Greek hero Herakles is one with the forest of Folói as<br />

the scenery of a guest meal provided for the hero that<br />

ended up in a massacre among the centaurs. Herakles<br />

also encouraged prehistoric people to clear part of the<br />

extensive forest. The myth can be interpreted figurati-<br />

vely as an attempt to civilize wilderness and to establish<br />

cultivation in less favourable regions. Although close to<br />

Olympia the hinterland of Ilía remained a little attended<br />

region in antiquity. To our knowledge, the first mentioning<br />

of an historical event in the forest area of Folói dates<br />

back to the battle between Alarichos and Stilichon in AD<br />

397 (Christopoulos, 1978).<br />

Grazing by domestic herbivores causes quantitative<br />

(number of plant individuals, species numbers) and qualitative<br />

(species composition, phenological traits) effects<br />

on <strong>Mediterranea</strong>n open habitats (Noy-Meir et al., 1989;<br />

Fernandez Alés et al., 1993; Bergmeier & Matthäs, 1996;<br />

Bergmeier, 1998). However, not many studies have dealt<br />

with woodland grazing in the <strong>Mediterranea</strong>n, or the<br />

effects of cessation of grazing to <strong>Mediterranea</strong>n deciduous<br />

woodlands (Di Pasquale & Garfi, 1998; Debussche<br />

et al., 2001). Few studies explicitly state which species in<br />

oak woodlands increase after silvopastoralism has been<br />

given up, and which decrease (Debussche et al., 2001).<br />

Based on field studies in the Foloi forest, our paper<br />

attempts to provide such information and addresses the<br />

following questions:<br />

Is the species composition of oak forest a suitable<br />

indicator for wood pasture?<br />

Which species of oak forest profit from grazing and<br />

which from its withdrawal?<br />

To which extent differs the structure of ungrazed oak<br />

forest from that of grazed stands?<br />

Is silvopastoralism an obstacle to the rejuvenation of<br />

oak?<br />

Ancient <strong>Mediterranea</strong>n forests are in urgent need of<br />

protection but conservation priorities have hardly been<br />

discussed, owing chiefly to the lack of ecological information.<br />

Our final point of discussion is therefore: Which<br />

conclusion can be drawn from our findings for the conservation<br />

and sustainable use of the specific study area?<br />

STUDY AREA<br />

The study area, the forest of Folói (Kápellis), comprises<br />

3100 ha of broadleaved forest. It is situated in<br />

the eastern part of Ilía (Elis in antiquity) in western<br />

Peloponnisos (fig. 1). The Folói plateau constitutes the<br />

upper and most extensive in a series of conglomerate<br />

tables between Mt Erimanthos and the river Alpheios<br />

(Philippson, 1959). The plateau is very slightly inclined<br />

with less than 700 m of altitude in the north and almost<br />

800 m in the south. It consists of Pleistocene continental<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


WOOD PASTURE IN AN ANCIENT SUBMEDITERRANEAN OAK FOREST ◆<br />

Figure 1. Position of the study area and distribution of Quercus frainetto forest drawn from an aerial photograph of 1992.<br />

Tree crowns in stands with open canopy (1) do not overlap and the cover is open or sparce (< 40 %); closed stands (2) with overlapping crowns<br />

represent dense canopy covers (> 60 %); intermediate stands (40-60 %) are infrequent and included into (2).<br />

deposits, represented chiefly by conglomerates (IGME,<br />

1983). The soils are commonly fairly deep cambisols,<br />

acidic, base-poor and waterpermeable. The climate is<br />

<strong>Mediterranea</strong>n-type, with mild humid winters and dry<br />

warm summers, but in the western Peloponnese modified<br />

towards sub-oceanic conditions, particularly so in the<br />

mountains. That is why, in spite of the southern position,<br />

the annual precipitation is above 1000 mm, and the arid<br />

period restricted to comprise about 90 days (meteorological<br />

station Andritsena, unpubl. data). Due to the infertility<br />

of the soils, the area was never densely populated. This<br />

is why a considerable extent of the forest was preserved<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 137-146<br />

to our days. Philippson (1892: 36), however, mentioned<br />

forest degradation caused by extensive charcoal production.<br />

Beside of charcoal industry, grazing by domestic<br />

animals (sheep, pigs, more rarely goats) has widely been<br />

practiced in the forest (Rothmaler, 1943) and is still of<br />

considerable importance for the local rural economies.<br />

The deciduous Quercus frainetto is the predominant oak,<br />

as was already mentioned by Heldreich (1862), Pritzel<br />

(1908) and Rothmaler (1943). There are no traces of fire<br />

in the present oak forest, nor is fire mentioned as a means<br />

of forest or grazing management by the early geobotanical<br />

travellers cited above. Extensive nearby areas of pine<br />

139


140<br />

◆ P. D. DIMOPOULOS & E. BERGMEIER<br />

forest, on the other hand, burnt in the 1990s. The fire<br />

did not expand to the oak forest. In spite of the serious<br />

human impact, major areas remained spacious tall forest<br />

of single-stemmed, non-coppiced trees, today an exceptionally<br />

rare type of woodland in southern Greece and<br />

elsewhere in the <strong>Mediterranea</strong>n.<br />

METHODS<br />

Silvopastoral activities (expansion or decrease of the<br />

grazed area; intensity; composition of livestock) have<br />

always been fluctuating in history, along with various<br />

socio-economic factors. Major parts of the forest are<br />

currently subject to grazing, but as for the rest, there is<br />

no way telling when exactly a given site was grazed last.<br />

Therefore, we distinguished between stands which are<br />

presently grazed, and others without present grazing<br />

impact. The absence of grazing was judged from the<br />

absence of browsed or grazed plants and from the lack<br />

of droppings. The species composition of grazed and<br />

non-grazed stands was studied in <strong>30</strong> and 12 quadrats,<br />

respectively, each of 400 m². Minimum distance between<br />

quadrats was c. 150 m, but usually more than <strong>30</strong>0 m.<br />

In order to restrict the selection to sites comparable in<br />

terms of abiotic parameters, only forests with more or less<br />

closed Quercus frainetto canopy, i.e., with more than 60<br />

% canopy cover were included. Most stands have 65-85<br />

% canopy cover (figure 1). Stands on steep slopes and<br />

in ravines were excluded. Species abundance in tree (t),<br />

shrub (s) and herb (h) layers were distinguished (t > 4<br />

m; 4 m > s > 100 cm; h < 100 cm).<br />

Four of the ungrazed quadrats were in two grazing<br />

exclosures of about two hectares in total which had<br />

been established in April 1964. In one of the exclosures<br />

(N37°46’39”, E21°44’46”), for silvicultural purposes a<br />

stand analysis had been performed in November 1964<br />

(Panagiotidis, 1965). Among other parameters, stem<br />

diameter at breast height (BHD) and tree height (TH)<br />

had been assessed. We performed a similar analysis in<br />

1999 using one plot of 8 × 50 m in the exclosure, the<br />

other of the same size in a grazed site further east <strong>30</strong> m<br />

outside the fence. Stand profiles and crown projection<br />

maps were drawn, and pH as well as visual properties<br />

of soil profiles were assessed. The following parameters<br />

were recorded per tree: BHD, TH, number of oak mistles<br />

(Loranthus europaeus) as an indicator for reduced vitality<br />

(only medium-sized to large Loranthus individuals were<br />

counted since smaller ones would easily have been<br />

overlooked). The number of juvenile oaks in ungrazed<br />

forest was assessed in 8 plots of 1 m² each, laid out at<br />

regular intervals along a diagonal inside the exclosure,<br />

and for the grazed forest the same number of plots was<br />

arranged along an outside extension of the diagonal.<br />

In order to explore the relevance of grazing for<br />

explaining the variation in the data set, the 42 relevés<br />

(<strong>30</strong> in grazed sites, 12 in ungrazed sites) were subjected<br />

to indirect gradient analysis (Correspondence analysis,<br />

CA). The settings were biplot scaling with focus on<br />

inter-species distances, no downweighting of species,<br />

and no transformation. The ordinations were performed<br />

using CANOCO 4 (ter Braak & Šmilauer, 1998). For<br />

statistical calculations on species frequency, forest and<br />

tree parameters, seedling numbers, and the degree of<br />

mistle infection, Mann-Whitney U-Test was used, with<br />

the significance levels expressed by 2-tailed Monte Carlo<br />

significance.<br />

Nomenclature of taxa follows Flora Europaea (Tutin<br />

et al., 1968-1980, 1993).<br />

RESULTS<br />

The ordination of the 42 quadrats of Quercus frainetto<br />

forest by means of CA revealed an arched plot structure<br />

which is expected for data sets with one predominant<br />

gradient (figure 2). Along the horizontal axis (axis 1), grazed<br />

plots formed the left wing of the arch, while the right<br />

wing was composed of non-grazed plots. Hence grazing<br />

regime constitutes the most important gradient explaining<br />

a great deal of variation in species composition. Species<br />

such as Cynosurus echinatus, Poa bulbosa and Trifolium<br />

campestre scored in the far left of the diagram, indicating<br />

their preferential occurrence in grazed stands. In contrast,<br />

Arbutus unedo and Erica arborea shrubs turned out to be<br />

characteristic for non-grazed plots. In the central part of<br />

the diagram taxa without clear preference to any management<br />

regime were assembled.<br />

Species preferences for grazed and non-grazed forests<br />

are displayed in more detail in table 1. Annual species<br />

were found to be restricted largely to the grazed plots.<br />

Among the perennials, certain species with the potential<br />

to resprout from basal buds or subterranean tubers<br />

(Oenanthe pimpinelloides, Asphodelus ramosus, Poa trivialis<br />

subsp. sylvicola, Poa bulbosa) occurred significantly more<br />

frequently in grazed plots. Shrub species, in particular<br />

Arbutus unedo and Erica arborea, to somewhat lesser<br />

degree also juvenile plants of these species in the herb<br />

layer, are a specific feature of non-grazed plots.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


Figure 2. Ordination diagrams (correspondence analysis)<br />

displaying floristic similarities of <strong>30</strong> grazed and 12 nongrazed<br />

plots (dots, left diagram) and selected species scores<br />

(right diagram). Species names are abbreviated by 4 letters of<br />

the generic name and 3 of the specific epithet (full names in<br />

table 1). Their positions were slightly adjusted if necessary to<br />

avoid overlap. Eigenvalues of axis 1: 0.229, axis 2: 0.168.<br />

The mean cover values of the Quercus frainetto canopy<br />

and the field layer tend to be higher in the non-grazed<br />

plots though not significantly (table 2). Quercus frainetto<br />

in the shrub layer occurred with high constancy in both<br />

regime types but was more abundant in the non-grazed<br />

plots. The cover of the shrub layer was very variable both<br />

in grazed and non-grazed stands, chiefly due to the variation<br />

in cover values of the Q. frainetto understorey, but<br />

significantly and altogether more than three times higher<br />

in non-grazed than in grazed stands (table 2).<br />

Stand analyses of a non-grazed plot in an exclosure<br />

and a grazed one nearby outside the fence revealed<br />

significantly higher values for tree height (TH) in the<br />

non-grazed plot while mean stem diameter (BHD) was<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 137-146<br />

WOOD PASTURE IN AN ANCIENT SUBMEDITERRANEAN OAK FOREST ◆<br />

lower than in the grazed plot (table 3). If compared<br />

with the mean values for all trees in 1964, the trees have<br />

become 5 m taller at an average within 35 years, and the<br />

BHD increment was 7 cm. The ratio TH/BHD remained<br />

almost constant in the exclosure while in the grazed<br />

stand a considerable decrease was noted (table 3). The<br />

age structure of the trees is uneven, and in 1964 11 % of<br />

the trees had BHD values > 40 cm (Panagiotidis, 1964).<br />

The crown projection revealed more than 80 % canopy<br />

cover in the fenced plot, as against about 70 % in the<br />

neighbouring grazed one (figures 3 and 4). The lower<br />

non-branched part of the stems is generally longer in the<br />

exclosure, and the branches in the lower two thirds of<br />

the trees are more scattered and with less foliage. Dead<br />

141


142<br />

◆ P. D. DIMOPOULOS & E. BERGMEIER<br />

Treatment grazed not grazed p<br />

Number of plots <strong>30</strong> 12<br />

Woody species<br />

Arbutus unedo s . 100 ***<br />

Arbutus unedo h 3 83 ***<br />

Erica arborea s 20 91 ***<br />

Rubus canescens 53 91 ***<br />

Sorbus torminalis h 3 33 ns<br />

Annuals<br />

Cynosurus echinatus 63 . ***<br />

Trifolium campestre 46 . *<br />

Aira elegantissima <strong>30</strong> . ns<br />

Cerastium brachypetalum <strong>30</strong> . ns<br />

Perennial herbs and subshrubs<br />

– more frequent in grazed plots<br />

Oenanthe pimpinelloides 96 58 ***<br />

Poa trivialis ssp. sylvicola 90 50 ***<br />

Asphodelus ramosus 67 25 **<br />

Trifolium physodes 88 83 **<br />

Poa bulbosa 50 16 ns<br />

– more frequent in ungrazed plots<br />

Stipa bromoides 46 100 *<br />

Clinopodium vulgare 36 75 *<br />

Potentilla micrantha 76 100 *<br />

Brachypodium sylvaticum 85 100 *<br />

Aremonia agrimonoides 50 83 *<br />

Symphytum bulbosum 43 75 *<br />

Brachypodium rupestre 13 50 ns<br />

Teucrium chamaedrys 3 41 ns<br />

Dorycnium hirsutum 6 41 ns<br />

Cephalanthera longifolia 6 41 ns<br />

Achillea ligustica 6 33 ns<br />

Lathyrus laxifl orus 76 100 ns<br />

Luzula forsteri 82 100 ns<br />

Table 1. Constancy values (given in %)<br />

and frequency differences of selected species in grazed<br />

and not grazed Quercus frainetto forest.<br />

s – shrub layer (1-4 m), h – herb layer (< 1 m). Frequency differences<br />

indicated by Mann-Whitney U-test significance levels: P < 0.05: *;<br />

P < 0.01: **; P < 0.005: ***; ns: not significant.<br />

Grazed Not grazed p<br />

number of plots <strong>30</strong> 12<br />

canopy cover 71.0 ± 11.8 75 ± 8.4 0.086 (ns)<br />

cover shrub layer 11.1 ± 16.1 39.5 ± 22.2 0.000 (***)<br />

cover herb layer 43.7 ± 20.7 50.5 ± 18.5 0.297 (ns)<br />

Table 2. Oak forest parameters of the grazed and non-grazed plots.<br />

Mean cover values are in % with standard deviation. Significance levels<br />

are * (p < 0.05); ** (p < 0.01); *** (p < 0.001); ns, not significant.<br />

branches are more numerous in the grazed plot. The oak<br />

mistle Loranthus europaeus occurred with a mean of 3.2<br />

(± 2.6) individuals per tree while the ratio was 0.9 (±<br />

1.2) Loranthus individuals per tree in the exclosure (p =<br />

0.006). We have found 27 (± 19) juveniles of Q. frainetto<br />

per m² in the grazed and 60 (± 24) in the ungrazed plots<br />

(p = 0.012) (table 3).<br />

The soil profiles were roughly 3-layered both inside<br />

and outside the exclosure, and the soil type was identified<br />

as cambisol (Braunerde). Base saturation is low, and the<br />

deep lime-free B horizon is markedly acidic (pH 4.6-5.5).<br />

Differences between the plots refer particularly to the<br />

humus layer. In the grazed plots, the latter is absent or,<br />

if present, thin (up to 2 cm) and largely without obvious<br />

mycelia. Litter is sparse and often absent. In the exclosures,<br />

there is high fungal activity in the humus layer, and<br />

litter in various stages of decomposition was 2-7 cm thick<br />

and covers most of the surface area.<br />

DISCUSSION<br />

The species composition of grazed Q. frainetto forests<br />

differs considerably from that of non-grazed stands.<br />

Annual species in particular qualify as grazing indicators,<br />

at least in dense stands with a more or less closed canopy.<br />

Among the perennial herbs and subshrubs, most species<br />

of deciduous oak forest seem to be not or negatively<br />

affected by grazing. Exceptions include Oenanthe pimpinelloides<br />

and Poa trivialis subsp. sylvicola, both supplied<br />

with subterranean tuberous or knotted swellings which<br />

enable regeneration; Asphodelus ramosus, largely avoided<br />

by herbivores and locally abundant in overgrazed pastures,<br />

and Poa bulbosa, a mat-forming pasture grass.<br />

The forest structure in non-grazed stands, as exemplified<br />

by the exclosures, is denser, the trees are taller, and<br />

there is pronounced canopy competition. The trees in the<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


grazed stands tend to be less high, with more branches<br />

in the trunk area and with more investment into radial<br />

stem growth. The higher degree of infection by parasitic<br />

Loranthus suggests that oak trees are less vital in heavily<br />

grazed forest. Since geological and topographic conditions<br />

are largely identical for all plots, differences in the<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 137-146<br />

WOOD PASTURE IN AN ANCIENT SUBMEDITERRANEAN OAK FOREST ◆<br />

Year 1964 1999 1999<br />

Treatment grazed grazed not grazed<br />

number of trees 524 10 9<br />

TH (m) 20.6 ± 1.6 23.9 ± 2.8 25.6 ± 1.8 p = 0.009 **<br />

BHD (cm) 22.4 ± 3.1 34.5 ± 4.5 29.5 ± 4.5 p = 0.049 *<br />

TH/BHD 92 69 87<br />

Loranthus individuals per tree 3.2 ± 2.6 0.9 ± 1.2 p = 0.006 **<br />

number of juv. oaks 27 ± 19 60 ± 24 p = 0.012 *<br />

Table 3. Tree and site parameters obtained from stand analyses in 1964 when the exclosure was installed, and in 1999 in the exclosure and outside next to it.<br />

Mean values with standard deviation are given. TH = mean tree height, BHD = mean breast height diameter.<br />

Significance levels refer to stand analyses in 1999; levels as in table 2.<br />

Figure 3. Stand profile (a depth<br />

of 8 m is recognized) and crown<br />

projection of a grazed Quercus<br />

frainetto forest stand. Dots on the<br />

projection indicate the position of<br />

stems, triangles that of weathered<br />

stumps.<br />

vitality of trees and in species composition are almost<br />

certainly related to the considerable differences observed<br />

in present litter and humus layers. The litter layer<br />

and the higher content of organic matter are important<br />

in maintaining rapid infiltration rates, absorbing many<br />

times its own weight of water (Pritchett & Fisher, 1987).<br />

143


144<br />

◆ P. D. DIMOPOULOS & E. BERGMEIER<br />

Figure 4. Stand profile (a<br />

depth of 5 m is recognized)<br />

and crown projection of an<br />

ungrazed Quercus frainetto<br />

forest exclosure plot. Dots on<br />

the projection indicate the<br />

position of stems; triangles<br />

that of weathered, sixangles<br />

that of resprouting stumps.<br />

Quadrats in the profile<br />

indicate Arbutus<br />

rejuvenation of >1 m, circle:<br />

resprouting Q.frainetto<br />

stump.<br />

In the exclosure, litter covers the ground almost totally,<br />

and moisture is retained much more effectively. Annuals<br />

occur only on naked mineral soil, in conditions which are<br />

absent in the exclosure (or restricted to stem bases). This<br />

is the result of wind turbulence dislocating foliage and<br />

preventing accumulation of organic matter (Wilke et al.,<br />

1993). The wind effect is reduced if a shrub or subshrub<br />

layer is developed. Such a layer is represented in the oak<br />

forest by the regrowth of Q. frainetto, the most frequent<br />

species in the herb layer, and, in non-grazed stands, also<br />

by Arbutus unedo and Erica arborea. In a study on postgrazing<br />

successional oak woodland in southern France<br />

Debussche et al. (2001) found shrub species among the<br />

increasing taxa but not among the decreasing. Grazing<br />

(by sheep and pigs as in the study area) does not prevent<br />

oak rejuvenation but young oaks are less abundant. In<br />

fact, since grazing is likely to prevent a dense Arbutus<br />

and Erica understorey, moderate silvopastoralism might<br />

even favour Q. frainetto rejuvenation. In exclosures, the<br />

dense herb layer of oak seedlings and saplings supports<br />

litter and humus accumulation, thus improving soil water<br />

and nutrient conditions which, in turn, are favourable for<br />

rejuvenation. Browsing may be of little direct effect on the<br />

juveniles but trampling is destructive to the herb layer.<br />

Soil compaction and depletion are common features in<br />

grazed woodlands (Bezkorowajnyj et al., 1993; Sibbald,<br />

1999). Our findings suggest that they may be interpreted<br />

as an indirect effect of animals due to decreased litter<br />

accumulation rather than directly by trampling.<br />

CONCLUSION AND FINAL REMARKS<br />

The forest of Folói forms part of an area named<br />

‘Oropedio Folois’ (9723 ha), chosen to become a<br />

Special Conservation Area, eligible to be included in the<br />

European ‘Natura 2000’ network of Sites of Community<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


Interest. Regulative arrangements and administrative<br />

measures for Special Conservation Areas are currently<br />

initiated, including the establishment of a management<br />

plan. Such a plan, however, cannot be worked out unless<br />

the conservation priorities are clearly defined. From our<br />

study two possible concepts may be suggested:<br />

(a) Folói represents an outstanding example of an agrosilvopastoral<br />

system. Such ecosystems are vanishing<br />

in Europe and almost lost in most countries. They are<br />

considered a traditional asset worthy of protection.<br />

The history of human interference in the Folói area<br />

is long but today’s combined impacts on the forest<br />

(grazing, charcoal production, forestry, agriculture)<br />

are far from sustainable. Maintaining wood pasture in<br />

Folói requires a balanced grazing regime and a strict<br />

control of other kinds of impact.<br />

(b) On the other hand, Folói constitutes a unique example<br />

of submediterranean tall oak forest. As our study<br />

shows, it it severely suffering in places from grazing<br />

but the conditions of regeneration towards a natural<br />

forest are better than anywhere else.<br />

Any management plan and conservation measures<br />

depend on which alternative is given priority. It is clear,<br />

from the results of our paper, that the two conservation<br />

visions can hardly be realized simultaneously in one and<br />

the same site. It is also evident that a Special Conservation<br />

Area cannot be established without the acceptance and<br />

co-operation of the resident farmers and villagers. The<br />

management plan will have to make an attempt to<br />

accomodate both options: e.g., by installing a core zone<br />

where grazing is to be prohibited, and a buffer zone with<br />

controlled grazing regime. With the establishment of a<br />

European network of conservation sites the problem of<br />

harmonization of the options natural forest and traditional<br />

silvopastoralism will be of increasing relevance. Folói<br />

may well serve as a model on how to balance the respective<br />

management and conservation measures.<br />

ACKNOWLEDGEMENTS<br />

We thank L. Boskos, F. Galanos, G. Karetsos and<br />

K. Varelides, Research Forest Institute of Athens<br />

(NAGREF), for supplying us with stand analysis data<br />

from the late N. Panagiotidis; H. Dres, retired forester<br />

of the Folói forest, for discussions and informations on<br />

the study area; U. Bergmeier for support and assistance<br />

in the field; C. Adamidis, Ioannina, for statistical advice;<br />

P. Lampropoulos, Patras, and G. Amschlinger, Freiburg,<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 137-146<br />

WOOD PASTURE IN AN ANCIENT SUBMEDITERRANEAN OAK FOREST ◆<br />

for skilfully preparing the figures; M. Klescewski and H.<br />

Gondard, both Montpellier, for their linguistic help with<br />

the résumé; E. Vidal and an anonymous reviewer for suggestions<br />

to improve the manuscript.<br />

References<br />

BERGMEIER E., 1998. Flowering intensity of phrygana plants<br />

after fencing. Israel. J. Plant Sci. 46: 41-46.<br />

BERGMEIER E., DIMOPOULOS P., T HEODOROPOULOS K. &<br />

ELEFTHERIADOU E., 2004. Zonale sommergrüne Laubwälder<br />

der südlichen Balkanhalbinsel. Tuexenia (in press).<br />

BERGMEIER E. & MATTHÄS U., 1996. Quantitative studies<br />

of phenology and early effects of non-grazing in Cretan<br />

phrygana vegetation. J. Veg. Sci. 7: 229-236.<br />

BEZKOROVAJNYJ P.J., G ORDON A.M. & MCBRIDE A.A., 1993.<br />

The effect of cattle foot traffic on soil compaction in a silvopastoral<br />

system. Agroforestry Systems 21: 1-10.<br />

CHRISTOPOULOS G. (ED.), 1978. Istoria tou Ellinikou Ethnous.<br />

[The history of the Greek Nation.] Vol. 7 (Vizantinos<br />

Ellinismos-Protovizantini chroni). Ekdoti Athinon, Athína.<br />

DEBUSSCHE M., DEBUSCHEE G. & LEPART J., 2001. Changes in<br />

the vegetation of Quercus pubescens woodland after cessation<br />

of coppicing and grazing. J. Veg. Sci. 12: 81-92.<br />

DI PASQUALE G. & GARFI G., 1998. Analyse comparée de<br />

l’évolution de la régénération de Quercus suber et Quercus<br />

pubescens après élimination du pâturage en forêt de Pisano<br />

(Sicile sud-orientale). Ecol. Medit. 24: 15-25.<br />

FERNANDEZ ALÉS R., LAFFARGA J.M. & ORTEGA F., 1993.<br />

Strategies in <strong>Mediterranea</strong>n grassland annuals in relation to<br />

stress and disturbance. J. Veg. Sci. 4: 313-322.<br />

HELDREICH TH. VON, 1862. Die Nutzpflanzen Griechenlands.<br />

Athens.<br />

IGME (ED.), 1983. Geological Map of Greece 1/500 000 (red.<br />

J. Bornovas & T. Rondogianni-Tsiambaou). 2nd ed. Athína.<br />

NOY-MEIR I., GUTMAN M. & KAPLAN Y., 1989. Responses of<br />

<strong>Mediterranea</strong>n grassland plants to grazing and protection. J.<br />

Ecol. 77: 290-310.<br />

PANAGIOTIDIS N.TH., 1965. Makrochronii dhasike piramatike<br />

epithanie. [Langfristige forstliche Versuchsflächen.] Athine. 51 pp.<br />

PAPANASTASIS V.P., FRAME J. & NASTIS A.S. (EDS.), 1999.<br />

Grasslands and woody plants in Europe. Proceedings Internat.<br />

Occ. Symp. European Grassland Federation, Thessaloniki,<br />

Greece, May 27-29, 1999. Thessaloniki.<br />

PHILIPPSON A., 1892. Der Peloponnes. Versuch einer Landeskunde<br />

auf geologischer Grundlage. Berlin.<br />

PHILIPPSON A., 1959. Die griechischen Landschaften 3 (2).<br />

Der Peloponnes, Teil 2: Der Westen und Süden der Halbinsel.<br />

Klostermann, Frankfurt am Main.<br />

145


146<br />

◆ P. D. DIMOPOULOS & E. BERGMEIER<br />

POTT R., 1999. Diversity of pasture-woodlands of north-western<br />

Germany. In: Kratochwil A. (ed.), Biodiversity in ecosystems.<br />

Kluwer Acad. Publ., Dordrecht: 107-132.<br />

PRITCHETT W. & FISHER R., 1987. Properties and management of<br />

forest soils. Wiley, New York.<br />

PRITZEL E., 1908. Vegetationsbilder aus dem mittleren und<br />

südlichen Griechenland. Bot. Jahrb. Syst. Pflanzengesch.<br />

Pflanzengeogr 41: 180-214.<br />

REDECKER B., FINCK P., HÄRDTLE W., RIECKEN U. & SCHRÖDER<br />

E. (EDS.), 2002. Pasture landscapes and nature conservation.<br />

Springer, Berlin, Heidelberg.<br />

ROTHMALER W., 1943. Die Waldverhältnisse im Peloponnes.<br />

Intersylva 3, 329-342.<br />

SCHMIDT M. & HEILE H., 2001. Beweidung von Hutewäldern im<br />

Reinhardswald – Pro und Kontra. Jahrb. Naturschutz Hessen<br />

6: 184-190.<br />

SIBBALD A.R., 1999. Silvopastoral agroforestry: soil-plant-animal<br />

interactions in the establishment phase. In: Papanastasis V.P.,<br />

Frame J. & Nastis A.S. (eds.), Grasslands and woody plants<br />

in Europe, Proceedings Internat. Occ. Symp. European<br />

Grassland Federation, Thessaloniki, Greece, 27-29 May<br />

1999: 133-144.<br />

SPENCER J., 2002. Managing wood pasture landscapes in England:<br />

the New Forest and other more recent examples. In: Redecker<br />

B., Finck P., Härdtle W., Riecken U. & Schröder E. (eds.),<br />

Pasture landscapes and nature conservation. Springer, Berlin,<br />

Heidelberg: 123-136.<br />

TER BRAAK C.J.F. & ŠMILAUER P., 1998. Canoco Reference<br />

Manual and User’s Guide to Canoco for Windows:<br />

Software for Canonical Community Ordination (version 4).<br />

Microcomputer Power, Ithaca, NY, USA.<br />

TUTIN T.G. ET AL. (EDS.), 1968-1993. Flora Europaea, Vols. 2-5<br />

and Vol. 1, 2nd ed. Cambridge University Press, Cambridge.<br />

VERA F.W.M., 2000. Grazing ecology and forest history. Oxon<br />

Cabi Publ.<br />

WILKE B., BOGENRIEDER A., WILMANNS O., 1993. Differenzierte<br />

Streuverteilung im Walde, ihre Ursachen und Folgen.<br />

Phytocoenologia 23: 129-155.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


Étude palynologique du carottage de Pont d’Argens<br />

(Roquebrune-sur-Argens, Var) : histoire holocène de la végétation<br />

en Provence cristalline ; facteurs naturels et anthropiques<br />

Pollen analysis of the core of Pont d’Argens<br />

(Roquebrune-sur-Argens, Var): Holocene vegetation history<br />

in the siliceous Provence; natural and anthropic factors<br />

Dubar Michel 1 , Bui-Thi-Maï 1 , Nicol-Pichard Sylvie 2 & Thinon Michel 3<br />

1. CEPAM (UMR-CNRS 61<strong>30</strong>), bât. 1, 250 rue Albert-Einstein, 06560 Valbonne. dubar@cepam.cnrs.fr<br />

2. Museum d’Histoire naturelle de Marseille, palais Longchamp, 1<strong>30</strong>04 Marseille<br />

3. IMEP (UMR-CNRS 6116), université Paul-Cézanne / Aix-Marseille III, faculté des sciences et techniques, case 462, 13397 Marseille cedex 20<br />

Résumé<br />

L’analyse palynologique des 28 derniers mètres du remblaiement<br />

holocène du delta de l’Argens, correspondant à l’intervalle 8 000-<br />

3 000 BP, permet une première restitution de l’histoire de la forêt<br />

de la Provence cristalline. Cette histoire est marquée, à l’origine, par<br />

le développement d’une forêt de chênes caducifoliés et de bruyères<br />

arborescentes. L’absence ou quasi-absence de taxons aujourd’hui<br />

majeurs comme le châtaignier et le chêne-liège est remarquable.<br />

Cette forêt commence à décliner à partir de 6 500 BP, sous l’effet<br />

d’un début d’anthropisation ou de causes naturelles (climat, niveau<br />

de la mer, évolution des sols et facteurs internes à l’écosystème forestier).<br />

Les modifications sont nettes vers 5 500 BP et deviennent plus<br />

radicales vers 3 000 BP avec une très large dominance des taxons<br />

héliophiles. Ces transformations sont incontestablement attribuables<br />

à l’intervention humaine.<br />

Mots-clés<br />

Végétation, holocène, Provence cristalline, anthropisation<br />

néolithique<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 147-157<br />

Abstract<br />

The palynological analysis of the upper 28 meters of the Holocene<br />

infill of the Argens Delta coinciding with the 8000-<strong>30</strong>00 BP<br />

period, has allowed a preliminary reconstruction of the history<br />

of the vegetation of Siliceous Provence. Originally there was a<br />

mixed deciduous oak and arborescent healther forest. The absence<br />

or near-absence of taxa which are nowadays very common such as<br />

the chesnut or the cork-oak is to be noted. The forest cover decreased<br />

progressively from 6500 BP in response to natural (climate, sealevel,<br />

soils, and internal factors of the forest ecosystem) or anthropic<br />

causes. A first threshold of decline around 6000 BP and later a<br />

drastic modification of the forest cover around <strong>30</strong>00 BP, may be<br />

certainly interpretated as man-made.<br />

Key-words<br />

Vegetation, holocene, siliceous Provence, neolithic anthropisation<br />

147


148<br />

◆ M. DUBAR ET AL.<br />

Abridged version<br />

The questions which we attempt to answer focus on the state<br />

of the vegetation in the Cristalline Provence before Man’s impact<br />

and the history of some present major taxa such as Quercus suber<br />

L., Erica and Castanea sativa L.<br />

A palynological study was thus carried out on a core bored<br />

in of the Holocene Delta of the Argens River. Originating in the<br />

calcareous Western Provence, the Argens River drains in its lower<br />

watercourse large areas of the Maures and Esterel cristalline blocks<br />

(fig. 1).<br />

The Argens Delta (fig. 2) was built by continuous accretion of<br />

fine-grained sediments during the Holocene sea-level uprise (Dubar<br />

& Anthony, 1995; Dubar, 2003). The core of Pont d’Argens (fig.<br />

3) cuts through the upper 28 meters of these sediments which date<br />

from the 8000-<strong>30</strong>00 yr BP interval (Fiches et al., 1995).<br />

Palynological analysis has enabled us to produce a diagram with<br />

52 superposed spectra (fig. 4). It comprises 33 arboreal taxa, 64<br />

herbaceous taxa and 21 taxa of ferns and mosses.<br />

The dominant taxa which are continously represented throughout<br />

are the arborescent heather (<strong>30</strong>-50 %), deciduous oak<br />

(5-15 %) and pines (4-<strong>30</strong> %). Quercus suber is very slightly<br />

represented (inf. 1 %), and Castanea is absent.<br />

The diagram shows three zones corresponding to an evolution<br />

in three phases (fig. 4).<br />

The first (from the basis to 21,5 m) indicates a stable composition<br />

of the vegetation, particularly for the deciduous trees (oak,<br />

lime).<br />

The second phasis (from 21,5 m to the hiatus) starts with a continuous<br />

curve of Alnus and with a peak of Corylus. Some heliophilous<br />

plants (herbaceae, shrubs and pines) increased; correlatively the<br />

deciduous trees decreased significantely from about -19 m.<br />

The third phasis (from the hiatus to the top) marked a strong<br />

change: pines, Erica and other heliophilous plants are at the height<br />

of representation when the deciduous oak drop at the minima.<br />

We note the curve of Alnus which certainly corresponds with a<br />

temporary expansion of the riparian forest.<br />

The flat but clear Abies curve also is observed on the other diagrams<br />

of Provence (Beaulieu, 1977, Pichard, 1987, Nicol-Pichard<br />

& Dubar, 1998, Andrieu-Ponel et al., 2000). Besides, making use<br />

of these diagrams we can reconstitute the vegetation and its history<br />

in Crystalline Provence between 8000 and <strong>30</strong>00 BP.<br />

The original vegetation before anthropisation combined deciduous<br />

oak and arborescent healther in a mixed forest. This was the<br />

precise time of the “Climatic Optimum” of the Holocene which<br />

resulted from forest reconquest at the end of the glaciation. Of course<br />

after the optimum, the forest cover declined slowly however without<br />

its mesophilous characteristics was really modified.<br />

In Eastern Provence, further East than the Tanneron Block,<br />

humidified and bounded by Alpine influences, the mesophilous state<br />

lasted until 5000 BP, whereas in Western Provence, drier due to the<br />

Mistral wind, the first signs of the thinning of the forest occurred<br />

earlier around 7500 BP.<br />

The slow decline of the deciduous forest after the Atlantic<br />

Optimum might have been be caused by independant factors,<br />

notably:<br />

— Morphodynamic modifications such as the uprise in sea-level<br />

(closed to 1 cm/y) which primaraily determined the construction<br />

of the alluvial and coastal plain, and finally the edification of<br />

sand bars near the mouths and along the coasts. As a consequence<br />

of the modifications of landscape, environment and soils,<br />

the riparian forest and later the pine forest, became widespread<br />

(Dubar, 2001).<br />

— A global climatic tendency towards a cooling of the climate,<br />

linked to the solar radiation ratio (Berger, 1992) occurred after<br />

the Atlantic Optimum.<br />

— The evolution of internal factors of the forest caused a slight<br />

imbalance in the geo-ecosystem (Heinrich & Hergt, 1993).<br />

In this context of slow forest decline, Neolithic man probably<br />

took the opportunity to extend agro-pastoralism, precociously in<br />

Western Provence, as indicated by the archaeological data, then<br />

later in Eastern Provence. At Pont d’Argens, as in the whole of<br />

Crystalline Provence, this scenario appears to have taken place<br />

between the two at a date close to 6000 BP. The impact on the<br />

forest cover will be however irreversible only much later, at the<br />

Iron Age (towards <strong>30</strong>00 BP), everywhere in Provence (Triat-Laval,<br />

1979) and in particular in Pont d’Argens.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


INTRODUCTION<br />

ETUDE PALYNOLOGIQUE DU CAROTTAGE DE PONT D’ARGENS (PROVENCE CRISTALLINE, VAR) ◆<br />

La végétation forestière actuelle de la Provence cristalline<br />

est essentiellement constituée par des groupements à<br />

chêne-liège (Quercus suber L.), pin maritime (Pinus pinaster<br />

Aiton subsp. pinaster), pin pignon (Pinus pinea L.) et châtaignier<br />

(Castanea sativa Miller). Le chêne vert (Quercus<br />

ilex L.), le chêne pubescent (Quercus pubescens Willd.) et le<br />

pin d’Alep (Pinus halepensis Miller) sont nettement moins<br />

fréquents. Ces taxons arborescents sont généralement<br />

associés à des formations ligneuses plus ou moins basses<br />

constituant le maquis et assez régulièrement parcourues<br />

par des incendies. Parmi les espèces les plus fréquentes<br />

du maquis, on peut citer la bruyère arborescente (Erica<br />

arborea L.), l’arbousier (Arbutus unedo L.), le cytise velu<br />

(Cytisus villosus Pourret), le ciste de Montpellier (Cistus<br />

monspeliensis L.), le ciste à feuilles de sauge (Cistus salvifolius<br />

L.) et la lavande stéchas (Lavandula stoechas L.).<br />

Cependant, comme l’avait noté Molinier (1954, 1973),<br />

le châtaignier paraît d’introduction récente et l’expansion<br />

du chêne-liège serait en grande partie liée à l’action<br />

de l’homme. Ces points ont été contestés par certains<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 147-157<br />

auteurs, notamment Loisel (1976) qui envisageait un<br />

indigénat du châtaignier et considérait que les forêts de<br />

chêne-liège constituaient une large part des groupements<br />

sylvatiques potentiels de la basse Provence siliceuse.<br />

L’état originel de la végétation de cette Provence siliceuse<br />

est donc encore mal connu. C’est pour cette raison<br />

que l’étude pollinique d’une « archive sédimentaire »<br />

ayant conservé les pollens d’une période antérieure au<br />

processus d’anthropisation nous a semblé intéressante<br />

à réaliser. Le carottage de Pont d’Argens est, en fait, le<br />

premier enregistrement sédimentaire holocène provenant<br />

du cœur même de la Provence cristalline entre les Maures<br />

et l’Esterel (fig. 1).<br />

La carotte de Pont d’Argens<br />

et son contexte géomorphologique<br />

L’Argens est un petit fleuve, long de moins de<br />

100 km qui prend sa source près de Saint-Maximin, sur<br />

le revers septentrional de la chaîne de la Sainte-Baume,<br />

en Provence occidentale (massif de Mourre d’Agnis). Il<br />

rejoint la « dépression permienne » un peu avant Vidauban<br />

Fig. 1. La Provence<br />

cristalline : socle magmatique<br />

et cristallophyllien, roches<br />

volcaniques des massifs des<br />

Maures, de l’Esterel et du<br />

Tanneron et leur auréole<br />

sédimentaire silicatée.<br />

Fig. 1. Siliceous Provence:<br />

basal complex of magmatic,<br />

metamorphic and volcanic<br />

rocks ot the Maures, Esterel<br />

and Tanneron blocks<br />

and their belt of silicated<br />

sediments.<br />

149


150<br />

◆ M. DUBAR ET AL.<br />

après avoir traversé une région de plateaux calcaires. Il<br />

ne quitte plus alors la zone des terrains silicatés, d’abord<br />

les pélites du Permien, puis la partie orientale du massif<br />

cristallin des Maures. Son cours est donc situé, pour parts<br />

sensiblement égales, en zone calcaire et en zone siliceuse.<br />

Le delta lui-même a plus de 12 km de longueur et atteint<br />

5,5 km dans sa plus grande largeur.<br />

Réalisé dans la partie amont du delta (fig. 2), le sondage<br />

a atteint, à 28 m de profondeur, le substrat rocheux<br />

permien, après avoir traversé l’intégralité du remblaiement<br />

holocène présent en ce point. Ce remblaiement<br />

s’est constitué au cours de la remontée postglaciaire du<br />

niveau de la mer entre 12 000 ans BP, époque à laquelle<br />

la mer était vers -100 m, et 3 000 ans BP, date à laquelle<br />

ce niveau a atteint pratiquement le zéro actuel (Dubar &<br />

Anthony, 1995 ; Dubar, 2003). Les basses vallées sont<br />

alors ennoyées et transformées en rias (fig. 2). Piégés<br />

dans la ria, les sédiments apportés par l’Argens ont ainsi<br />

provoqué son colmatage. Le colmatage est complet lorsque<br />

le niveau de la mer s’est approché du zéro actuel et<br />

l’émersion a eu lieu peu après.<br />

Les sédiments déposés présentent toujours une granulométrie<br />

fine et sont bien classés : ce sont des vases, des<br />

limons et des sables fins souvent chargés en débris organiques<br />

(fig. 3, A). Au sommet, dans les derniers mètres,<br />

ces dépôts qui deviennent plus grossiers, graveleux et<br />

rougeâtres, résultent de phénomènes de ruissellement ou<br />

d’alluvionnement postérieurs à l’émersion.<br />

Trois dates 14 C ont été obtenues sur des lits tourbeux,<br />

dans le tiers inférieur de la carotte. Nous les utilisons en<br />

âge BP non calibré. La date de 7440 +/-90 BP (Ly 5868)<br />

obtenue à 26,60 m permet de situer la base du remblaiement<br />

vers 7 900 BP. Les dates intermédiaires sont de<br />

7 080 +/-70 BP (Ly 5867) à 23,50 m, de 6 000+/-60<br />

Fig. 2. Le delta de l’Argens et la position des deux carottages de Pont d’Argens et du Verteil.<br />

Fig. 2. The Argens delta: location of the two cores of Pont d’Argens and Verteil.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


ETUDE PALYNOLOGIQUE DU CAROTTAGE DE PONT D’ARGENS (PROVENCE CRISTALLINE, VAR) ◆<br />

Fig. 3. Les carottages de Pont<br />

d’Argens (A) et du Verteil (B)<br />

et leur étalonnage C 14 (dates<br />

BP non calibrées).<br />

Fig. 3. Pont d’Argens and<br />

Verteil cores with 14 C datings<br />

(non calibrated BP).<br />

BP (Ly 5866) à 19,25 m et de 5790 +/-60 (Ly 5865) à<br />

18,60 m. La partie supérieure n’a pas été datée directement,<br />

cependant on peut évaluer son âge en se référant à<br />

un autre carottage réalisé plus en aval, au Verteil (fig. 1).<br />

Dans cette carotte, un petit lit tourbeux situé à -7 m<br />

(fig. 3, B) a été daté de 3 050 BP (Ly 5889). Sans qu’on<br />

puisse établir une parfaite correspondance altimétrique<br />

entre les deux carottages, il semble toutefois que le sommet<br />

du remblaiement deltaïque de Pont d’Argens puisse<br />

être situé vers 3 000 BP.<br />

Compte tenu de la genèse du remblaiement et de son<br />

caractère d’accrétion continue (Fiches et al., 1995), nous<br />

pouvons admettre que la carotte de Pont d’Argens couvre<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 147-157<br />

l’intervalle 7 900-3 000 BP. Il manque malheureusement<br />

5 m de sédiments, car la récupération des dépôts a été<br />

mauvaise entre -10 et -15 m.<br />

L’analyse palynologique<br />

L’analyse a porté sur l’ensemble de la carotte, à l’exception<br />

de la tranche 10 à 15 m. Ce hiatus ne semble<br />

toutefois pas avoir gravement affecté la continuité du<br />

diagramme pollinique.<br />

Normalement les analyses ont été réalisées avec un<br />

pas de 20 cm, mais parfois, afin de suivre les variations<br />

verticales de la lithologie, cet espacement a été modifié, ce<br />

qui explique une certaine irrégularité des prélèvements,<br />

en particulier dans les dix derniers mètres. Cette séquence<br />

supérieure est pauvre en pollens et les grains sont mal<br />

conservés. En revanche, dans la série sédimentaire inférieure,<br />

qui se développe en-dessous de 15 m, les spectres<br />

sont très riches en pollens et spores. Le diagramme comprend<br />

52 spectres (fig. 4) qui ont permis d’identifier 33<br />

taxons arborescents, 64 taxons herbacés, suffrutescents et<br />

cryptogamiques. Les pourcentages de ces derniers taxons<br />

ont été calculés séparément de façon à ne pas amoindrir<br />

la représentation globale du couvert forestier. La première<br />

colonne située à gauche du diagramme, montre les courbes<br />

respectives des pollens d’arbres (AP) et d’herbacées<br />

(NAP).<br />

Les familles des herbacées non représentées graphiquement<br />

(tableau 1, p. 22) sont les Orchidaceae,<br />

Papaveraceae, Rutaceae, Saxifragaceae et Valerianaceae.<br />

Les genres et espèces non représentés sont : Aphyllanthes<br />

monspeliensis L., Crocus sp., Potentilla sp., Thalictrum sp.<br />

ainsi que Alisma sp., Hippuris vulgaris L., Lythrum sp., qui<br />

sont des plantes d’eau douce et Ruppia sp. qui indique la<br />

présence d’eau saumâtre.<br />

Les trois essences dominantes et représentées de<br />

manière continue sont des Ericaceae (Erica arborea, <strong>30</strong><br />

à 40 %), des chênes caducifoliés (5 à 15 %) et des pins<br />

(4 à <strong>30</strong> %). On remarque, en revanche, l’extrême discrétion<br />

(moins de 1 %) de Quercus suber qui est aujourd’hui<br />

caractéristique des massifs siliceux environnants. Erica<br />

arborea, qui domine constamment, a une fréquence relativement<br />

homogène de la base au sommet (le hiatus de 5<br />

m entre les cotes 15 et 10 m ne produit pas de distorsion<br />

importante de sa représentation).<br />

Nous avons subdivisé le diagramme en trois zones<br />

correspondant à une évolution triphasée (fig. 4) :<br />

— La première s’étend de la base jusqu’aux environs du<br />

niveau 21,5 m. Les différentes représentations sont<br />

151


152<br />

◆ M. DUBAR ET AL.<br />

relativement stables. Les chênes caducifoliés se maintiennent<br />

à des valeurs élevées, immédiatement après<br />

la bruyère arborescente. On peut noter la présence<br />

pratiquement constante du tilleul (Tilia), espèce caractéristique<br />

des milieux forestiers caducifoliés évolués.<br />

— La seconde zone lui succède jusqu’au hiatus. Elle est<br />

assez hétérogène mais nous définissons sa base par la<br />

concomitance de l’apparition d’une courbe continue<br />

de l’aulne, d’un pic remarquable de Corylus et de<br />

l’accroissement des Cichorioideae. Cette zone peut<br />

être subdivisée elle-même en deux sous-zones 2a et<br />

2b : la première de 21,5 m jusqu’à 17,5 m, la seconde<br />

de 17,5 m jusqu’au hiatus. Ces deux sous-zones se<br />

différencient au niveau du fonds arboréen : la première<br />

voit la persistance d’une bonne représentation<br />

de taxons arborescents forestiers comme les chênes à<br />

feuillage caduc et le sapin (Abies), la seconde partie<br />

est caractérisée par la nette diminution de ces arbres,<br />

tandis que les héliophiles comme les Cichorioideae, les<br />

Chenopodiaceae et Pinus prennent de l’importance.<br />

Le rapport AP/NAP diminue corrélativement.<br />

— La troisième couvre la partie supérieure du diagramme.<br />

Les taux de Pinus, d’Erica arborea et des héliophiles<br />

sont à leur apogée, tandis que ceux des chênes sont à<br />

leur minimum.<br />

Bien développée entre 21 et 17,40 m avec un pic de<br />

40 % à 17,80 m, la courbe de l’aulne (Alnus) est certainement<br />

représentative de l’essor momentané de la ripisylve.<br />

La discrète courbe du sapin (Abies) entre 21 et 18 m<br />

est bien conforme à ce qui est connu par ailleurs en<br />

Provence pour cette période (Beaulieu, 1977 ; Triat-<br />

Laval, 1978, Pichard, 1987 ; Nicol-Pichard & Dubar,<br />

1998 ; Andrieu-Ponel et al., 2000) et dénote sans doute<br />

l’existence de sapinières dans des massifs voisins du bassin<br />

de l’Argens. En effet, la présence de grains de pollens<br />

de sapin au faible pouvoir dispersif (Triat-Laval, 1971)<br />

implique l’existence régionale d’arbres producteurs.<br />

Les herbacées ne présentent pas de variations significatives,<br />

on note cependant une légère progression des NAP<br />

à partir de la cote -17,50 m. Dès cet instant, la courbe<br />

de l’aulne s’arrête et celle des fougères progresse considérablement.<br />

Ce changement voit aussi l’accroissement<br />

de la courbe des pins et la diminution de celle du chêne<br />

pubescent. Ces tendances se confirment après le hiatus<br />

(cote -10 m) et semblent donc bien valider les résultats<br />

de cette deuxième partie du diagramme. Les variations<br />

qui y sont observées, en particulier la progression des<br />

pins et celle de Erica arborea, s’inscrivent bien dans une<br />

tendance significative d’une modification de la végétation.<br />

De même, la progression de Cistus et des chicorées peut<br />

être considérée comme étant liée à l’ouverture du milieu<br />

et à l’érosion probable des sols.<br />

La restitution de la végétation de la zone cristalline à<br />

partir de l’étude palynologique de la carotte de Pont d’Argens<br />

pose le problème de l’apport probable de pollens des<br />

zones lointaines du bassin versant situées en Provence<br />

calcaire. Il semble cependant que ces apports soient relativement<br />

peu importants. En effet, la forte dominance,<br />

en nombre de grains, d’Erica arborea, qui est une espèce<br />

calcifuge réputée pour ne diffuser ses pollens qu’à très<br />

faible distance, tend à montrer que la composition pollinique<br />

des spectres est principalement d’origine locale. Ce<br />

cortège paraît donc relativement bien représentatif de la<br />

flore de la zone cristalline proche du carottage.<br />

DISCUSSION<br />

Couvrant une durée de près de 5 millénaires, le<br />

diagramme de Pont d’Argens montre l’évolution de la<br />

végétation holocène régionale. Il peut être comparé aux<br />

autres diagrammes obtenus en Provence comme ceux de<br />

Tourves (Nicol-Pichard, 1987) et de Biot (Nicol-Pichard<br />

& Dubar, 1998). Le premier est situé en Provence calcaire<br />

à l’ouest de Pont d’Argens, tandis que le second, localisé<br />

en région niçoise également calcaire, est plus à l’est. Ces<br />

deux diagrammes montrent le développement considérable<br />

de la forêt mésophile, tout particulièrement de la<br />

chênaie caducifoliée dès l’Holocène ancien. Ce type de<br />

végétation paraît d’ailleurs constituer un état d’équilibre<br />

durable dans toute la Provence, Provence occidentale et<br />

rhodanienne comprises (Triat-Laval, 1979) ainsi que dans<br />

le Sud des Alpes (Beaulieu, 1977) : la reconquête de la<br />

forêt depuis la fin du glaciaire est rapide et continue et<br />

conduit à l’optimum atlantique entre 8 000 et 7 500 BP.<br />

En Provence cristalline, sur les roches mères compactes<br />

(granites, rhyolithes, gneiss), assez peu altérables sous<br />

climat méditerranéen, les facteurs édaphiques sont fortement<br />

exprimés, certainement en raison de la chimie des<br />

sols, mais aussi vraisemblablement dans le faible développement<br />

des profils. De ce fait, les espèces de la chênaie<br />

caducifoliée sont localement peu favorisées par rapport<br />

à d’autres taxons qui, comme Erica arborea, sont moins<br />

exigeants au point de vue édaphique. Dans ce complexe<br />

du chêne caducifolié et de la bruyère arborescente, il est<br />

évidemment difficile de savoir si la répartition végétale<br />

se faisait selon une mosaïque de zones (par exemple des<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


ETUDE PALYNOLOGIQUE DU CAROTTAGE DE PONT D’ARGENS (PROVENCE CRISTALLINE, VAR) ◆<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 147-157<br />

Fig. 4. Diagramme<br />

pollinique de Pont<br />

d’Argens (les taxons trop<br />

rares n’ont pas été portés<br />

sur le diagramme ; voir<br />

texte).<br />

Fig. 4. Pollinic diagram<br />

of Pont d’Argens (taxa<br />

very rare were not<br />

related to the diagram ;<br />

see text).<br />

153


154<br />

◆ M. DUBAR ET AL.<br />

taxons altitude Croc Aphymons MAL ORC PAP PRI Thal Filip RUT SAX Viola Lythr Alism Hipp Rupp VAL<br />

542 1,50<br />

769 0,80<br />

860 1,70<br />

901 0,80 0,80 0,80<br />

925 0,80 0,80 0,80<br />

980 1,00 1,00 1,00<br />

1610<br />

1650 0,20<br />

1705 0,50<br />

1720 0,40<br />

1740 0,20 0,40<br />

1760<br />

1780 0,50 1,20 0,90<br />

1820 0,<strong>30</strong> 0,60<br />

1900 0,20<br />

1923 0,<strong>30</strong><br />

1960 0,50<br />

2020 0,20<br />

2060 0,<strong>30</strong> 0,<strong>30</strong><br />

2080 0,20 0,20<br />

2170 0,<strong>30</strong> 0,<strong>30</strong><br />

2310 0,<strong>30</strong><br />

23<strong>30</strong> 0,70<br />

2390 0,<strong>30</strong><br />

2410 0,<strong>30</strong><br />

2470 0,<strong>30</strong><br />

2490 0,20 0,20<br />

25<strong>30</strong> 0,<strong>30</strong><br />

2550 0,<strong>30</strong><br />

2650 0,<strong>30</strong><br />

2670 0,20 0,20<br />

2690 0,40 0,40<br />

2707<br />

altitude taxons Croc Aphymons MAL ORC PAP PRI Thal Filip RUT SAX Viola Lythr Alism Hipp Rupp VAL<br />

Croc = Crocus ; Aphymons = Aphyllanthes monspeliensis ; MAL = MALVACEAE ; ORC = ORCHIDACEAE ;<br />

PAP = PAPAVERACEAE ; PRI = PRIMULACEAE ; Thal = Thalictrum ; Filip = Filipendula ; RUT = RUTACEAE ;<br />

SAX = SAXIFRAGACEAE ; Lythr = Lythrum ; Alism = Alisma ; Hipp = Hippuris ; Rupp = Ruppia ; VAL = VALERIANACEAE<br />

Tableau 1. Contenu du varia du diagramme pollinique (figure 4).<br />

Table 1. Detailed content of the varia in the polllinic diagram (figure 4).<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


ETUDE PALYNOLOGIQUE DU CAROTTAGE DE PONT D’ARGENS (PROVENCE CRISTALLINE, VAR) ◆<br />

groupements à bruyère dominante sur les adrets et les<br />

sols superficiels et des secteurs plus forestiers à chênes<br />

pubescents sur les ubacs et les sols profonds) ou bien si<br />

une véritable association chêne-bruyère occupait l’ensemble<br />

des massifs. Un faciès de ce type existe aujourd’hui<br />

dans certaines zones protégées, non perturbées par les<br />

incendies depuis plus de cinquante ans, comme la haute<br />

vallée du Reyran dans le massif de l’Esterel. Mais toutes<br />

les observations écologiques montrent que la bruyère<br />

régresse lorsqu’elle est dominée par des ligneux de taille<br />

supérieure. La coexistence de ces deux taxons avait déjà<br />

été observée par Reille (1984), à basse altitude en Corse,<br />

avec des taux élevés de pollen d’Erica arborea dès le<br />

début de l’Atlantique, ce qui avait conduit cet auteur à<br />

s’interroger sur la place de la bruyère arborescente dans<br />

les écosystèmes naturels sur terrains siliceux. On peut<br />

remarquer que, en Corse, des taux relativement élevés<br />

de cette espèce ont été relevés à des altitudes approchant<br />

1 800 m (Reille, 1975), ce qui conduit à penser que son<br />

pollen est relativement diffusable par le vent. Quoi qu’il<br />

en soit, cette végétation à l’architecture mal connue, constituée<br />

globalement de chênes caducifoliés et de bruyères<br />

arborescentes semble représenter un certain état de stabilité<br />

(climax), qui peut être dit « originel », c’est-à-dire<br />

antérieur à l’anthropisation.<br />

Sur le diagramme de Pont d’Argens, comme d’ailleurs<br />

sur les autres séries polliniques de Provence orientale,<br />

l’intervention de l’homme néolithique semble plus faible<br />

et plus tardive qu’en Provence occidentale, peut-être<br />

discrètement vers 6 500 BP, au début de la phase 2, où<br />

le pic de Corylus peut être, lui aussi, interprété comme<br />

une ouverture ménagée du milieu qui profite momentanément<br />

à cette héliophile mésophile. L’ouverture du<br />

paysage est nettement plus sensible dans la seconde<br />

partie de cette phase où le pic des Chenopodiaceae peut<br />

représenter l’extension des rudérales ou bien l’installation<br />

d’une végétation lagunaire halophile. Cependant, le pic<br />

des Cichorioideae et la régression des taxons forestiers,<br />

notamment avec la disparition de Tilia, fait pencher pour<br />

la première hypothèse. L’anthropisation s’accentue fortement<br />

dans la dernière phase, qui semble correspondre au<br />

Bronze final et à l’âge du Fer, d’après l’âge de 3 000 BP<br />

obtenu sur le carottage du Verteil. Les pollens de pins<br />

atteignent des taux inégalés, ainsi que la bruyère dans<br />

le niveau supérieur, alors que les cistes, comme tous les<br />

taxons héliophiles (Artemisia, Helianthemum, Plantago,<br />

Apiaceae, Cichorioideae, Chenopodiaceae, etc.) sont en<br />

forte augmentation ; Calluna, Asphodelus et Juniperus sont<br />

des indicateurs de pastoralisme.<br />

La lente régression de la forêt après l’optimum atlanti-<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 147-157<br />

que pourrait être aussi le résultat de changements morphodynamiques<br />

locaux. En effet, tout particulièrement dans<br />

les basses vallées ou à proximité du rivage, il a été montré<br />

que sous l’effet de la remontée du niveau marin (Dubar,<br />

2001), vers la fin de la transgression holocène, à partir de<br />

6 000 BP, la formation des plaines alluviales côtières et<br />

des basses vallées conduit à l’extension des ripisylves puis<br />

à celle des pinèdes au détriment de la chênaie. L’extension<br />

tardive des pins sur la frange côtière et près des estuaires<br />

est essentiellement d’ordre édaphique et liée à la mise en<br />

place, alors que le niveau marin s’est presque stabilisé, des<br />

cordons sableux et graveleux (Dubar & Anthony, 1995).<br />

Ce phénomène est très perceptible sur le diagramme de<br />

Biot (Nicol-Pichard & Dubar, 1998), mais il l’est moins<br />

sur celui du Pont d’Argens.<br />

Des variations climatiques au cours de l’Holocène,<br />

après l’optimum atlantique, ont également été invoquées<br />

pour expliquer les changements de végétation. Depuis la<br />

fin du glaciaire, la tendance linéaire a été au réchauffement<br />

jusqu’à l’optimum climatique atlantique. Un lent<br />

rafraîchissement aurait suivi, provoqué par des changements<br />

de l’insolation terrestre (Berger, 1992). Certains<br />

auteurs font intervenir des « crises » climatiques. Ainsi, la<br />

détérioration du Subboréal correspondrait à l’accomplissement<br />

d’une série modulée de phases sèches à caractère<br />

« méditerranéen » accusé (Jalut et al., 2000). Cependant<br />

l’origine de ces crises climatiques et même leur réalité<br />

physique restent hypothétiques.<br />

On a également fait appel à la dynamique interne<br />

des écosystèmes, sans qu’il n’y ait aucune intervention<br />

externe. Après la reconquête rapide post-glaciaire et<br />

l’acmé de l’optimum atlantique (Kremer & Petit, 2001),<br />

la chênaie caducifoliée décline lentement comme cela<br />

est fréquent dans la dynamique des populations. Les<br />

causes peuvent être multiples, mais il semble que pour<br />

les communautés végétales à extension très rapide, des<br />

rétroactions positives, cumulatives et durables pourraient<br />

s’établir, menant à un certain déséquilibre du géoécosystème<br />

(Heinrich & Hergt, 1993).<br />

Il n’est pas possible de faire la part respective de ces<br />

divers éléments. Seul le constat d’une évolution forestière<br />

est certain et cette évolution se fait, à l’Atlantique, dans<br />

le sens d’une diminution sensible du couvert mésophile,<br />

le changement étant diachrone :<br />

— En Provence occidentale et rhodanienne, au climat<br />

plus sec et soumis à l’action du mistral, le changement<br />

enregistré par les archives polliniques est plus précoce.<br />

On observe notamment les premières manifestations<br />

et fluctuations des chênaies sclérophylles à partir de<br />

7 500 BP, date qui coïncide avec l’installation des pre-<br />

155


156<br />

◆ M. DUBAR ET AL.<br />

mières communautés néolithiques du Cardial ancien<br />

(Triat-Laval, 1978).<br />

— En Provence la plus orientale (au-delà du Tanneron),<br />

plus humide car subissant l’influence du relief des<br />

Alpes, l’équilibre mésophile de la forêt de la période<br />

atlantique paraît se maintenir pratiquement jusque<br />

vers 5 000 BP (Dubar et al., 1986).<br />

On peut émettre l’hypothèse que la Provence orientale<br />

bien que occupée sur son littoral dès 7 000 BP (Binder &<br />

Maggi, 2001) a été plus faiblement et plus tardivement<br />

mise en exploitation que la Provence occidentale (Dubar<br />

& Roscian, 2001). En retour, l’impact sur le couvert<br />

végétal est aggravé également de manière retardée dans<br />

le temps. Il ne faut cependant pas oublier que les différences<br />

climatiques peuvent aussi jouer sur l’expression<br />

pollinique du degré d’anthropisation. À Pont d’Argens,<br />

la situation paraît être intermédiaire avec l’enregistrement<br />

d’une première régression de la chênaie caducifoliée vers<br />

6 500 BP suivie d’une accentuation à partir de 5 500 BP.<br />

L’impact reste cependant modéré et la dégradation ne<br />

deviendra irréversible que beaucoup plus tard, vers<br />

3 000 BP.<br />

On doit remarquer que ces données polliniques montrent<br />

la grande rareté du chêne-liège (Quercus suber) et<br />

l’absence du châtaignier (Castanea sativa), tous deux forts<br />

pollinisateurs, qui sont aujourd’hui les arbres caractéristiques<br />

des massifs des Maures et de l’Esterel. Par contre, la<br />

discrétion de l’arbousier (Arbutus) dans le diagramme est<br />

peut être à mettre au compte de sa faible dispersion pollinique.<br />

Comme en zones calcaires, la chênaie caducifoliée<br />

constituait l’essentiel de la forêt originelle et, de la même<br />

façon que pour ces régions, les données phytohistoriques<br />

s’inscrivent en faux vis-à-vis des spéculations phytosociologiques.<br />

Ces dernières accordaient, pour les massifs<br />

siliceux, une place prépondérante soit au chêne vert<br />

(Molinier, 1973), soit au chêne-liège (Lavagne & Moutte,<br />

1974 ; Loisel, 1976). L’absence du châtaignier rend également<br />

peu probable un indigénat suggéré par l’individualisation<br />

actuelle d’une association végétale particulière dans<br />

les massifs des Maures et de l’Esterel (Loisel, 1976).<br />

CONCLUSION<br />

Le diagramme de Pont d’Argens offre une première<br />

approche phytohistorique de la Provence cristalline antérieure<br />

à l’intervention de l’homme néolithique. Il nous<br />

renseigne sur la composition de la végétation depuis<br />

environ 7 500 BP, la dominance (attendue) de certains<br />

taxons comme la bruyère arborescente, le rôle important<br />

de la chênaie caducifoliée et l’absence de taxons,<br />

aujourd’hui prépondérants, comme le chêne-liège ou le<br />

châtaignier. Sur le plan de l’évolution de la couverture<br />

végétale de la Provence cristalline au cours de l’Holocène,<br />

ce diagramme est conforme à ce qui est déjà connu en<br />

Provence calcaire. La tendance forestière mésophile est<br />

exprimée précocement (c’est la suite normale de l’évolution<br />

climatique postglaciaire), modulée par les facteurs<br />

édaphiques locaux. Des signes de modifications d’origine<br />

anthropique ou à déterminisme naturel apparaissent à<br />

partir de 6 500 BP, avec un décalage d’un millier d’années<br />

par rapport aux données obtenues en Provence<br />

occidentale, et donc, chronologiquement intermédiaires<br />

avec ceux observés en zone calcaire orientale. À partir<br />

de 5 500 BP, les manifestations d’une exploitation par<br />

l’homme producteur deviennent évidentes pour aboutir<br />

à une anthropisation généralisée vers 3 000 BP.<br />

REMERCIEMENTS<br />

L’interprétation palynologique et la rédaction de<br />

l’article ont bénéficié des nombreux conseils de Michel<br />

Girard. Qu’il en soit vivement remercié ici. Nous remercions<br />

également Claudine Dauphin pour la traduction<br />

en anglais de la version abrégée ainsi que les deux rapporteurs<br />

anonymes qui ont contribué à éclairer certains<br />

points importants de la discussion.<br />

Bibliographie<br />

ANDRIEU-PONEL V., PONEL P., J ULL A.J.T, BEAULIEU J.-L.,<br />

BRUNETON H. & LEVEAU P., 2000. Towards the reconstruction<br />

of the Holocene vegetation history of Lower Provence:<br />

two new pollen profiles from Marais des Baux. Veget. Hist.<br />

Archeobot., 9: 71-84.<br />

BEAULIEU J.-L. DE, 1977. Contribution pollenalytique à l’histoire<br />

tardi- et post-glaciaire de la végétation des Alpes méridionales<br />

françaises. Thèse ès-sciences Aix-Marseille III, 358 p.<br />

BERGER A., 1992. Le climat de la Terre. Un passé pour quel avenir ?<br />

Editions De Boeck-Wesmael. 479 p.<br />

BINDER D. & MAGGI R., 2001. Le Néolithique ancien de l’arc<br />

liguro-provençal. Bull. Soc. Préhist. Fr., 98 : 411-422.<br />

DUBAR M. & ROSCIAN S., 2000. Scénario climatique et dévelop-<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


ETUDE PALYNOLOGIQUE DU CAROTTAGE DE PONT D’ARGENS (PROVENCE CRISTALLINE, VAR) ◆<br />

pement de l’agro-pastoralisme néolithique en Provence et en<br />

Ligurie. Bull. Soc. Préhist. Fr., 98 : 391-398.<br />

DUBAR M., 2001. Évolution de la végétation littorale en relation<br />

avec les changements physiographiques et édaphiques à la fin<br />

de la transgression holocène en Provence orientale (France).<br />

Actes du XVIIe Congrès de l’APLF, Arles, sept. 2001, 38.<br />

DUBAR M., 2003. The Holocene deltas of Eastern Provence and<br />

the French Riviera : geomorphological inheritance, genesis<br />

and vulnerability. Géomorphologie: relief, processus, environnement,<br />

2003, 4: 263-270.<br />

DUBAR M. & ANTHONY E.J., 1995. Holocene Environmental<br />

Change and River-Mouth Sedimentation in the Baie des<br />

Anges, French Riviera. Quatern. Res. 43, 3: 329-343.<br />

DUBAR M., DAMBLON F., NICOL-PICHARD S., VERNET J.-L.,<br />

CHAIX L., IRR F. & BABINOT J.-F., 1986. L’environnement<br />

côtier des Alpes-Maritimes à la fin de la transgression versilienne<br />

d’après l’étude biostratigraphique du site de l’Etoile à<br />

Nice (France). Revue de Paléobiologie, 5 : 289-310.<br />

FICHES J.-L, BÉRATO J., BRENTCHALOV D., CHOUQUER G.,<br />

DUBAR M., GAZEENBEEK M., LATOUR J. & ROGERS B.,<br />

1995. Habitats de l’Age du fer et structures agraires d’époque<br />

romaine aux Escaravatiers (Puget-sur-Argens, France).<br />

Gallia, 52 : 205-262.<br />

HEINRICH D. & HERGT M., 1993. Atlas de l’Ecologie. Encyclopédie<br />

d’aujourd’hui. Le Livre de poche, Paris, 286 p.<br />

JALUT G., AMAT A.E., BONNET L., GAUQUELIN T. &<br />

FONTUGNE M., 2000. Holocene climatic changes in the<br />

Western <strong>Mediterranea</strong>, from South-east Spain. Palaeogeogr.,<br />

Palaeoclim., Palaeoecol., 160 : 255-290.<br />

KREMER A. & PETIT R., 2001. L’épopée des chênes européens.<br />

La Recherche, 342 : 40-43.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 147-157<br />

LAVAGNE A. & MOUTTE P., 1974. Feuille de Saint Tropez au<br />

1/100 000. Bull. Carte Végét. de la Provence et des Alpes du<br />

Sud (I) : 3-43.<br />

LOISEL R., 1976. La végétation de l’étage méditerranéen dans<br />

le sud-est continental français. Thèse ès-sciences Aix-<br />

Marseille III, 384 p.<br />

MOLINIER R., 1954. Les climax côtiers de la Méditerranée occidentale,<br />

Vegetatio, 4 : 284-<strong>30</strong>8.<br />

MOLINIER R., 1973. Les études phytosociologiques en Provence<br />

cristalline, Bull. Hist. Nat. Marseille, 33 : 7-46.<br />

NICOL-PICHARD S. & DUBAR M., 1998. Reconstruction of Late-<br />

Glacial and Holocene environments in Southeast France<br />

based on the study of a 66 m long core from Biot, Alpes-<br />

Maritimes. Veget. Hist. and Archeobot., 7 :11-15.<br />

REILLE M., 1975. Contribution pollenanalytique à l’histoire tardiglaciaire<br />

et holocène de la végétation de la montagne corse.<br />

Thèse ès-sciences Aix-Marseille III, 206 p.<br />

REILLE M., 1984. Origine de la végétation de la Corse sudorientale<br />

; analyse pollinique de cinq marais côtiers. Pollen et<br />

spores, 26 (1) : 43-60.<br />

TRIAT-LAVAL H., 1971. Contribution à l’étude de la dissémination<br />

pollinique du pin, du hêtre, du sapin et de l’épicéa. Ann.<br />

Univ. de Provence, Sciences, 46, p. 155-160.<br />

TRIAT-LAVAL H., 1978. Contribution pollenalytique à l’histoire<br />

tardi- et post-glaciaire de la végétation de la basse vallée du<br />

Rhône. Thèse ès-sciences Aix-Marseille III, 343 p.<br />

TRIAT-LAVAL H., 1979. Histoire de la forêt provençale depuis 15<br />

000 ans d’après l’analyse pollinique. Forêt médit., 1 : 19-24.<br />

157


Distribution and stand structure of Taxus baccata populations<br />

in Greece; Results of the first national inventory<br />

Distribution et structure des peuplements de Taxus baccata<br />

en Grèce ; résultats du premier inventaire national<br />

K. Kassioumis 1 , K. Papageorgiou 1 , T. Glezakos 2 & I.N. Vogiatzakis 3<br />

1. Correspondence author: NAGREF – Agricultural Research Station of Ioannina (ARSI), E. Antistasis 1, Katsikas,<br />

45500, Ioannina, Greece. E-mail: kostpap@freemail.gr<br />

2. NAGREF – Information and Documentation Section, Egialias 19 & Chalepa, 15125 Athens, Greece<br />

3. Landscape and Landform Research Group Department of Geography, University of Reading Whiteknights RG6 6AB, Reading Berks, UK<br />

Abstract<br />

Yew, Taxus baccata L. is a declining species that occupies a limited<br />

range throughout the <strong>Mediterranea</strong>n basin. The community structure<br />

and spatial distribution of yew trees were investigated in Greece<br />

by means of a questionnaire survey administered to Forest District<br />

Offices nationwide. The results of the survey show that the species<br />

population is confined mainly to mountainous areas extending<br />

from south Peloponnese to Evros prefecture. Findings suggest yew<br />

as a rare and potentially endangered species that occurs at different<br />

degrees of population fragmentation ranging from individual trees<br />

to more rarely clumps of trees. Yew distribution is formed by isolated<br />

populations, mostly in mountain ravines at an altitudinal range<br />

between 500 and 1 500 metres; it increasingly becomes an isolated<br />

storey tree within fir pure forests (Abies cephalonica) and various<br />

kinds of mixed woodlands of beech and oak, as well as mixed forests<br />

of fir and beech. Populations are small, most in shrubby groups of<br />

5 to 50 individuals with height ranging between 3 and 6 metres<br />

and low proportion of saplings and seedlings. The rarity of yew<br />

populations and biochemical interest implicate the adoption of<br />

appropriate management actions to facilitate broader expansion,<br />

aiming at restoring existing Taxus woodland areas and increasing<br />

the share of Taxus forests under statutory protection within the<br />

Natura 2000 network of protected areas.<br />

Key-words<br />

Yew tree, Taxus, yew forests, questionnaire survey, Greece<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 159-170<br />

Résumé<br />

L’if, Taxus baccata L., est une espèce en déclin qui occupe un espace<br />

limité dans le bassin méditerranéen. La structure des peuplements<br />

et la répartition spatiale des ifs ont été étudiées en Grèce au moyen<br />

d’une enquête sous forme de questionnaire adressé aux bureaux<br />

forestiers nationaux. Les résultats de l’enquête montrent que l’espèce<br />

est confinée principalement dans les zones montagneuses s’étendant<br />

du Péloponnèse sud à la préfecture d’Evros en Thrace. Les résultats<br />

suggèrent de considérer l’if comme une espèce rare et potentiellement<br />

en danger dont les populations se situent à différents degrés<br />

de fragmentation, allant de spécimens isolés à, plus rarement, des<br />

petits boisements. La répartition de l’if en Grèce est donc constituée<br />

de populations isolées, principalement dans les ravins de montagne,<br />

à une altitude comprise entre 500 et 1 500 m ; il se rencontre de<br />

plus en plus comme une espèce de sous-étage, isolée dans les forêts<br />

de sapin (Abies cephalonica) et dans différents types de forêts<br />

mélangées de hêtre et de chêne, ainsi que dans des forêts mélangées<br />

de sapin et de hêtre. Les populations sont petites, la plupart en<br />

groupes de 5 à 50 individus d’une hauteur de 3 à 6 m avec une<br />

faible proportion d’arbres et de jeunes plants. La grande rareté<br />

des populations d’if et l’intérêt biochimique impliquent l’adoption<br />

d’actions appropriées de gestion visant à faciliter une expansion de<br />

l’espèce, afin de reconstituer les zones sylvestres existantes à Taxus et<br />

d’augmenter la part de forêts de Taxus sous la protection statutaire<br />

du réseau Natura 2000.<br />

Mots-clés<br />

If, Taxus, forêts d’if, enquête, Grèce<br />

159


160<br />

◆ K. KASSIOUMIS, K. PAPAGEORGIOU, T. GLEZAKOS & I. N. VOGIATZAKIS<br />

INTRODUCTION<br />

The contribution of the Holarctic or Eurasiatic element<br />

in the <strong>Mediterranea</strong>n flora and its importance to the post<br />

glacial flora of Southern Europe and North Africa has<br />

often been highlighted (see review in Quézel, 1985).<br />

Yew, Taxus baccata L. is one of the species belonging to<br />

this element of pre-Miocene origin that now occupies a<br />

limited range not only in the <strong>Mediterranea</strong>n basin but all<br />

over Europe (Ellenberg, 1988; Thomas & Polwart, 2003).<br />

The distribution of the species in the <strong>Mediterranea</strong>n<br />

Basin includes the North <strong>Mediterranea</strong>n countries (Euro-<br />

<strong>Mediterranea</strong>n) (Jalas & Suominen, 1973; Di Benedetto<br />

et al., 1983; Barbero & Quézel, 1994; Quézel & Médail,<br />

2003), Morocco, Algeria and Turkey (Hulten & Fries,<br />

1986). Yew is at present confined to mountainous areas<br />

of the basin, following the climatic regression after the last<br />

ice age (Garcia et al., 2000). Palaeoecological evidence<br />

from various sites in the <strong>Mediterranea</strong>n suggest that yew<br />

contributed a significant amount of tree pollen during the<br />

Holocene indicating that it was a co-dominant element in<br />

the vegetation formations at the time (Grove & Rackhan,<br />

2001; Goni & Hannon, 1999; Penalba, 1994). This has<br />

made yew a reliable indicator for ancient temperate<br />

forests (Barbero & Quézel, 1994). Today yew grows<br />

sparsely along the <strong>Mediterranea</strong>n basin and does not<br />

correspond to the places it used to occupy millions years<br />

ago (Charles, 1982). Large population of Taxus can still<br />

be found in northern Spain and Italy but the majority of<br />

natural yew woods are fragmented and isolated (Quézel<br />

& Médail, 2003).<br />

Despite its decline in Europe with few exceptions<br />

(see Svenning & Magard, 1999) it is currently acknowledged<br />

there is a lack of information on the species<br />

distribution and abundance all over Europe including<br />

the <strong>Mediterranea</strong>n area (IPGRI, 2003). This is also the<br />

case of Greece, where the information about the species<br />

distribution is fragmented despite the fact that numerous<br />

accounts of the species can be found in a number of<br />

floristic surveys (Dimadis, 1916; Voliotis & Athanasiadis,<br />

1971; Boratynski et al., 1990)<br />

Taxus baccata is a native species in Greece; woodlands<br />

grow dispersed in its native habitat in deciduous or mixed<br />

forests on mountain slopes and in ravines (Christensen,<br />

1997). They are notable on limestone and grow from an<br />

elevation of 800 m up to a maximum limit of 2 200 m,<br />

reaching a height of 10-20m in maturity (Athanasiadis,<br />

1986; Tutin et al., 1993; Arampatzis, 1998). As a result<br />

of climate change and human disturbance over centuries,<br />

yew distribution is more frequently formed by individual<br />

trees within larger forests and to a lesser extent in small<br />

groups (Voliotis, 1986). Taxus baccata has a stress-tolerant<br />

life strategy sensu Grime, being slow growing, slow<br />

to reach maturity (70 years), long lived (> 1 000 years),<br />

shade tolerant but can withstand full sun (Thomas &<br />

Polwart, 2003). It is also of high ornamental value and<br />

sometimes in Greece is planted in parks and gardens<br />

(Christopoulos & Bastias, 1990).<br />

The seeds and foliage of Taxus baccata contain the<br />

alkaloid taxin (Vidakovic, 1991), a compound that exhibits<br />

significant anticancer properties. The biochemical interest<br />

of taxanes and fear of extinction in Greece has been a<br />

major influence for increasing managerial interest for the<br />

woodland species of Taxus. However, until now there has<br />

never been an attempt to carry out a detailed inventory<br />

about the spatial distribution and ecological characteristics<br />

of the species in the country. For example Voliotis (1986),<br />

Strid (1980; 1986) as well as Boratynski et al. (1992) refer<br />

to the distribution and limited ecological information of<br />

the species. The plant population of the Taxus species is<br />

not precisely known. Population estimates are rare and<br />

usually not accurate. Moreover the conservation status of<br />

Taxus baccata is inadequate in Greece. Only two habitat<br />

types that include Taxus baccata have been identified as<br />

priority habitat types, according to habitats’ directive 92/<br />

43/EEC (Dafis et al., 1997), and limited information can<br />

be derived on how well the network of protected areas<br />

conserves yew forests in Greece.<br />

The above realisations set out the demand to undertake<br />

a nation-wide survey aiming at firstly, acquiring a<br />

better knowledge of the geographical distribution and<br />

topographical conditions of the existing populations of<br />

Taxus baccata in Greece and secondly analysing major<br />

community structure parameters of native forests.<br />

Furthermore, based on the knowledge of natural distribution<br />

and community structure, the research sets out a<br />

framework of management actions to aid conservation<br />

and improve its management.<br />

RESEARCH METHODOLOGY<br />

The need for building up a national inventory in<br />

conjunction with the sporadic occurrence of yew in<br />

Greece, prohibits the use of random survey plot sampling<br />

along transects, on account of the increased cost, workload<br />

and time required. The nature of the research implies the<br />

use of a specially designed questionnaire targeting forest<br />

experts employed in Forest District Offices, as the most<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


appropriate survey instrument to collect nationwide<br />

information for a dispersed species regarding its major<br />

biophysical parameters. Forest District Office (FDO) is<br />

the statutory forest authority for each of the 104 forest<br />

districts divided in Greece, responsible for managing and<br />

conserving forest resources. The questionnaire layout<br />

aimed to facilitate filling in time, to help the respondents<br />

answer all questions with the highest consistency level and<br />

to assist with coding and subsequent statistical analysis. It<br />

was deemed imperative from the onset of the research, to<br />

reduce the unit of analysis from a surface area to a single<br />

point location due to the scarcity and relative rarity of yew<br />

trees. Each competent Forest District Office completed a<br />

separate questionnaire for each yew population, either in<br />

the form of a single tree or clump of trees, found within<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 159-170<br />

DISTRIBUTION AND STAND STRUCTURE OF TAXUS BACCATA POPULATIONS IN GREECE ◆<br />

its own district. Four major subject areas were covered to<br />

acquire information about (i) the geographical distribution<br />

of yew populations; (ii) major climatic and topographical<br />

conditions; (iii) ownership status and habitat structure of<br />

native forests; and (iv) the stand structure characteristics<br />

of Taxus baccata. Following the questionnaire analysis, a<br />

thorough procedure of personal communication between<br />

members of the research team and forest experts was<br />

initiated, in order to clarify information and identify<br />

possible cause of yew decline. In addition, on-site visits<br />

were carried out to illuminate all non-clear situations. The<br />

nomenclature and classification of the taxa mentioned are<br />

according to Flora Europaea (Tutin et al., 1993).<br />

Data were collected from a systematic postal survey<br />

carried out between July and December 1995. Forest<br />

Figure 1. Geographical distribution<br />

of Taxus baccata in Greece:<br />

1) (●) found by this study and<br />

2) (--) reported by Voliotis (1986).<br />

161


162<br />

◆ K. KASSIOUMIS, K. PAPAGEORGIOU, T. GLEZAKOS & I. N. VOGIATZAKIS<br />

Figure 2. Distribution of Taxus baccata according to major climatic and topographical parameters.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 159-170<br />

DISTRIBUTION AND STAND STRUCTURE OF TAXUS BACCATA POPULATIONS IN GREECE ◆<br />

Figure 3. Ownership status and structure of forests including Taxus baccata.<br />

163


164<br />

◆ K. KASSIOUMIS, K. PAPAGEORGIOU, T. GLEZAKOS & I. N. VOGIATZAKIS<br />

experts were asked to complete the questionnaire and<br />

return it in the attached pre-paid envelope. In addition,<br />

telephone communication with forest experts, helped<br />

explaining the research scope and served as a persuasive<br />

measure to stimulate participation. Overall, 104 questionnaires<br />

were distributed to all Forest District Offices and<br />

a usable data set of 103 questionnaires was eventually<br />

collected and used in the analysis representing a response<br />

rate of 99 %, which ensured a nationwide data coverage.<br />

The high response rate obtained is similar to that reported<br />

by Pantera & Papanastasis (2003) concerning the<br />

inventory of Valonia Oak in Greece and can therefore<br />

be regarded as a normal average for a field study of this<br />

kind. Of the 103 Forest District Offices, 42 (40.78 %)<br />

provided information for the occurrence of yew forests<br />

within their administrative region; no yew woodlands<br />

were identified for the remaining 61 units (59.22 %). In<br />

total, the research gathered information on 117 forests<br />

containing 173 locations of Taxus baccata. Response rate<br />

in each question varies from a low rate of 79.2 % to as<br />

high as 100 % indicating that overall, forest respondents<br />

had a satisfying knowledge of the biophysical and physiographic<br />

parameters of yew populations.<br />

Based on the information obtained from questionnaires,<br />

an inventory form was created for every Taxus baccata<br />

location identified, as shown in the appendix. A special<br />

information system was developed to facilitate analysis<br />

and interpretation of the results using the inventory forms<br />

as input information source. The information system is<br />

essentially an electronic data bank to allow immediate<br />

access and management of the information as well as<br />

to update the results with new records. The programme<br />

dBase IV ver. 2.0 for DOS was used as the platform for<br />

developing the data bank. It provided advanced options<br />

for data management and the possibility to transferred<br />

data to Microsoft Access and edit results in various kinds<br />

of format, whether in print or electronically.<br />

RESULTS<br />

Geographical distribution<br />

of Taxus baccata<br />

This survey provided information of the geographical<br />

occurrence of yew locations as well as of the distribution<br />

of various stand sizes across the country. The occurrences<br />

mapped in figure 1 give the best information available.<br />

Large yew populations are confined in mountainous<br />

areas of central and northern Greece, especially along<br />

the Pindos mountain range, the mount Olympus, the<br />

Rodopi mountain range and the mount Cholomontas in<br />

the peninsula of Halkidiki. Further, small natural stands<br />

of yew are found in the Peloponnese and in the island<br />

of Evia. Individual yew trees are widespread in several<br />

locations throughout the country. Aggregate data suggest<br />

that yew populations are found in 28 out of the 51 prefectures<br />

of Greece.<br />

Climatic and topographical conditions<br />

Research findings indicate that Taxus baccata in<br />

Greece occurs in a broad elevational range from sea<br />

level to over 1 500 m high (fig. 2a), but it is primarily<br />

a montane tree with most populations growing in 501-<br />

1 000 m (49.09 %) and 1 001-1 500 m altitude range<br />

(41.82 %). Eighteen sites (10.4 %) are found in low altitudes<br />

(< 500 m) and only five sites (2.89 %) are found at<br />

an altitude above 1 500 m. Within this altitudinal range,<br />

yew tends to grow on the north-eastern (60.13 %) and<br />

north-western (20.89 %) slopes where there is high humidity<br />

and high insolation. Stands of yew thrive on slopes<br />

of almost any inclination but they were primarily found<br />

on moderate slopes (57.5 %), less on even surfaces and<br />

slopes less than 40 % (26.25 %) and only 16.25 % on<br />

moderate to steep slopes (> 71 %). Furthermore, ravines<br />

are the most common habitat for yew populations. Of<br />

the 127 locations reported, 78.74 % were found to grow<br />

on ravines, 16.54 % on smooth mountainsides and only<br />

4.72 % on steep cliffs. According to the bioclimatic types<br />

identified for Greece by Mavromatis (1980), the vast<br />

majority of yew sites (74.75 %) generally occur in the<br />

sub-<strong>Mediterranea</strong>n zone (40>x>0; x= number of biological<br />

dry days during dry period, according to the method<br />

of Bagnouls-Gaussen) and 20.23 % in the low-mid-<br />

<strong>Mediterranea</strong>n (75>x>40). In addition, only 3.47 % of<br />

the identified sites belong in intense mid-<strong>Mediterranea</strong>n<br />

(100>x>75) and a tiny 1.73 % of the sites occur in nonarid<br />

type (x=0). Taxus baccata populations are typically<br />

associated with limestone substrate (46.67 %). They also<br />

tend to grow well upon schist (33.94 %) and with lower<br />

frequency occurrence on flysch (21.82 %). Shallow soil<br />

depth was rarely limiting; most yew stands grow on<br />

shallow (38.16 %) and medium soils (36.64 %) and only<br />

occasionally on medium-deep (13.74 %) and deep soil<br />

depth (11.45 %). This is expected as yew is renowned<br />

for having an extensive horizontal root system (Rodwell,<br />

1991).<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


Ownership status and structure<br />

of native habitat<br />

The research findings indicate that 173 sites contain<br />

Taxus baccata populations, which are distributed along<br />

117 different forests nationwide. Most yew populations<br />

occur in state owned forests (65.0 %), followed by<br />

municipal forests (19.13 %) as shown in figure 3a. This<br />

is not of surprise if one bears in mind that two thirds of<br />

the forest area in Greece is public land (65 %) and the<br />

remaining 35 % is shared by all other non state owners<br />

(Papageorgiou et al., 2004). There are only 3 yew<br />

populations (2.61 %) under private ownership while in<br />

12.17 % of the reported yew sites, the ownership status<br />

remains unclear.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 159-170<br />

DISTRIBUTION AND STAND STRUCTURE OF TAXUS BACCATA POPULATIONS IN GREECE ◆<br />

Figure 4. Community structure of yew populations.<br />

Yew sites are almost equally encountered in pure<br />

(45.<strong>30</strong> %) and mixed (52.00 %) forests and rarely on<br />

partially forested areas (1.71 %). This reflects that yew<br />

saplings are favoured by more sheltered, shady and moist<br />

locations. In pure stands, yew forms part of an understory<br />

of conifers being especially prominent in fir forests (Abies<br />

cephalonica) (71.7 %) and very occasionally in Black<br />

pine (Pinus nigra) (11.32 %), Beech (13.2 %) or Oak<br />

(3.77 %, largely Quercus frainetto) stands. In the Fagion<br />

alliance, yew occurs in the Luzulo-Fagetum woodlands<br />

especially alongside the Pindus range, in the Asperulo-<br />

Fagetum in central and northern Macedonia and in the<br />

Cephalanthero-Fagion in Mount Olympus (Dafis et al.,<br />

1997). In mixed forests occurrence is less selective. Yew<br />

165


166<br />

◆ K. KASSIOUMIS, K. PAPAGEORGIOU, T. GLEZAKOS & I. N. VOGIATZAKIS<br />

trees can be found more frequently in mixed Oak-Beech<br />

stands (23.08 %), Fir-Beech (17,95 %), Fir-Black pine<br />

(15.38 %) and occasionally in Beech-Fir (7.69 %) and<br />

Oak-Fir/Black pine (5.98 %) stands. Owing to its extreme<br />

tolerance of shade, yew grows up to form a shrub layer,<br />

when scattered and occasionally a part of the canopy<br />

in denser populations. Figure 3e shows that most yew<br />

populations are found in the understory (56.49 %), less<br />

usually in the middle layer (24.43 %), and only 9 sites<br />

(6.87 %) have been recorded to contain yew trees as an<br />

associate in the canopy. Yew seldom forms a true shrub<br />

layer and is usually intermingled with various Juniperus<br />

species (29.8 %) and Ilex aquifolium (29.8 %). Other<br />

frequently encountered species are Ostrya carpinifolia<br />

(14.9 %), Carpinus orientalis (10.6 %) and Quercus ilex<br />

(10.6 %) with occasional Acer pseudoplatanus, Corylus<br />

avellana and various Ulmus species (4.2 %).<br />

Community structure<br />

Figure 4 depicts a variety of parameters to illustrate<br />

the stand structure of yew trees in Greece and give an<br />

indication of the scarcity of the species. The study revealed<br />

that populations are rather small, most between 5-50<br />

individuals (48.56 %), or exist in scattered patches of 2-4<br />

trees (13.29 %) and more frequently in isolated specimens<br />

(23.7 %). Large yew stands are rare, only 12.13 % of the<br />

identified sites contain populations between 51 and 500<br />

individuals while dense stands (over 500 trees) are formed<br />

in only 2.31 % sites. The area each yew community<br />

covers was found to vary in proportion to stand size. Thus<br />

with the exception of single-tree sites, most populations<br />

are found to occupy a land area of 0,2-1 ha (56.88 %)<br />

and less frequently extending to 1,1-5 ha (27.52 %).<br />

Following the rarity of large yew stands, only 13 populations<br />

(11.93 %) extent to an area greater than 5 ha. The<br />

largely scattered and small isolated populations impede<br />

yew to develop progressively into pure yew forests. It can<br />

be inferred from the above, that population fragmentation<br />

constitutes the major cause for the degeneration of the<br />

species in Greece. This is verified by communication with<br />

the forest experts who also suggested indiscriminate felling<br />

and to a lesser extent grazing, as other less significant<br />

causes of yew decline.<br />

Growth of yew is slow compared to most other trees<br />

even under optimum conditions. Consequently, even the<br />

oldest individuals do not attain considerable height. The<br />

survey provided a measure of height and girth for each<br />

recorded individual. For groups we recorded the number<br />

of trees in each height and girth class. In Greek forests,<br />

yew occurs most frequently in the undergrowth reaching a<br />

height between 3 and 5 m (73.02 %). Only 17.06 % of the<br />

trees have a low canopy of 6-10 m in height and in 8.31 %<br />

of the identified sites, individuals have exceeded 11 m height.<br />

The bell-shaped form of yew distribution, according to<br />

girth, indicates that most of the yew populations recorded<br />

are represented by individuals in medium diameter classes<br />

(49.1 % in 11-20 cm and 42.23 % in 21-50 cm). There<br />

are only a few specimens of yew with a girth below 11cm<br />

and above 50 cm. The paucity of individuals in the lowest<br />

girth class is a survey weakness; forest experts could not<br />

provide accurately information on saplings and seedlings<br />

and emphasized particularly on the largest individuals.<br />

Although limited numeric data is available to judge yew<br />

recolonization, the questionnaire sought to describe the<br />

general state of regeneration in yew populations. Findings<br />

suggest poor yew regeneration in the identified populations<br />

with replacement of individual trees occurring only in 21<br />

out of the 108 yew locations (19.44 %).<br />

Based on the data for all juvenile and mature Taxus trees<br />

recorded, the information system estimated the total number<br />

of Taxus baccata trees throughout the country to be about<br />

9,000 individuals (recorded data for 9,070 trees). However,<br />

the figure is likely to be an underestimate given that information<br />

of new recruitments and seedlings could not be<br />

adequately documented by the questionnaire survey.<br />

DISCUSSION<br />

The present study has made explicit that the use<br />

of a questionnaire survey to build a Taxus inventory<br />

allows only a macroscopic evaluation of major structural<br />

parameters pertaining to the natural distribution of yew<br />

forests in Greece. Despite the methodological inadequacies,<br />

the questionnaire survey remains a useful instrument<br />

for providing baseline information on the geographical<br />

and topographic distribution, population dynamics and<br />

the community structure of yew trees at a country level.<br />

Such information could provide a significant insight<br />

into the conservation potential of the species and set a<br />

broad framework of actions to improve its management<br />

and conservation. This study provides a comprehensive<br />

account of the current state of the species in Greece and<br />

considers how forestry practices might be adjusted.<br />

The state of Taxus baccata in Greece<br />

Foremost, Taxus baccata is fairly rare and never found<br />

in a large quantity; it occurs at different degrees of<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


population fragmentation ranging from individual trees to<br />

more rarely clumps of trees. Indeed, consistent with other<br />

researchers (Voliotis, 1986), this study has confirmed that<br />

yew grows naturally in high mountains of central and<br />

northern Greece but some disparities are also apparent.<br />

Voliotis (1986) reported Taxus baccata growing naturally<br />

in the islands of Thassos, Samothraki, south of Evia and<br />

in forests in central and southeastern Peloponnese that are<br />

not verified by the present study. However, small natural<br />

stands of yew that extend further east, in the Evros<br />

prefecture and in the Sithonia peninsula were reported<br />

by this study.<br />

Based on research findings, most yew populations in<br />

Greece are restricted to north-eastern, ravines in medium<br />

steep slopes at an altitudinal range between 500 and<br />

1 500 m. Taxus baccata increasingly becomes an isolated<br />

understory tree within fir pure forests (Abies cephalonica)<br />

and various kinds of mixed woodlands, most notably in<br />

deciduous mixed stands of beech and oak, mixed conifer<br />

stands of fir (Abies cephalonica) and black pine (Pinus<br />

nigra) as well as mixed forests of fir and beech. Perhaps<br />

a major finding of the research is the marked structural<br />

homogeneity of yew stands. The adult population<br />

structure is skewed towards small isolated shrubby groups<br />

of 5 to 50 individuals having a height range between 3<br />

and 6 m. Large and dense stands of yew trees are rare<br />

with most trees forming small groups or being scattered<br />

individually within forests throughout the country. The<br />

occurrence of such small isolated populations has been<br />

a common status along the <strong>Mediterranea</strong>n basin. For<br />

instance, Garcia et al. (2000) noted that in southern<br />

Spain, T. baccata is restricted to a small number of<br />

isolated patches, most with fewer than 10-20 individuals<br />

dominated by senescent individuals with a low proportion<br />

of saplings and seedlings. Thomas and Polwart (2003)<br />

report a similar situation in Portugal and the islands of<br />

Corsica and Sardinia.<br />

It has been often pointed out by many authors (e.g.<br />

Thomas & Polwart, 2003) that accounting for the<br />

distribution of the species is a difficult task. Apart from<br />

climate change considered to be responsible for the<br />

species decline, particularly in the <strong>Mediterranea</strong>n area,<br />

there are also other factors that have been put forward.<br />

These include its poor competitive ability with respect to<br />

light if compared to other species that grow together with<br />

yew such as hornbeam and beech and its extermination<br />

by shepherds/farmers since it was poisonous to animals<br />

(Ellenberg 1988). Although in exceptional circumstances<br />

high regeneration has been reported (e.g. Garcia et al.,<br />

2000), in general, the opposite is the case with regeneration<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 159-170<br />

DISTRIBUTION AND STAND STRUCTURE OF TAXUS BACCATA POPULATIONS IN GREECE ◆<br />

been further impeded by herbivory. The research implies<br />

an apparent regeneration failure of most yew populations<br />

in Greece. Communication with forest experts indicated<br />

grazing as a potential factor in lack of recruitment but<br />

factual evidence is lacking to substantiate the above<br />

assertion. Instead, the weakness of the questionnaire<br />

survey to provide an accurate record of seedlings and<br />

saplings, may be a more plausible explanation.<br />

Implications for conservation<br />

and management<br />

Currently, there is minimal forestry importance for the<br />

woodland species of Taxus baccata in Greece, apart from<br />

the spiritual value of particularly old and large individuals<br />

in churchyards (Strid, 1980). Forest management today<br />

aims explicitly at the foresighted sustainable timber yield<br />

of the species with the most economic importance and<br />

management plan is the main planning tool. Hence, no<br />

separate management plans have been conducted for<br />

yew populations and no concrete actions are prescribed<br />

in the plans drawn for forests with Taxus in order to<br />

preserve the integrity of yew populations. However,<br />

the importance of T. baccata as an alternative source of<br />

taxoid production (Appendino et al., 1992), has brought<br />

forward the scientific interest for the conservation of the<br />

species. There is, at present, increasing research on the<br />

anticancer properties of taxanes isolated from yew trees<br />

(Guéritte, 2001). Originally extracted from the bark of<br />

the Pacific yew (T. brevifolia), taxol (paclitaxel) can now<br />

be synthesized from a taxol congener 10-deacetylbaccatin<br />

III) which can be extracted at approximately 10 times the<br />

quantity per unit weight from the leaves of Taxus baccata<br />

and other Taxus species than from Taxus brevifolia bark<br />

(Dennis, 1988). In Greece, yew belongs to the group of<br />

rare and potentially endangered species on account of a<br />

number of causes, most notably its highly fragmented<br />

geographical distribution followed by indiscriminate<br />

felling of mature trees. The largely small and scattered<br />

populations restrict yew to evolve gradually into denser<br />

stands. Anzalone et al. (1997) noted that the rarity of<br />

Taxus in the <strong>Mediterranea</strong>n flora of southern Europe may<br />

be due to the yew being left as a declining relict as the<br />

climate has become less oceanic. Consequently, in the<br />

face of predicted climate change, it seems likely that yew<br />

populations in Greece will further deplete.<br />

The fringe occurrence and biochemical interest of<br />

Taxus baccata yield certain managerial implications for<br />

the forest authorities. Most importantly, the restoration of<br />

Taxus woodland areas could be alleviated through applied<br />

167


168<br />

◆ K. KASSIOUMIS, K. PAPAGEORGIOU, T. GLEZAKOS & I. N. VOGIATZAKIS<br />

management and possibilities of increasing the area of<br />

habitat types. Population viability management methods<br />

should be restricted to the few dense stands identified by<br />

the survey. Appropriate silvicultural manipulation needs<br />

to be applied to include a management by thinning to let<br />

in more light and help regeneration. In the multiplicity<br />

of remaining yew locations that include a few number of<br />

individuals, usually grown in the understory of pure or<br />

mixed forests, management should attempt to facilitate<br />

yew recolonization by creating more gaps. This approach<br />

is more likely to increase the possibility of survival of<br />

yew populations and expand tree number. However,<br />

individual trees are found more difficult to evolve into a<br />

forest community and success is a function of favourable<br />

biotic and abiotic conditions (Carvalho et al., 1999).<br />

Applied management interventions should be followed<br />

up by policy reforms such as changes in the forest<br />

legislation to prohibit yew cutting, in order to stimulate<br />

protection of yew individuals against indiscriminate<br />

felling in managed forests. Also the underpinning of<br />

state forest ownership prevalence for the management<br />

and restoration of Taxus baccata populations should not<br />

be underestimated. It can be a supportive factor in the<br />

sense that integrated, comprehensive and explicit forest<br />

management actions can be evenly applied to two-thirds<br />

of the country’s forestland.<br />

Another implication concerns the conservation of<br />

the species, especially in relation to national parks and<br />

other protected areas. Granting to yew woodlands a statutory<br />

protection could improve the population viability<br />

primarily as a virtue of cessation of grazing and human<br />

disturbance. Currently, the conservation status of Taxus<br />

baccata is deficient in Greece. Despite the classification<br />

of the habitats “Mixed beech forests with Taxus and<br />

Ilex” and “Mountainous coniferous woods with Taxus<br />

baccata” (92/43/EEC codes 9120 and 9580 respectively)<br />

as priority habitat types (Dafis et al., 1997), only twelve<br />

representative sites (4,05 %) accounting for an area of<br />

3,717 ha or 0,16 % of the total proposed protected land,<br />

contain Taxus woodlands. Moreover, with the exception<br />

of a national park (Mt. Olympus) and a protected natural<br />

monument (Mt Voras peaks), which provide strict statutory<br />

protection, all remaining sites are hunting reserves<br />

with a rather ambiguous conservation potential. Thus,<br />

increasing the share of forests including Taxus under a<br />

statutory protection regime is believed to aid broader<br />

expansion of yew in Greece.<br />

ACKNOWLEGEMENTS<br />

The General Secretariat for Research and Technology<br />

of the Greek Ministry of Development for supporting<br />

this research within the framework of a wider project<br />

to study the pharmaceutical biosynthesis of Taxol. We<br />

thank D. Trakolis from the Forest Research Institute<br />

of Thessaloniki and F. Galanos from the Institute of<br />

<strong>Mediterranea</strong>n Forest Ecosystems and FPT in Athens for<br />

their valuable help in communicating with Forest District<br />

Offices and verifying the data on the inventory form for<br />

several sites with Taxus baccata trees.<br />

References<br />

ANZALONE, B., LATTANZI, E., LUCCHESE, F. & PADULA, M. 1997.<br />

The vascular flora of the Circeo national park. Webbia, 51:<br />

251-341.<br />

APPENDINO, G., 1993. Taxol (paclitaxel): historical and ecological<br />

aspects. Fitoterapia, 1: 5-24.<br />

APPENDINO, G., GARIBOLDI, P., PISETTA, A., BOMBARDELI,<br />

E. & GABETTA, B., 1992. Taxanes from Taxus baccata.<br />

Phytochemistry, 31: 4253-4257.<br />

ARAMPATZIS, TH., 1998. Shrubs and trees of Greece, vol. I.<br />

Technological and Educational Institute of Drama. Drama.<br />

322 p. (in Greek).<br />

ATHANASIADIS, N., 1986. Forest Phytosociology. Aristotle<br />

University of Thessaloniki, Thessaloniki. <strong>30</strong>9 p. (in Greek).<br />

BARBERO, M. & QUÉZEL, P., 1994. Place, rôle et valeur historique<br />

des éléments laurifoliés dans les végétations préforestières et<br />

forestières ouest-méditerranéennes. Annali di Botanica, 52:<br />

81-133.<br />

BORATYNSKI, BRAWICZ, K. & ZIELINSKI, J., 1992. Chorology<br />

of Trees and Shrubs in Greece. Polish Academy of Sciences,<br />

Kormik. 286 p.<br />

CARVALHO, A., REBELO, A. & DIAS, J. 1999. Distribution and<br />

natural regeneration of yew trees in the national parks of<br />

Peneda-Geres (Portugal) and Baixa Limia Serra-Xures<br />

(Spain). Revista de Biologia, 17: 43-49.<br />

CHARLES, J.-P., 1982. Etude climatique, floristique et statistique<br />

des peuplements d’ifs (Taxus baccata L.) du sud de la France<br />

(Provence, Languedoc, Corse). Thèse de doctorat de 3e cycle,<br />

université d’Aix-Marseille III, Marseille, 226 p.<br />

CHRISTENSEN, K.I., 1997. Taxus L. In: STRID, A., & TAN, K.<br />

(ed), Flora hellenica vol 1. Koeltz Scientific Books, Königstein:<br />

p. 15.<br />

CHRISTOPOULOS, G. & BASTIAS, I., 1990. Phytologia. Ekdotiki<br />

Athinon, Athens. 435 p. (in Greek).<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


DAFIS, S., PAPASTERGIADOU, E., GEORGIOU, K., BABALONAS,<br />

D., GEORGIADIS, TH., PAPAGEORGIOU, M., LAZARIDOU, TH.<br />

& TSIAOUSI, B., 1997. Habitat Directive 92/43/EEC. Ecotypes<br />

in Greece: Natura 2000 network. Gen. Directorate XI EC,<br />

Goulandri Natural History Museum, EKBY, Thessaloniki.<br />

923 p.<br />

DENNIS, J.N., 1988. A highly efficient, practical approach to<br />

natural taxol. J. Am. Ch. Soc., August 1988: 5917.<br />

DI BENEDETTO, L., LEONARDI, S. & POLI, E., 1983. Taxus baccata<br />

L. in Sicilia. Not. Fitosoc., 18: 1-18.<br />

DIMADIS. D., 1916. Forest vegetation of Greece. National Printing<br />

Office of Greece, Athens. 159 p.<br />

ELLENBERG, H., 1988. Vegetation ecology of central Europe.<br />

Cambridge University Press, Cambridge, UK.<br />

GARCIA, D., ZAMORA, R., HODAR, J.A., GOMEZ, J.M. & CASTRO,<br />

J., 2000. Yew (Taxus baccata L.) regeneration is facilitated by<br />

fleshy-fruited shurbs in <strong>Mediterranea</strong>n environments. Biol.<br />

Conserv., 95: 31-38.<br />

GONI, M.F.S. & HANNON, G.E., 1999. High altitude vegetational<br />

pattern on the Iberian Mountain chain (north-central Spain)<br />

during the Holocene. The Holocene, 9: 39-57.<br />

GROVE, A.T. & RACKHAM, O., 2001. The Nature of the<br />

<strong>Mediterranea</strong>n Europe. Yale University Press, New Haven.<br />

GUÉRITTE, F., 2001. General and recent aspects of the chemisttry<br />

and strucutre-activity relationships of taxoids. Cur. Pharm.<br />

Des., 7: 1229-1249.<br />

HULTEN, E. & FRIES, M., 1986. Atlas of north European vascular<br />

plants: north of the tropic of cancer I-III. Koeltz Scientific<br />

Books, Königstein.<br />

IPGRI, 2003. EUFORGEN www.ipgri.cgiar.org/networks/<br />

euforgen/.<br />

JALAS, J. & SUOMINEN, J., 1973. Atlas Florae Europaeae: distribution<br />

of vascular plants in Europe. Vol. II Gymnospermae (Pinaceae<br />

to Ephedraceae).<br />

MAVROMATIS, G., 1980. Bioclimate of Greece; correlating<br />

climate and natural vegetation, bioclimatic maps. For. Res., 1:<br />

54-63. (in Greek).<br />

PANTERA, A. & PAPANASTASIS, V.P., 2003. Inventory of Valonia<br />

oak (Quercus ithaburensis Decaisne subsp. macrolepis<br />

(Kotschy) Hedge & Yalt. in Greece. Geot. Sc. Iss., 14: 34-44.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 159-170<br />

DISTRIBUTION AND STAND STRUCTURE OF TAXUS BACCATA POPULATIONS IN GREECE ◆<br />

PAPAGEORGIOU K., VAKROU, A. TRAKOLIS, D. & MALAMIDES,<br />

G., 2004. Sustainable Forest Management: The challenge ahead<br />

for the Greek State Forestry. In: Humphreys, D. (Ed) Forests<br />

for the future: findings on National Forest Programmes<br />

from COST Action E19, European Science Foundation<br />

(in press).<br />

PENALBA, M.C. 1994. The history of the Holocene vegetation in<br />

northern Spain from pollen analysis. J. Ecol., 82: 815-832.<br />

QUÉZEL, P., 1985. Definition of the <strong>Mediterranea</strong>n region and<br />

the origins of the flora. In: Gomez-Campo, C. (Ed) Plant<br />

Conservation in the <strong>Mediterranea</strong>n Area. (ed. C.), Dordrecht,<br />

pp. 9-24.<br />

QUÉZEL, P. & MÉDAIL, F., 2003. Ecologie et biogéographie des forêts<br />

du bassin méditerranéen. Elsevier, Paris, 573 p.<br />

RODWELL, J.S., 1991. British plant communities, vol. 1. Woodlands<br />

and scrub. Cambridge University Press, UK.<br />

STRID, A., 1980. Plants of Mt. Olympus. Goulandri Natural<br />

History Museum, Athens. 420 p.<br />

STRID, A., 1986. Mountain Flora of Greece. Vol. 1. Cambridge<br />

University Press, Cambridge. 822 p.<br />

SVENNING, J.C. & MAGARD, E., 1999. Population ecology and<br />

conservation status of the last natural population of English<br />

yew Taxus baccata. Denmark. Biol. Conserv., 88: 173-182.<br />

THOMAS, P.A., & POLWART, A., 2003. Taxus baccata L. J. Ecol.,<br />

91: 489-524.<br />

TUTIN, T.G., BURGES, N.A., CHATER, A.O., EDMONDSON, J.R.,<br />

HEYWOOD, V.H., MOORE, D.M., VALENTINE, D.H. WALTERS,<br />

S.M. & WEBB, D.A., 1993. Flora Europaea, 5 vol. Cambridge<br />

University Press, London.<br />

VIDAKOVIC, M., 1991. Conifers: morphology and variation.<br />

Graficki Zavod Hrvatske, Zagreb.<br />

VOLIOTIS, D., 1986. Historical and environmental significance of<br />

the yew (Taxus baccata L.). Isr. J. Bot., 35: 47-52.<br />

VOLIOTIS, D. & ATHANASIADIS, N., 1971. Trees and shrubs.<br />

Thessaloniki. 294 p.<br />

169


170<br />

◆ K. KASSIOUMIS, K. PAPAGEORGIOU, T. GLEZAKOS & I. N. VOGIATZAKIS<br />

APPENDIX<br />

Inventory form of the Taxus baccata populations in Greece<br />

Location code number:<br />

Prefecture’s name, land area (Ha) and forest area (Ha)<br />

Forest District Office’s name and category<br />

Characteristics of forests with Taxus trees<br />

— name of the forest<br />

— municipality (where the forest belongs to)<br />

— ownership status (state, private, municipal, monasteries, other)<br />

— forest structure (pure forest – one main species –, mixed, partially forested area)<br />

— silvicultural type (high forests, coppice, high and coppice)<br />

— dominant tree species (in pure forests)<br />

— dominant tree species (in mixed forests)<br />

— other tree species present in the forest<br />

Characteristics of sites with Taxus trees<br />

— name of the site<br />

— altitude above sea level (m) (< 500 m, 501-1 000 m, 1 001-2 000 m, > 2 000 m)<br />

— bioclimatic character (based on Mavromatis, G. 1980)<br />

— site exposure (orientation) (east-southeast, south-southwest, north-northeast, west-northwest)<br />

— soil slopes (%) (< 40 %, 41-70 %, 71-100 %, > 100 %)<br />

— bedrock (limestone, flysch, schist, other):<br />

— soil depth (non-deep < 50 cm, mean depth 51-100 cm, deep > 1m)<br />

Growth conditions of Taxus populations<br />

— population density (only 1 tree, 2-4 trees, 5-20, 21-50, 51-100, over 100 trees)<br />

— spread of Taxus trees in the forest (in single trees, in groups, in thickets, in clumps)<br />

— covered area (Ha)<br />

— participation in the structure of the forest (in the upper layer, in the middle layer, in the understory)<br />

— distribution of Taxus trees (along streams, on smooth mountainsides, on steep sides)<br />

— general appearance (excellent, good, fair, poor)<br />

— existence of regeneration (yes, no)<br />

Characteristics of Taxus trees<br />

— breast diameter (cm) (< 5 cm, 6-10 cm, 11-20 cm, 21-50 cm, > 50 cm)<br />

— height (m) (< 2 m, 3-5 m, 6-10 m, 11-20 m, over 20 m)<br />

Geographical location of the site (on a map scale 1/50 000) and also information on how to approach the site and contact persons.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


Comparing the palatability of <strong>Mediterranea</strong>n or non-native<br />

plants in Crete<br />

Étude comparative de la palatabilité de végétaux méditerranéens<br />

ou exotiques en Crète<br />

Carsten F. Dormann 1 , Rachel King 2<br />

1. Applied Landscape Ecology, UFZ Centre for Environmental Research Leipzig-Halle, Permoserstr. 15, 04318 Leipzig, Germany. Email:<br />

carsten.dormann@ufz.de. Tel: ++44-(0)341-235 2953 – Fax: ++44-(0)341-235 2511<br />

2. Scott Wilson, Scott House, Basing View, Basingstoke, RG21 4JG, UK<br />

Abstract<br />

Herbivory is thought to be an important factor in the ecology of<br />

introduced species. A lower palatability to the herbivores may contribute<br />

to the success of invasive species in their new habitat. Here<br />

we investigate the palatability (to the generalist herbivore snail<br />

Cepaea hortensis) of 11 non-native plant species found on Crete<br />

and compare it to that of 13 native species. These were collected<br />

from three different habitats (dunes, olive groves and shrublands),<br />

so as to be able to reconstruct a community background palatability.<br />

Our results indicate that non-natives fall into the range of palatabilities<br />

found among the natives, with no significant overall difference<br />

between these groups. In all three tested habitats, non-natives were<br />

more palatable than the native community background. Only in<br />

dunes was one non-native species, Acacia saligna, markedly less<br />

palatable than the community average. Palatability of the species<br />

was not related to their commonness on Crete, independent of being<br />

native or not.<br />

Key-words<br />

Alien species, Cepaea hortensis, community palatability, Crete,<br />

dune, herbivory, <strong>Mediterranea</strong>n island, olive-grove, shrubland<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 171-178<br />

Résumé<br />

L’herbivorie est connue comme étant un facteur important intervenant<br />

dans l’écologie des espèces introduites. Une faible palatabilité<br />

vis-à-vis des herbivores est susceptible de contribuer au succès des<br />

espèces invasives dans leur nouvel habitat. Dans ce travail, nous<br />

avons étudié la palatabilité (vis-à-vis d’un gastéropode herbivore et<br />

généraliste Cepaea hortensis) de 11 espèces végétales introduites en<br />

Crète et nous l’avons comparée à celle de 13 espèces végétales indigènes.<br />

Ces espèces sont issues de trois catégories d’habitats (dunes, oliveraies<br />

et matorrals), de façon à permettre une reconstruction de la<br />

palatabilité à l’échelle de la communauté. Nos résultats indiquent<br />

que la palatabilité des espèces introduites s’insère dans la gamme<br />

de palatabilité rencontrée chez les espèces indigènes, sans différence<br />

significative globale entre les deux groupes. Toutefois, pour chacun<br />

des trois habitats testés, la palatabilité des espèces introduites s’est<br />

avérée plus élevée que la palatabilité moyenne à l’échelle de la<br />

communauté. Une seule espèce introduite, Acacia saligna, présente<br />

dans les formations dunaires, est apparue comme nettement moins<br />

appétante que la moyenne de la communauté. La palatabilité des<br />

espèces n’est pas reliée à leur abondance en Crète, que l’espèce soit<br />

indigène ou introduite.<br />

Mots-clés<br />

Espèces introduites, Cepaea hortensis, palatabilité des<br />

communautés, Crète, dune, herbivorie, île de Méditerranée,<br />

oliveraie, matorral<br />

171


172<br />

◆ C. F. DORMANN & R. KING<br />

INTRODUCTION<br />

Biological invasions of natural communities by<br />

non-native plant species is one of the most serious<br />

threats to biodiversity (Heywood, 1995), especially<br />

in <strong>Mediterranea</strong>n-type ecosystems (Huenneke, 1988;<br />

Vitousek, 1988). The extend to which introduced species<br />

become established, and later become pests, differs<br />

widely (Williamson & Fitter, 1996; Williamson, 1999),<br />

and seems to be a function of both species traits (“invasiveness”)<br />

and community susceptibility (“invasibility”:<br />

Alpert et al., 2000).<br />

One of the interfaces between invasiveness and<br />

invasibility is the interaction between non-native plants<br />

and their herbivores. It has been argued that palatability<br />

differences allow non-native plant species to become<br />

invaders (Blossey & Nötzold, 1995). This would imply<br />

that grazers, browsers and plant parasites are important<br />

in controlling the invasion process (Noble, 1989).<br />

Anti-herbivore chemistry of the non-native may be<br />

very different from that of the natives (often helped by the<br />

fact that the non-natives are recruited from families new<br />

to the community, Rejmánek, 1996). Thus, they present<br />

a novel suite of feeding deterrents to the local herbivores,<br />

which make them more effective in their defence against<br />

the consumers (it has even been argued that co-evolution<br />

between plants and their consumers is the cause of<br />

the diverse secondary metabolism found in plants, see<br />

Harborne, 1997; Hartley & Jones, 1997, for review). To<br />

a generalist herbivore, which is confronted with different<br />

defence cocktails in each plant species, such differences<br />

are probably less important, as it is far less engaged in coevolution<br />

with its forage than a monophagous specialist.<br />

To date, very little information on the palatability of<br />

non-native plant species compared to that of the local<br />

natives is available (Crawley et al., 1996; Williamson &<br />

Fitter, 1996). More work has concentrated on related<br />

topics, such as comparing the performance of a nonnative<br />

invader in its native and its new range (Callaway<br />

and Aschehoug, 2000; Bossdorf et al., 2004) or the effect<br />

of herbivory on exotic and indigenous congeneric species<br />

(e.g. Schierenbeck et al., 1994, e.g. Radford & Cousens,<br />

2000). These studies however did not take account of the<br />

background palatability of native species when addressing<br />

the effect of herbivory on the establishment of a nonnative.<br />

In this study, we report on a bioassay-palatability trial<br />

comparing 11 non-native and 13 native plant species<br />

common to three habitats on the Greek island of Crete.<br />

We hypothesis that invasive introduced plant species on<br />

Crete have a lower palatability to generalists than natives.<br />

The richness of the local flora, its many island endemics<br />

and the numerous non-native plant species present on<br />

the island make Crete an island of high invasion risk<br />

(Vitousek, 1988). Two of the selected habitats (dunes and<br />

shrublands) are important communities for rare species,<br />

while the third (recently abandoned olive groves) represents<br />

the anthropogenic habitat most commonly invaded<br />

by non-native species (Lonsdale, 1999).<br />

METHODS<br />

The study was performed on Crete, Greece (35.5° N<br />

25° E) from 10 to 20 May 2002. Ten sites were selected<br />

for each of three habitat types: olive grove, coastal dune<br />

and phrygana (the arid dwarf-shrubland frequent in the<br />

eastern <strong>Mediterranea</strong>n). In each site, cover of the most<br />

common plant species and all those used in this study<br />

were recorded. Non-native species occurred in none of<br />

the plots chosen for the recordings, because they usually<br />

produce monodominant stands within the investigated<br />

communities.<br />

Sampling procedure<br />

and bioassay-palatability trial<br />

Ca. 10 g leaf material of 13 typical common native<br />

and 11 common non-native plant species (table 1) was<br />

collected near the above sites. The five replicates for each<br />

plant species were several km apart. Within eight hours<br />

extracts were prepared following Grime et al. (1993): 1 g<br />

fresh leaf material was ground in 10 ml H 2O dist., filtered<br />

through Whatman #1 filter paper and then frozen until<br />

further use.<br />

Palatability trials were run according to (Grime et al.,<br />

1993): the test was a comparison between 0.18 ml extract<br />

on a 1.5 cm × 1.5 cm piece of Whatman #1 filter paper<br />

(added in three doses) and filter paper without extract.<br />

These filter papers were dried at <strong>30</strong> °C in a drying oven<br />

and then weighed to the nearest mg. Both filter papers<br />

were re-wetted with equal amounts of water just before<br />

offering them to the snails. Pre-trials have shown that<br />

snails eat the moist filter paper. After the trial, the filter<br />

paper was left to dry again and then re-weighed. Each<br />

sample extract was fed to two different snails (i.e. two<br />

subsamples per replicate).<br />

As a bioassay agent for palatability, some 50 Cepaea<br />

hortensis garden snails were collected. Grime et al.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


COMPARING THE PALATABILITY OF NATIVE AND NON-NATIVE MEDITERRANEAN PLANTS ◆<br />

Native Non-native<br />

Ammophila arenaria, Poaceae (Aa) Acacia saligna, Fabaceae (As)<br />

Calicotome villosa, Fabaceae (Cv) Agave americana, Agavaceae, (Ag)<br />

Ceratonia siliqua, Fabaceae (Cs) Ailanthus altissima, Simaroubaceae (Aia)<br />

Cupressus sempervirens,Cupressaceae(Cu) Arundo donax, Poaceae (Ad)<br />

Forb mixture from the undergrowth (F) Carpobrotus acinaciformis, Aizoaceae (Ca)<br />

Medicago marina, Fabaceae (Mm) Nicotiana glauca, Solanaceae (Ng)<br />

Olea europaea, Oleaceae (Oe) Opuntia fi cus-indica, Cactaceae (Of)<br />

Otanthus maritimus, Asteraceae (Om) Oxalis pes-caprae, Oxalidaceae (Op)<br />

Pancratium maritimum, Amaryllidaceae (Pm) Phytolacca americana, Phytolaccaceae (Pa)<br />

Quercus coccifera, Fagaceae (Qc) Ricinus communis, Euphorbiaceae (Rc)<br />

Sarcopoterium spinosum, Rosaceae (Ss) Robinia pseudoacacia, Fabaceae (Rp)<br />

Thymus capitatus, Lamiaceae (Tc)<br />

Urginea maritima, Liliaceae (Um)<br />

(1993) used the species Cepaea nemoralis, which is rare<br />

in Scotland (Kerney, 1976). We selected C. hortensis not<br />

only because it is an accepted generalist herbivore (Grime<br />

et al., 1993), but also because all plant species tested are<br />

unknown to the snails. Thus, there was no ‘native’ plant<br />

species in the palatability trial from the snails’ perspective.<br />

Hence, no bias with respect to coevolution was introduced.<br />

This could have led to a false representation of the<br />

general palatability of that species. Moreover, most larger<br />

snails in the cultivated areas of Crete are in fact non-native<br />

(e.g. Helix aspera), being imported from the mainland<br />

(Francisco Welter-Schultes, personal communication).<br />

By focussing solely on the palatability of water-soluble<br />

leaf content, we disregard the importance of leaf toughness,<br />

hairiness, etc. As dozens of different herbivores are<br />

consuming the plants (sheep, goat, different species of<br />

snails, beetles and bugs), it is impossible to test for specific<br />

palatability to all these herbivores. We therefore resorted<br />

to only investigate water-extractable leaf content, which<br />

will be consumed by all these leaf herbivores.<br />

The individually marked snails were kept in a cage<br />

under near-natural conditions until used for the trial. For<br />

this, they were starved for 24 h, then put together with the<br />

extract and the control filter paper in a moist plastic bowl<br />

and left for 16 h overnight. After the trial snails were fed<br />

on lettuce for two days before the starving for the next<br />

trial. Each snail was used approx. five times for different<br />

plant species extracts. No snail received the same combination<br />

of plant species, and sequences of plant species<br />

were randomised. Feeding trials took place between 11th<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 171-178<br />

June and 7th July 2002. Air temperature during the feeding<br />

period was recorded at half-hourly intervals.<br />

A palatability index was calculated as the preference<br />

for extract over control per total amount eaten:<br />

PI ranges from Ð1 to +1, with negative values indicating<br />

rejection of extract compared to water. The nonlinear<br />

index used by Grime et al. (1993) = extract eaten/control<br />

eaten) is not sensible when very little of the control or<br />

extract sample has been eaten, as it produces a bias in<br />

favour of high index values (which can be cured by the<br />

taking the logarithm of the ratio Elston et al., 1996). Using<br />

the same index (but calling it “acceptability index”),<br />

Dirzo (1980) had to discard those trials where the test<br />

disk has been rejected or where control disks were consumed<br />

less than half (although stating that these tests are<br />

a valid measure of acceptability). This was the case in<br />

some of our trials. However, their index is related to ours<br />

by the formula:<br />

Species distribution data<br />

The data for the species’ distribution on Crete were<br />

taken from Turland (1992) and Turland et al. (1993).<br />

They mapped all species in a 8.25 km × 8.25 km grid.<br />

We used the number of occupied cells as an index of<br />

distribution.<br />

Statistical analysis<br />

Table 1. Native and non-native<br />

species sampled (abbreviations).<br />

Arcsin (0.1* square-root (x+1)) transformed data<br />

from the feeding trials were analysed with a mixed effect<br />

173


174<br />

◆ C. F. DORMANN & R. KING<br />

model (function “lme” in R: Pinheiro and Bates; 2000), as<br />

subsamples were nested within replicates. ‘Status’ (native<br />

or non-native) was used as the fixed effect and ‘species’<br />

as a random effect, since we were not interested in the<br />

specific identity, but rather in the difference between<br />

native and non-native. ‘Temperature at time of feeding’,<br />

‘woodiness of the species’ and ‘snail weight’ (as well as all<br />

interactions) were used as additional explanatory variables,<br />

but were excluded from the final model as their<br />

contributions were far from significant (P > 0.4, model<br />

simplification following suggestions of Crawley 2002).<br />

RESULTS<br />

Species differed widely in their palatability to snails<br />

(fig. 1). However, our hypothesis, that native and introduced<br />

species differ in their palatability to a generalist<br />

herbivore was not confirmed. They did not differ significantly<br />

in their palatability (fig. 2; F 1, 22 = 2.12, P= 0.160;<br />

log-ratios produced the same results).<br />

Within habitats, we compared the palatability of all<br />

non-native species to that of the natives occurring in<br />

this habitat, weighted by their abundance according to<br />

our vegetation recordings. This background palatability<br />

Fig. 1. Palatability sequence<br />

of the tested 24 species.<br />

Positive values indicate<br />

preference of extract over<br />

water. Abbreviations<br />

as in table 1.<br />

had values of PI olive grove = Ð0.407, PI phrygana = Ð0.499<br />

and PI dune = Ð0.265. Apart from the dunes, non-native<br />

palatability was always higher than this background<br />

level. Only in the dunes did the PI-value of the introduced<br />

Acacia saligna indicate lower palatability than that of<br />

the native community (see fig. 1). Palatability and cover<br />

for native species was unrelated in all three habitats<br />

(Pearson’s correlation: P > 0.3 for all three habitats).<br />

The species also differ widely in their distribution on<br />

Crete as measured by the number of occupied grid cells.<br />

This was, however, not related to their palatability (fig. 3).<br />

While non-natives were overall less common than natives<br />

(F 1, 21 = 11.32, P < 0.01), palatability was unrelated to<br />

distribution for both types (F 1, 21 = 0.01, P = 0.93).<br />

DISCUSSION<br />

In this comparison of the palatability of 13 native and<br />

11 non-native Cretan plant species we could not detect<br />

a difference using a generalist herbivore as a bioassay. In<br />

fact, non-natives were even slightly more palatable than<br />

natives (although not significantly so: fig. 2). We therefore<br />

have to conclude that there is no a priori reason to believe<br />

that the ‘nativeness’ status of a species has any relevance<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


COMPARING THE PALATABILITY OF NATIVE AND NON-NATIVE MEDITERRANEAN PLANTS ◆<br />

Fig. 2. Palatability of natives compared to non-natives.<br />

for the probability of generalist herbivores limiting its<br />

success at establishment in a given habitat. Consistent<br />

with this finding, there was no relationship between palatability<br />

and distribution of the species on Crete.<br />

Our study does not address palatability to specialist<br />

herbivores, therefore an extrapolation to the effect of herbivory<br />

per se on the establishment of non-native species<br />

is not possible. Possibly species that suffer heavily from<br />

a native specialist herbivore might evolve higher competitive<br />

performance in its absence (the EICA hypothesis:<br />

Blossey & Nötzold, 1995; Keane & Crawley, 2002), which<br />

is based on the ideas of Herms and Mattson (1992).<br />

A test of this coevolutionary hypothesis is beyond the<br />

scope of this study.<br />

Palatability values measured by our experiments showed<br />

a greater variability than those given by Dirzo (1980) and<br />

Grime et al. (1993). In these two studies, (converted) PI<br />

values for water extracts of grasses and dicotyledons are<br />

usually in the range of 0 to Ð0.15 (Grime et al., 1993).<br />

For plants where cell sap was known to be distasteful, PI<br />

values went down to Ð0.33, but clearly neither above 0<br />

nor below Ð0.5, as was the case in our experiment. This<br />

is probably a consequence of their rejection of trials where<br />

only control material was consumed, biasing against low<br />

palatability. In another palatability experiment, when<br />

simultaneously offering 43 species to a snail and a cricket,<br />

consumption data show clear rejections (i.e. PI values<br />

of Ð1) for 24 and 10 species, respectively (Grime et al.,<br />

1996). Moreover, since filter paper ranking 12th in the<br />

list, snails consumed less of 73 % of all species than of the<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 171-178<br />

filter paper control. However, these trials were performed<br />

on fresh material, not extracts, and are thus not directly<br />

comparable to our situation.<br />

Comparing the palatability of non-natives not only to<br />

that of natives, but more specifically to common native<br />

species within a given habitat has not been attempted<br />

before. Given that non-natives are slightly more palatable<br />

than natives, it is not surprising to find that the<br />

background PI-values are also generally more negative,<br />

i.e. natives are less palatable. The exception of Acacia<br />

saligna (syn. Acacia cyanophylla) in the dunes is remarkable,<br />

as this species is a pest in South Africa (Roux &<br />

Middlemiss, 1963) and became invasive more recently<br />

in western <strong>Mediterranea</strong>n coastal dunes (Cronk &Fuller,<br />

1995). Investigations into this coincidence of high community<br />

background palatability and low palatability of<br />

Acacia saligna may be fruitful. As for the other species, it<br />

is remarkable that the species with the highest palatability,<br />

Ricinus communis or Castor Oil Plant, ironically has seeds<br />

highly toxic to mammals (ricin leads to the agglutination<br />

of red blood cells). This high toxicity does not hold for<br />

leaves and snails, apparently, as none of them died in the<br />

weeks following the experiments.<br />

Palatability is related to a plant’s growth rate (Herms &<br />

Mattson, 1992). Faster growing species allocate less assimilates<br />

to anti-herbivore defense, thus being more palatable<br />

(Hartley & Jones, 1997, Jones & Hartley, 1999).<br />

Fig. 3. Distribution of the 24 species on Crete was unrelated to palatability.<br />

Grey dots refer to non-natives, black dots to natives.<br />

175


176<br />

◆ C. F. DORMANN & R. KING<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 171-178<br />

COMPARING THE PALATABILITY OF NATIVE AND NON-NATIVE MEDITERRANEAN PLANTS ◆<br />

However we have no data for the species tested in this<br />

study, and a recent review found no supportive evidence<br />

for the hypothesis that non-natives have higher growth<br />

rates than natives (Daehler, 2003). Nevertheless, it may<br />

be that our specific selection of non-natives is indeed more<br />

palatable because the have a higher growth rate.<br />

Another trait of the foliage that reduces consumption<br />

is leaf and tissue toughness. As we produced extracts,<br />

we did not test this trait, but it may play an important<br />

role in the field. Sclerophylly is very common in woody<br />

<strong>Mediterranea</strong>n plant species, due to the ecophysiological<br />

constraints of the climate (Larcher, 1995) and the<br />

deterrent effect of tough leaves on herbivores (Davidson,<br />

1993). This holds true as much for the native (Ammophila<br />

arenaria, Ceratonia siliqua, Cupressus sempervirens, Olea<br />

europaea, Quercus coccifera and Thymus capitatus) as for<br />

the non-native species in this experiment (Acacia saligna,<br />

Agave americana, Arundo donax, Nicotiana glauca and<br />

Opuntia ficus-indica).<br />

The Cretan landscape has been subject to intense<br />

grazing by livestock for centuries (Rackham & Moody,<br />

1996). Those plants now present must therefore have<br />

adapted to this situation. As additional winter feeding<br />

keeps livestock densities usually well above the population<br />

density supported by the vegetation alone, one could<br />

assume the plants are accustomed to very high levels of<br />

grazing. Hence new plant species are more likely to come<br />

from habitats with lower grazing intensity. For a generalist<br />

herbivore this could mean a higher palatability of nonnatives<br />

compared to the native Cretan species. This is in<br />

fact what we found, although the slightly higher mean<br />

palatability was statistically not significant.<br />

ACKNOWLEDGEMENTS<br />

The work was carried out as part of the EU-funded<br />

5th framework project EPIDEMIE (EVK2-CT-2000-<br />

00074). We gratefully acknowledge comments of Phil<br />

Lambdon, Phil Hulme and two anonymous referees on<br />

an earlier version.<br />

APPENDIX<br />

The table in the appendix gives data on PI, nativeness,<br />

woodiness, distribution and cover in the three vegetation<br />

types for all 24 species.<br />

References<br />

ALPERT, P., E. BONE & C. HOLZAPFEL, 2000. Invasiveness, invasibility<br />

and the role of environmental stress in the spread of<br />

non-native plants. Persp. Plant Ecol. Evol. Syst. 3, 52-66.<br />

BLOSSEY, B. & R. NÖTZOLD, 1995. Evolution of increased competitive<br />

ability in invasive nonindigenous plants: a hypothesis.<br />

J. Ecol. 83, 887-889.<br />

BOSSDORF, O., S. SCHRÖDER, D. PRATI & H. AUGE, 2004.<br />

Palatability and tolerance to simulated herbivory in native<br />

and introduced populations of garlic mustard (Alliaria petiolata).<br />

Am. J. Bot. 91, 856-862.<br />

CALLAWAY, R. M. & E. T. ASCHEHOUG, 2000. Invasive plants<br />

versus their new and old neighbors: a mechanim for exotic<br />

invasion. Science 290, 521-523.<br />

CRAWLEY, M. J., 2002. Statistical Computing: An Introduction to<br />

Data Analysis using S-Plus. Wiley, New York.<br />

CRAWLEY, M. J., P. H. HARVEY & A. PURVIS, 1996. Comparative<br />

ecology of the native and alien floras of the British Isles.<br />

Philos. Trans. R. Soc. Lond. Ser. B 351, 1251-1259.<br />

CRONK, Q. C. B. & J. L. FULLER, 1995. Plant Invaders. Chapman<br />

& Hall, London.<br />

DAEHLER, C. C., 2003. Performance comparisons of cooccurring<br />

native and alien invasive plants: implications for<br />

conservation and restoration. Annu. Rev. Ecol. Evol. Syst. 34,<br />

183-211.<br />

DAVIDSON, D. W., 1993. The effects of herbivory and granivory<br />

on terrestrial plant succession. Oikos 68, 23-35.<br />

DIRZO, R., 1980. Experimental studies on slug-plant interactions.<br />

I. The acceptability of thirty plant species to the slug<br />

Agriolimax caruanae. J. Ecol. 68, 981-998.<br />

ELSTON, D. A., A. W. ILLIUS & I. J. GORDON, 1996. Assessment of<br />

preferences among a range of options using log ratio analysis.<br />

Ecology 77, 2538-2548.<br />

GRIME, J. P., J. H. C. CORNELISSEN, K. THOMPSON & J. G.<br />

HODGSON, 1996. Evidence of a causal connection between<br />

anti-herbivore defence and the decomposition rate of leaves.<br />

Oikos 77, 489-494.<br />

GRIME, J. P., S. F. MACPHERSON-STEWART & R. S. DEARMAN,<br />

1993. Palatability. In G. A. F. Hendry and J. P. Grime, editors.<br />

Methods in Comparative Plant Ecology. Chapman & Hall,<br />

London, p. 117-121.<br />

HARBORNE, J. B., 1997. Plant secondary metabolism. In<br />

M.J. Crawley, editor. Plant Ecology. Blackwell, Oxford, p.<br />

132-155.<br />

HARTLEY, S. E. & C. G. JONES, 1997. Plant chemistry and herbivory,<br />

or why the world is green. In M.J. Crawley, editor.<br />

Plant Ecology. Blackwell, Oxford, p. 284-324.<br />

HERMS, D. A. & W. J. MATTSON, 1992. The dilemma of plants:<br />

to grow or defend. Quart. Rev. Biol. 67, 283-335.<br />

177


178<br />

◆ C. F. DORMANN & R. KING<br />

HEYWOOD, V. H., 1995. The <strong>Mediterranea</strong>n flora in the context<br />

of world biodiversity. Ecol. Medit. 20, 11-18.<br />

HUENNEKE, L., 1988. SCOPE program in biological invasions:<br />

a status report. Conserv. Biol. 2, 8-10.<br />

JONES, C. G. & S. E. HARTLEY, 1999. A protein competition<br />

model of phenolic allocation. Oikos 86, 27-44.<br />

KEANE, R. M. & M. J. CRAWLEY, 2002. Exotic plant invasions<br />

and the enemy release hypothesis. Trends Ecol. Evol. 17,<br />

164-170.<br />

KERNEY, M. P., 1976. Atlas of the Non-Marine Mollusca of the<br />

British Isles. Pemberley Books, Bucks, UK.<br />

LARCHER, W., 1995. Physiological Plant Ecology, 3rd edition edition.<br />

Springer, Berlin.<br />

LONSDALE, W. M., 1999. Global patterns of plant invasions and<br />

the concept of invasibility. Ecology 80, 1522-1536.<br />

NOBLE, I. R., 1989. Attributes of invaders and the invading<br />

process: terrestrial and vascular plants. In J. A. Drake,<br />

H.A. Mooney, F. di Castri, R. H. Groves, F. J. Kruger,<br />

M. Rejmanek, and M. Williamson, editors. Biological<br />

Invasions: a Global Perspective. John Wiley & Sons, Chichester,<br />

p. <strong>30</strong>1-313.<br />

PINHEIRO, J. C. & D. M. BATES, 2000. Mixed-Effect Models in S<br />

and S-plus. Springer, New York.<br />

RACKHAM, O. & J. MOODY, 1996. The Making of the Cretan<br />

Landscape. Manchester University Press, Manchester.<br />

RADFORD, I. J. & R. D. COUSENS, 2000. Invasiveness and comparative<br />

life-history traits of exotic and indigenous Senecio<br />

species in Australia. Oecologia 125, 531-542.<br />

REJMÁNEK, M., 1996. A theory of seed plant invasiveness: the<br />

first sketch. Biol. Conserv. 78, 171-181.<br />

ROUX, E. R. & E. MIDDLEMISS, 1963. Studies in the autecology<br />

of Australian acacias in South Africa. The occurrence and<br />

distribution of Acacia cyanophylla and A. cyclops in the Cape<br />

Province. S. Afric. J. Sci. 59, 286-294.<br />

SCHIERENBECK, K. A., R. N. MACK & R. A. SHARITZ, 1994.<br />

Effects of herbivory on growth and biomass allocation in<br />

native and introduced species of Lonicera. Ecology 75, 1661-<br />

1672.<br />

TURLAND, N. J., 1992. Floristic notes from Crete. Bot. J. Linn.<br />

Soc. 108, 345-357.<br />

TURLAND, N. J., L. CHILTON & J. R. PRESS, 1993. Flora of the<br />

Cretan Area. Annotated Checklist and Atlas. Natural History<br />

Museum, H.M.S.O., London.<br />

VITOUSEK, P. M., 1988. Diversity and biological invasions of<br />

oceanic islands. In E. O. Wilson, editor. Biodiversity. National<br />

Academy of Science, USA, Washington, p. 181-189.<br />

WILLIAMSON, M., 1999. Invasions. Ecography 22, 5-12.<br />

WILLIAMSON, M. H. & A. FITTER, 1996. The characters of successful<br />

invaders. Biol. Conserv. 78, 163-170.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


Distribution and economic potential of the Sweet chestnut<br />

(Castanea sativa Mill.) in Europe<br />

Distribution et potentiel économique du châtaignier<br />

(Castanea sativa Mill.) en Europe<br />

M. Conedera 1 , M.C. Manetti 2 , F. Giudici 1 & E. Amorini 2<br />

1. WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Sottostazione Sud delle Alpi, CH 6504 Bellinzona, Switzerland.<br />

2. C.R.A. Forest Research Institute – Viale S. Margherita 80, I-52100 Arezzo, Italy<br />

Abstract<br />

No official and coherent data on the distribution of the European<br />

chestnut exist despite its wide range of distribution and the important<br />

economic role it has played in many countries. In 1997, in the<br />

framework of the COST action G4 “Multidisciplinary Chestnut<br />

Research”, quantitative and qualitative data on chestnut forests were<br />

collected, mostly from the National Forest Inventories, in order to<br />

provide as sound a picture as possible of this important European<br />

resource. A total of 2.25 million hectares of forest dominated by chestnut<br />

were recorded, with 1.78 million hectares (79.0 %) cultivated<br />

for wood and 0.43 million hectares (19.3 %) for fruit production.<br />

The remaining 0.04 million hectares (1.7 %) were classified as irregular<br />

structures or without any indication. A further 0.31 million<br />

hectares are thought to be mixed forest with chestnut.<br />

Three types of chestnut countries can be distinguished: (i) countries<br />

with a strong chestnut tradition (e.g. Italy, France, southern<br />

Switzerland, Spain, Portugal and Greece), where the chestnut<br />

stands are cultivated with intensive and characteristic silvicultural<br />

systems (coppices and orchards); (ii) countries with only a partially<br />

developed chestnut tradition due to the country’s particular geography<br />

(e.g. England) or history (e.g. Croatia, Turkey, Georgia); (iii)<br />

countries where the chestnut only sporadically occurs (e.g. Hungary,<br />

Bulgaria, Belgium) or has been recently introduced (e.g. Slovakia,<br />

Netherlands).<br />

A comparison of the present distribution of traditional silvicultural<br />

systems and historical data on chestnut distribution supports the<br />

hypothesis that the large-scale chestnut forest plantations are of post-<br />

Roman origin. Chestnut cultivation is now at a turning point as the<br />

changed needs of society have changed as it has moved away from<br />

a rural-based to an industrial and urban-oriented organization.<br />

The evolution of the chestnut market in recent decades confirms<br />

the potential of this resource for both traditional products and new<br />

services and goods related to organic-food and environmentally<br />

friendly products.<br />

Key-words<br />

Chestnut coppice, chestnut orchard, silvicultural systems,<br />

chestnut resources, Europe<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 179-193<br />

Résumé<br />

Il n’existe aucune donnée officielle et cohérente sur la distribution<br />

du châtaignier en Europe, en dépit de sa vaste aire de répartition<br />

et de l’important rôle économique que cette espèce a joué dans de<br />

nombreux pays. En 1997, dans le cadre de l’action COST G4<br />

“Multidisciplinary Chestnut Research”, des données quantitatives et<br />

qualitatives ont été collectées au sujet des châtaigneraies européennes,<br />

principalement à partir des inventaires forestiers nationaux. L’objectif<br />

était de fournir un état des lieux aussi précis que possible pour cette<br />

importance ressource économique. Un total de 2,25 millions d’hectares<br />

de boisements dominés par le châtaignier a été inventorié, avec<br />

1,78 millions d’hectares (79,0 %) cultivé pour la production de bois<br />

et 0,43 million d’hectares (19,3 %) pour la production fruitière. Les<br />

0,04 million d’hectares restants (1,7 %) ont été classés en structures<br />

irrégulières ou n’ont pas pu être classifiés. Plus de 0,31 million hectares<br />

sont classés en tant que boisements mixtes à châtiagnier.<br />

Trois types de pays peuvent être distingués du point de vue de la<br />

castanéiculture : (i) les pays dotés d’une forte tradition castanéicole<br />

(ex. Italie, France, sud de la Suisse, Espagne, Portugal et Grèce),<br />

où les châtaigneraies sont conduites en taillis ou futaies, grâce à des<br />

sylvicultures intensives et caractéristiques ; (ii) les pays où la tradition<br />

castanéicole n’est que partiellement développée en raison de<br />

contraintes écologiques (ex. Angleterre) ou historique (ex. Croatie,<br />

Turquie, Géorgie) ; (iii) les pays où la castanéiculture n’est que<br />

sporadique (ex. Hongrie, Bulgarie, Belgique) ou a été récemment<br />

introduite (ex. Slovaquie, Pays-Bas).<br />

La confrontation de la distribution actuelle des pratiques traditionnelles<br />

et des données historiques sur la répartition du châtaignier<br />

supporte l’hypothèse d’une origine post-romaine pour les peuplements<br />

de châtaignier présents sur de vastes étendus. La castanéiculure a été<br />

profondément bouleversée par les changements socio-économiques liés<br />

au passage d’une économie essentiellement rurale à une économique<br />

de type industriel. Toutefois, l’évolution du marché durant ces<br />

dernières décennies montre que le potentiel économique de cette<br />

ressource reste bien présent, à la fois pour des produits traditionnels<br />

mais aussi pour de nouveaux services et biens.<br />

Mots-clés<br />

Châtaigneraies, systèmes sylvoculturaux, castanéiculture, Europe<br />

179


180<br />

◆ M. CONEDERA, M. C. MANETTI, F. GIUDICI & E. AMORINI<br />

INTRODUCTION<br />

The Sweet chestnut (Castanea sativa Mill.) is the only<br />

native species of the genus in Europe. The main chestnut<br />

refugia are though to be the Transcaucasian region,<br />

north-western Anatolia, the hinterland of the Tyrrhenian<br />

coast from Liguria to Lazio along the Apennine range,<br />

the region around Lago di Monticchio (Monte Vulture) in<br />

southern Italy, the Cantabrian coast on the Iberian peninsula,<br />

and probably also the Greek peninsula (Peloponnese<br />

and Thessaly) and north-eastern Italy (Colli Euganei,<br />

Monti Berici, Emilia-Romagna) (Krebs et al., 2004).<br />

Chestnut cultivation started early and has a long tradition<br />

in Europe, as it is a tree species that is suitable for<br />

both timber and fruit production. The first written evidence<br />

of chestnut management is found in Theophrastus’<br />

“Inquiry into plants”, 3 rd Century B.C. The Romans then<br />

introduced in most parts of Europe the idea of systematically<br />

cultivating and using the chestnut tree and, in certain<br />

cases, the tree itself (Conedera et al., 2004). In Medieval<br />

Times, people in several parts of Europe became greatly<br />

interested in cultivating chestnut, mostly for fruit production.<br />

Chestnut cultivation was extended to the ecological<br />

limits of the species (Pitte, 1986).<br />

Despite the historical and economic importance of the<br />

European chestnut, no official and coherent data exist on<br />

the distribution of the species. The only attempt to survey<br />

chestnut resources in Europe was made in the fifties within<br />

the framework of the Chestnut International Commission.<br />

The International Commission consisted of a group of<br />

experts from different chestnut countries (Spain, Portugal,<br />

France, Switzerland, Italy, Yugoslavia, Turkey, Greece) who<br />

were charged with the analysis of the effects on chestnut<br />

cultivation of the increasing abandonment of rural areas<br />

and the onset of pathologies such as Cryphonectria parasitica<br />

and Phythophtora spp. Creating a chestnut distribution<br />

map was listed as a priority (Groupe des Experts<br />

du Châtaignier 1951; Commission Internationale du<br />

Châtaignier 1953, 1955, 1958).<br />

One of the most interesting products of the<br />

International Commission was the chestnut distribution<br />

map of Europe and the related quantitative data<br />

provided by the country reports presented during the<br />

meetings of the Commission (Commission Internationale<br />

du Châtaignier 1958). Unfortunately, the data are quite<br />

rough, due to different silvicultural approaches and classifications<br />

in chestnut stands throughout Europe (simple<br />

coppices, coppices with standards, high forests for timber<br />

production, high forests for fruit production, orchards,<br />

mixed stands). Moreover, several countries in the north-<br />

ern and eastern part of Europe were not considered in<br />

the survey.<br />

Starting in the 1960s, new data on chestnut distribution<br />

became available as national forest inventories<br />

were carried out in several countries. But there were still<br />

problems with the classification of the different chestnut<br />

forest types as the surveying methods among the countries<br />

were only partially comparable. The search for accurate<br />

data on chestnut resources in Europe has intensified<br />

in recent decades, since the chestnut tree was recognised<br />

as a multipurpose species for landscape conservation in<br />

marginal areas. Responding to this need, some authors<br />

have tried to synthesise the existing data, providing an<br />

overview of chestnut resources in the main European<br />

countries (Bourgeois et al., 1991).<br />

In 1997, within the framework of the COST action<br />

G4 “Multidisciplinary Chestnut Research” experts from<br />

all European countries where chestnut is present, were<br />

regrouped for the first time. During this action, quantitative<br />

and qualitative data on chestnut forests were collected<br />

in order to provide as sound a picture as possible of this<br />

important European resource. In this paper we describe<br />

the project and discuss the collected data.<br />

MATERIAL AND METHODS<br />

Data collection<br />

The experts (data contributors, see table 1) of the<br />

countries involved in the COST G4 action were asked to<br />

provide data about the area covered by chestnut forests<br />

according to the typologies reported in table 2. The data<br />

were made available as a national report for each country<br />

in which basic statistics were linked to other additional<br />

information about silvicultural management, products<br />

and research activities. The information so obtained was<br />

then compiled together with local and international literature<br />

on chestnut cultivation in Europe.<br />

Defining chestnut silvicultural typologies<br />

There are many different silvicultural systems applied<br />

in chestnut stands in European countries, which makes it<br />

difficult to define a strict typology silvicultural practices. In<br />

this work, we adopted a hierarchical classification (table 2),<br />

first separating the chestnut forests (stands consisting of<br />

more than 50 % of chestnut) from the mixed stands (chestnut<br />

less than 50 %). We then distinguished between stands<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


DISTRIBUTION AND ECONOMIC POTENTIAL OF THE SWEET CHESTNUT (CASTANEA SATIVA MILL.) IN EUROPE ◆<br />

Country Data contributor Data sources<br />

Albania Maxhun Dida and Caush Elezi Source not given<br />

Andorra Sebastià Semene Guiltart<br />

National Forest Inventory 1997<br />

IEA Centre de Biodiversitat 2003<br />

Austria Eva Wilhelm Source not given<br />

Azerbaijan Vagid Gadjiev Source not given<br />

Belgium Hugues Lecomte and Klaartje van Loy<br />

Flemish Forest Inventory (1996-99)<br />

Walloons: source not given<br />

Bosnia-Herzegovina Ahmet Lojo Source not given<br />

Bulgaria Svetla Doncheva Forest National Service<br />

Czech Republic Haltofová and Jankovsky (2004)<br />

Croatia Sanja Novak Agbaba Croatian Forest Service<br />

France Eric Sevrin National Forest Inventory (1999)<br />

Germany Volker André Bouffi er Seeman et al. (2001)<br />

Georgia Yuri Michailov Source not given<br />

Greece Gregor Chatziphilippidis and Stephanos Diamandis National Forest Inventory (1992), Diamandis (2002)<br />

Hungary Lazslo Radocz and Norbert Frank National inventories and others<br />

National Forest Inventory (1985)<br />

Italy Maria Chiara Manetti<br />

National Statistics Institute (1993)<br />

Regional Forest Inventories, Ad hoc questionnaires<br />

Macedonia Sotirovski Kiril and Sumarski Fakultet Source not given<br />

Netherlands Anne Oosterbaan Estimated by the referent<br />

Portugal Afonso Martins<br />

National Forest Inventory (1998)<br />

National Statistics Institute (1987-1999)<br />

Romania Valentin Bolea and Danut Chira Source not given<br />

Russian Federation Michhail Pridnya, Gennadyi Solntsev and Yuri Michailov Source not given<br />

Serbia-Monte Negro Glisic (1975)<br />

Slovakia Milan Bolvansky and Ferdinand Tokar<br />

Lesprojekt (General Directorate of State Forest)<br />

Institute of Forest Ecology, Nitra<br />

Slovenia Anita Solar, Dusan Jurc Jurc (2002)<br />

Spain Juan Gaillardo Lancho and Santiago Lorenzo Pereira National Forest Inventory (1996)<br />

Switzerland Fulvio Giudici National Forest Inventory (1985)<br />

Turkey Necdet Guler, Ümit Serdar Agricultural statistics<br />

United Kingdom Nigel Braden and Karen Russell<br />

National Forest Inventory (1995-99)<br />

Forestry Commission Census (1979-82)<br />

Chestnut forests (chestnut area) Stands with more than 50 % chestnut<br />

Timber production Stands where wood production is prevalent<br />

Coppices Simple coppices. Coppices with standards<br />

High forests<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 179-193<br />

Table 1. Participating countries and data contributors.<br />

« Natural » stands. Plantations<br />

Stands converted into high forests<br />

Abandoned stands (coppices, orchards) with the structure of high forests<br />

Fruit production Stands where fruit production is prevalent<br />

Orchards Stands with grafted trees (groves), including row plantations for fruit production<br />

High forests « Natural » stands. Plantations<br />

Irregular structure Stands without a codifi ed management<br />

Mixed forests with chestnut Stands with less than 50 % chestnut<br />

Table 2. Definition of the chestnut forest types.<br />

181


182<br />

◆ M. CONEDERA, M. C. MANETTI, F. GIUDICI & E. AMORINI<br />

with defined productive purposes (timber or fruit) and<br />

those without a codified management (irregular structure).<br />

The stands for timber production were subsequently divided<br />

into high forests and coppices and the stands for fruit<br />

production into orchards and high forests. Coppices are<br />

defined as pure chestnut forests regenerated from dormant<br />

or adventitious buds of the stump for wood production<br />

(mostly poles and firewood). Orchards (or groves, as some<br />

authors call them) are traditionally open stands composed<br />

of grafted chestnut trees (selected varieties) for fruit production<br />

with intercropping of cereals (silvo-arable system,<br />

usually wheat, oat or rye), hay or pasture (silvo-pastoral<br />

system). We classified as orchard also new plantations of<br />

chestnut trees of selected varieties for fruit production<br />

or row plantations of grafted chestnut trees. In contrast,<br />

high forest was defined as chestnut stands that originated<br />

directly from seedlings (i.e. without coppicing or grafting)<br />

and that were used for timber or fruit production.<br />

Chestnut map<br />

A GIS-based chestnut map was constructed using the<br />

original data from the International Chestnut Commission<br />

(Commission Internationale du Châtaignier 1958). The<br />

experts were asked to update the map for their own country<br />

or, for the countries with missing data in 1958, to provide<br />

a distribution map indicating the geographic location<br />

(polygons) of existing chestnut forest types. Where no<br />

forest type was indicated, the default classification of high<br />

forest was assumed. After scanning, the original chestnut<br />

maps were georeferenced and the polygons digitalised by<br />

hand with the best possible accuracy.<br />

RESULTS AND DISCUSSION<br />

Chestnut area<br />

The reported chestnut area covers in total 2,53 million<br />

hectares in Europe, of which 2,25 million hectares are<br />

chestnut forests, i.e. forests where chestnut is the dominant<br />

tree species and the remaining 0,31 million hectares<br />

are mixed forests with chestnut (table 3). The distribution<br />

area ranges from southern Europe (e.g. Crete) to<br />

the North (southern England, Belgium) (fig. 1). The<br />

European chestnut forests are concentrated in just a few<br />

countries with a long tradition of chestnut cultivation<br />

(fig. 1). France and Italy together account for 79,3 % of<br />

the whole chestnut forest area, with the other traditional<br />

chestnut countries, Spain, Portugal and Switzerland,<br />

accounting for a further 9,7 %. The remaining 11,0 %<br />

are dispersed in the other countries (table 3). For certain<br />

countries, such as Albania, Austria, the Czech Republic<br />

and Serbia-Montenegro, little information is available.<br />

We know roughly where chestnut forests may be found<br />

(e.g. Glisic, 1975; Haltofová & Jankovsky, 2004), but no<br />

further details about stand type, distribution and management<br />

are provided. For the countries not included<br />

in table 3, we assume that chestnut does not occur. A<br />

comparison of the distribution map of current chestnut<br />

forests (fig. 1) with both the chestnut pollen map at the<br />

end of the Roman Period (ca. 570 AD, fig. 2a) and with<br />

that at the end of the Middle Ages (ca. 1460 AD, fig. 2b),<br />

shows that, especially in western Europe, the main chestnut<br />

areas coincide with the chestnut stands created since<br />

the Middle Age, as already reported by several authors<br />

(Pitte, 1986; Fernandez de Ana Magán, 2002).<br />

The proportion of chestnut stands with respect to the<br />

total forest area is usually very low (< 1-3 %). Exceptions<br />

to this general picture are Georgia (16,1 %) and the two<br />

main West-European chestnut countries, Italy (7,7 %)<br />

and France (6,6 %). In some cases, the irregular distribution<br />

pattern of chestnut stands implies a contrast between<br />

the low percentages at the national level and the high<br />

concentration of the species at the regional level. This is,<br />

for instance, the case for Switzerland where the chestnut<br />

percentage is 1,2 % nationally and 12,9 % in the region<br />

south of the Alps, the main chestnut-growing area (EAFV<br />

1988). In most countries, chestnut forests are cultivated<br />

along the mountain ranges, highlighting the orophilous<br />

(mountainous) character of the species.<br />

Unfortunately, it is not possible to analyze reliably<br />

the evolution of the total chestnut area for the countries<br />

included in the FAO survey of the fifties as the methods<br />

of data collection are not comparable. The FAO-survey<br />

considered only the managed and productive chestnut<br />

areas (Commission internationale du châtaignier, 1958),<br />

a category not considered in the present study.<br />

Chestnut forests for timber production<br />

In Europe, chestnut-growing area devoted to timber<br />

production is 1,78 million hectares (table 3), corresponding<br />

to 79,0 % of the total chestnut-growing area. The further<br />

division of these stands into coppices and high forests<br />

is in some cases not clear, because of the problematic<br />

classification of the coppices with standards. They tend<br />

to be classified as coppices or high forests, depending<br />

on the different weight given to the reserve-trees. In this<br />

study, we accepted the classifications proposed by the<br />

data contributors.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


DISTRIBUTION AND ECONOMIC POTENTIAL OF THE SWEET CHESTNUT (CASTANEA SATIVA MILL.) IN EUROPE ◆<br />

The traditional silvicultural method of timber production,<br />

the “coppice system”, is still widely applied in<br />

countries where chestnut cultivation was widespread in<br />

the past to satisfy the needs of rural populations located<br />

in marginal or mountainous areas and where the chestnut<br />

found suitable climate and soil conditions in Italy, France,<br />

Spain, Greece and Southern Switzerland (fig. 3 and 4;<br />

table 3).<br />

There are several reasons for the large number of<br />

coppice stands. They used to be popular because small<br />

and medium traditional chestnut products (e.g. poles)<br />

were important in the national and local economies. In<br />

addition, chestnut stools have a high resprouting capacity,<br />

and the shoots grows remarkably quickly (Manetti<br />

et al., 2001). Moreover, many coppices in France, Italy,<br />

Spain and Switzerland were originally ancient orchards,<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 179-193<br />

Fig. 1. Present distribution of the chestnut in Europe.<br />

that were abandoned at the beginning of the last century<br />

and then coppiced because of the high incidence of the<br />

chestnut blight and of the demand for chestnut wood for<br />

tannin, mining and – especially in Spain – for barrels<br />

(Pitte, 1986; Conedera et al., 1997; Fernandez de Ana<br />

Magán, 2002). In these areas, there are now a number<br />

of atypical coppice stands, derived from orchards and<br />

characterized by very low stool density and poor quality<br />

shoots. According to Tani et al. (2003), two or three generations<br />

of coppicing are needed in these cases, to regain<br />

a satisfactory stool density in the stands.<br />

Since the late fifties, the silvicultural rules applied to<br />

coppice stands required a rotation period from 5 to 12<br />

years (simple coppicing), or 25-<strong>30</strong> years in cases with 2-3<br />

spacings and thinnings, depending on the desired products<br />

and the type of ownership. Changes in the socio-<br />

183


184<br />

◆ M. CONEDERA, M. C. MANETTI, F. GIUDICI & E. AMORINI<br />

CHESTNUT FORESTS (chestnut > 50%)<br />

remarks<br />

MIXED<br />

FORESTS<br />

(chestnut <<br />

50%)<br />

Total<br />

country<br />

TIMBER PRODUCTION FRUIT PRODUCTION<br />

chestnut<br />

Irregular<br />

area 1)<br />

structure<br />

CHESTNUT AREA<br />

forests vs<br />

total forest<br />

Coppices<br />

High<br />

TOTAL<br />

forests<br />

Orchards<br />

High<br />

TOTAL<br />

forests<br />

area<br />

km2 km2 ha ha ha ha ha ha ha ha % % ha<br />

Total<br />

forest<br />

area 1)<br />

country<br />

Albania 2740 991 8600 8600 8600 0.4 0.9 1800<br />

Andorra 45 39 0 0.0 0.0 sporadic presence of chestnut in forest stands<br />

Austria 8273 9402 missing value<br />

Azerbaijan 8359 1094 1500 1500 1500 0.1 0.1 700 high forests mostly for fruit production<br />

in mixed forests chestnut covers about <strong>30</strong>% of the<br />

basal area.<br />

Belgium <strong>30</strong>25 620 750 <strong>30</strong>0 1050 1050 0.0 0.2 4450<br />

5100 2273 <strong>30</strong>57 <strong>30</strong>57 <strong>30</strong>57 0.1 0.1 4585<br />

Bosnia-<br />

Herzegovina<br />

distribution between coppice and high forest<br />

estimated.<br />

Bulgaria 11055 3690 2000 100 2100 720 720 140 2960 0.1 0.1 480<br />

Croatia 5592 1783 14580 420 15000 15000 0.7 0.8 22362<br />

chestnut present as single tree or tree cohorts in more<br />

than <strong>30</strong>0 localities. No quantitative data available<br />

7728 2632<br />

Czech<br />

Republic<br />

France 55010 15341 862500 58000 920500 100000 100000 1020500 45.3 6.7 coppice includes coppice with standards<br />

Georgia 6831 298 48000 48000 48000 2.1 16.1 data source uncertain<br />

Germany 34927 10740 4400 4400 4400 0.2 0.0 1600<br />

only total area available, including avenue and solitary<br />

trees; coppice stands are assumed to be prevalent<br />

Greece 12890 3599 3<strong>30</strong>51 3<strong>30</strong>51 600 600 33651 1.5 0.9<br />

Hungary 9234 1840 <strong>30</strong>0 800 1100 900 900 2000 0.1 0.1 650<br />

irregular structure intended as forest without a<br />

codifi ed management<br />

Italy 29406 10003 482751 15119 497870 235620 235620 32347 765837 34.0 7.7<br />

irregular structure intended as forest without a<br />

codifi ed management<br />

Macedonia 2543 906 0 5058 5058 0.2 0.6<br />

Netherlands 3392 375 50 50 50 0.0 0.0 250<br />

Portugal 9150 3666 33900 33900 19609 19609 53509 2.4 1.5 21400 coppice are included in the high forest area<br />

Romania 2<strong>30</strong>34 6448 2890 2890 100 100 2990 0.1 0.0 200<br />

1688851 851392 40000 40000 0 40000 1.8 0.0 7000<br />

Russian<br />

Federation<br />

chestnut presents in few spots. No quantitative data<br />

available<br />

10200 2887<br />

Serbia-Monte<br />

Negro<br />

Slovakia 4808 2177 16 1<strong>30</strong>2 1318 92 92 95 1505 0.1 0.1 45<br />

no detailed information on the special distribution of<br />

the different silvicultural systems<br />

Slovenia 2012 1107 <strong>30</strong>000 <strong>30</strong>000 185 185 <strong>30</strong>185 1.3 2.7 202<strong>30</strong>8<br />

confusion between high forests and orchards may<br />

exist; single or dispersed orchard trees are not<br />

Spain 49945 14370 49909 50039 99948 37679 37679 137627 6.1 1.0<br />

included<br />

mixed forests intended as chestnut presence less then<br />

25% of the basal area<br />

Switzerland 3955 1199 19000 4700 23700 3400 3400 27100 1.2 2.3 6800<br />

confusion between high forests and orchards may<br />

exist<br />

Turkey 76963 10225 3614 3614 25278 25278 28892 1.3 0.3 28000<br />

United Kingdom 24160 2794 7913 10875 18788 18788 0.8 0.7 10871 isolated woods < 2 ha are not included<br />

TOTAL 2099228 961891 1483891 296445 1780336 397585 36698 434283 37640 2252259 100.0 313501<br />

% of chestnut area 65.9 13.2 79.0 17.7 1.6 19.3 1.7 100.0<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


DISTRIBUTION AND ECONOMIC POTENTIAL OF THE SWEET CHESTNUT (CASTANEA SATIVA MILL.) IN EUROPE ◆<br />

economical structure of the rural areas and the crisis in<br />

the market for poles meant that different silvicultural<br />

treatments were needed to satisfy the new demand for<br />

larger size and higher quality products.<br />

As a results of these developments, the silvicultural<br />

systems for chestnut timber production applied are now<br />

very diverse, both within and among chestnut-growing<br />

countries. In certain cases, the rotation period has been<br />

extended without any planned active silvicultural intervention<br />

and no well-defined long- or medium-term objectives.<br />

In some countries such as Italy, Spain and the United<br />

Kingdom, coppices have been converted into high forests<br />

or, in extreme cases, have just not been cut and have thus<br />

developed into high forest-like stands. Nevertheless, in<br />

some European countries, such as France, Greece, Italy,<br />

Portugal, Spain, Southern Switzerland and the United<br />

Kingdom, private chestnut coppices are still cultivated<br />

in a short rotation period (10-20 years) without thinnings<br />

(rarely 1, early and from below) to produce poles<br />

and small products, mainly in the private ownership. The<br />

application of long-rotation periods (<strong>30</strong>-60 years) and<br />

selective thinnings, however, are reported for Croatia,<br />

Bulgaria and Germany. Finally, there have been recent<br />

experiments in France, Italy and Spain in the face of the<br />

growing demand for chestnut wood products. Here the<br />

management policy has been to have rotation periods of<br />

25-35 years and 1-2 thinnings from below), in order to<br />

produce timber of higher quality, especially with a low<br />

incidence of ring shake (table 4).<br />

High forest stands, representing only 16,7 % (= approx.<br />

296 500 ha) of the chestnut-growing area devoted<br />

to timber production, are prevalent in those countries that<br />

have recently introduced chestnut cultivation (Slovakia,<br />

Hungary), and in those where there is no specific chestnut<br />

silviculture (Romania, Russia), or where the adopted<br />

silvicultural practices early modified the forest structures,<br />

giving them the appearance of high forest-like stands<br />

(Portugal, Romania).<br />

In mixed forests, the silvicultural treatment is generally<br />

uniform and the chestnut is managed in the same way as<br />

other species. In such stands, management generally follows<br />

a rotation period of 40-60 years, or, more rarely, of<br />

80-100 years or more (Slovakia, Bulgaria and Romania),<br />

and thinnings are carried out every 5-10 or 10-20 years.<br />

Table 3. Chestnut forest area according to defined forest types in Europe..<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 179-193<br />

The thinning type varies from selective to low thinning,<br />

probably according to the silvicultural tradition of the<br />

country concerned (table 4).<br />

In summary, there appears to be variety in the silvicultural<br />

treatments (rotation period, type, frequency and<br />

intensity of thinnings) applied to chestnut coppice and<br />

high forest stands in Europe. Above all, it seems silviculture<br />

interventions are often applied without an exhaustive<br />

analysis of their ecological impact on the forest ecosystem,<br />

and without a preventive analysis of the relevant<br />

ecological parameters (which include site index, climatic<br />

characteristics, and soil type) or of the main structural<br />

parameters (e.g. silvicultural system, stand density, dominant<br />

height, degree of mixture).<br />

Chestnut forests for fruit production<br />

The chestnut-growing area devoted to fruit production<br />

covers 0,43 million hectares (table 3), corresponding<br />

to 19,3 % of the total chestnut-growing area. According to<br />

our survey, Italy and France are nowadays the countries<br />

with the largest orchard areas (together they account for<br />

84,5 % of the total reported orchard area). Thus, similar<br />

to the coppice stands, orchards grown according to<br />

traditional silvicultural methods for fruit production are<br />

mostly found in countries with a long tradition of chestnut<br />

cultivation (fig. 5; table 3). During the Middle Ages,<br />

the chestnut was an essential source of food for many<br />

mountain regions of those countries and this resulted in<br />

a wide range of products and of cultivated varieties with<br />

different ripening periods (early, mid-season, late), types<br />

of use (fresh consumption, long-term storage, drying,<br />

flour, animal feed) and ranges of distribution (higher<br />

altitudes, lower slopes, ubiquitous, etc.). This gave<br />

rise to a very complex and highly structured chestnut<br />

culture with a considerable number of different chestnut<br />

varieties cultivated for different purposes (Conedera et<br />

al., 1993).<br />

The few regions where commercial transport routes<br />

already existed during the Middle Ages (e.g. Piedmont<br />

or Tuscany), where the only places where chestnut<br />

plantations with just one or few high-quality chestnut or<br />

marron-cultivars were started in this period. The fruits<br />

were then sold on the regional or even international<br />

1 FAO, 2003: State of the World's Forests (SOFO), Rome, XIV, 151 p. Land area refers to the total area, excluding areas under inland water bodies. The<br />

source of these data is FAO (2001); they may differ slightly from those in the State of the World's Forests 2001, which used a different source. The forest<br />

cover fi gure for each country has been calibrated to the country's land area.<br />

185


186<br />

◆ M. CONEDERA, M. C. MANETTI, F. GIUDICI & E. AMORINI<br />

markets (Pitte, 1986). The marron varieties, then defined as<br />

elliptic-shaped fruits of medium to large size, with marked<br />

dark strips on the tegument, which are light to peel (no<br />

intrusion of the epispermatic pellicle in the cotyledons)<br />

and sweet in taste (Bassi, 1993), have traditionally been<br />

cultivated only in Italy and a few areas in France. In all<br />

other countries marron-cultivars do not exist or are of<br />

recent import (e.g. southern Switzerland, Conedera et<br />

al., 1997). In France, the definition of marrons has been<br />

recently revised in order to better fit the market and commercial<br />

needs. According to Bergougnoux et al. (1978),<br />

marron varieties should not display more than 12 % fruit<br />

with end-to-end epispermatic intrusions.<br />

In some regions of the Iberian Peninsula (northern<br />

Portugal and Galicia), double-purpose varieties (fruit and<br />

timber production) are quite common. Here the chestnut<br />

trees are topped above the grafting point, usually 2 meters<br />

Fig. 2a. Chestnut pollen map 570 AD (source Conedera et al., 2004).<br />

above ground level (Bourgeois et al., 2004). This complex<br />

historical background makes it impossible to reliably estimate<br />

the number of chestnut cultivars or ecotypes existing<br />

in Europe, even if the inventories so far performed at<br />

the national level suggest that there are thousands more<br />

varieties (Pitte, 1986).<br />

In chestnut-growing areas cultivated as orchards, the<br />

quantity of chestnut produced in the main chestnutgrowing<br />

countries has dramatically decreased since the<br />

beginnig of the 20ies Century although it begin to pick<br />

up again towards the end of the heigties (fig. 6). This<br />

development is mainly due to the progressive depopulation<br />

of the countryside, the abandonment of chestnut as<br />

a staple food, the introduction and spread of ink disease<br />

and chestnut blight, and the increased demand for wood<br />

for tannin extracts (Pitte, 1986; Bounous & De Guarda,<br />

2002). Chestnut fruit cultivation has survived or quickly<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


DISTRIBUTION AND ECONOMIC POTENTIAL OF THE SWEET CHESTNUT (CASTANEA SATIVA MILL.) IN EUROPE ◆<br />

recovered best where the high-quality marron and chestnut<br />

cultivars are cultivated (Italy and, to a lesser extent,<br />

France) or where the large-size chestnut varieties are<br />

grown (Spain, Portugal, Turkey and France) (Alvisi,<br />

1994). In the Iberian Peninsula, intercropping with cereal<br />

is becoming rare, but the practice of soil tillage is used to<br />

increase nut production (Berrocal del Brio et al., 1998;<br />

Portela et al., 1999).<br />

Since 1990s, people have become more aware of the<br />

value of chestnut orchards as a multifunctional landscape<br />

element. In many countries they have begun to revitalize<br />

chestnut orchards as they see them as having aesthetic and<br />

ecological value, acting as tourist attractions, and serving<br />

as fire-breaks (Bounous et al., 1992, Conedera et al.,<br />

1997). Besides the revitalisation of traditional orchards<br />

in marginal chestnut-growing areas, new plantations (or<br />

even re-grafted old orchards) with high-quality varieties<br />

(marrons and similar) or large-size Euro-Japanese varie-<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 179-193<br />

Fig. 2b. Chestnut pollen map 1460 AD (source Conedera et al., 2004).<br />

ties have been cultivated in several countries (mostly in<br />

France, Spain and Italy).<br />

High forests for fruit production are rare (covering<br />

approx. 36 700 ha in Europe, which corresponds to 8,5 %<br />

of the fruit production area). Most of them are located<br />

in Turkey. According to Soylu et al. (2002), the grafting<br />

of chestnut trees is not very common in the Black Sea<br />

region. In some unclear cases, such as the attribution<br />

to the “soto”-type (= orchard) of some fruit-producing<br />

stands in Spain, the corresponding area was classified as<br />

“orchard”.<br />

Chestnut products<br />

The increasing demand for natural and environmentally<br />

friendly products in Europe has led to more interest in<br />

the chestnut. Moreover, some recent technological<br />

improvements (laminated veneer boards, finger-jointed<br />

187


188<br />

◆ M. CONEDERA, M. C. MANETTI, F. GIUDICI & E. AMORINI<br />

Timber production<br />

Coppices High Forests<br />

rotation (years) thinnings (number) type of thinning rotation (years) thinnings (number) type of thinnings<br />

Belgium No information Generally in mixed stands<br />

Bosnia-Herzegovina Clear cutting when blighted No high forests<br />

Bulgaria No information<br />

Croatia 40-60 yes selective Generally in mixed stands<br />

France 25-35 1 (9-12 yrs) low 40-60 2-3 (every 10-15 yrs) selective<br />

Germany 20-<strong>30</strong> No information 60-80 No information<br />

Greece 20-25 2 (7, 14 yrs) low No high forests<br />

Hungary No coppice stands No information<br />

Italy 12-18 / 25-<strong>30</strong> no / 1-2 low 50-60 2-3 (every 10-15 yrs) low<br />

Netherlands Generally in mixed forests No high forests<br />

Portugal 15 1 (at 2 yrs) low 40-45 5 (every 8-10 yrs) low<br />

Romania No coppice stands 120 every 5-10 yrs low<br />

Russian Federation No coppice stands Generally in mixed forests<br />

Slovakia No coppice stands 100-120 every 10-15 yrs selective<br />

Slovenia No information<br />

Spain 5-8 // 18-25 no // 2 (5, 12) low 40-60 2-3 (every 10-15 yrs) selective<br />

Switzerland 12-18 None <strong>30</strong>-60 ?? selective<br />

Turkey No information No high forests<br />

United Kingdom 12-20 None Generally in mixed forests<br />

Table 4. Main characteristics of the silvicultural management applied in the different countries for chestnut timber production.<br />

beams and boards, thick sliced veneer, better use of<br />

industrial wood through joint production of tannin and<br />

panels, fruit conservation and processing techniques)<br />

have also positive driving forces influencing the chestnut<br />

market (Pettenella, 2001). As a consequence, traditional<br />

chestnut products have now more opportunities on the<br />

market (poles for land consolidation work or playgrounds,<br />

logs for flooring, chestnut flour for pasta production,<br />

certification of local cultivars, etc.) and new products<br />

(chestnut parquet, chestnut-laminated veneer boards,<br />

chestnut pasta, chestnut beer, etc.) have been launched.<br />

Some of these new products and new applications, such<br />

as finger-jointed beams, and shingles from the wood,<br />

and pasta, biscuits, beer from the fruit are particularly<br />

interesting because it is possible to produce them from<br />

small-sized chestnut timber or fruit. In addition, the<br />

aesthetic, cultural and ecological value of managed<br />

chestnut ecosystems is now much more recognized.<br />

Restoring chestnut growing areas is also valued for its<br />

role in preserving landscape and a country’s traditional<br />

heritage (Conedera et al., 1997, Bounous et al., 2001).<br />

In conclusion, chestnut cultivation today provides an<br />

exemplary model of multifunctional forestry (figure 7),<br />

playing an important social and economic role in rural<br />

areas.<br />

The recent development of the chestnut market has<br />

not been homogeneous. It is frequently affected by agricultural,<br />

economic, and social and cultural local factors<br />

(Hennion & Vernin, 2000). Pettenella (2001) provides<br />

examples of niche chestnut markets, but the evidence of<br />

these is largely anecdotal and there are no figures available.<br />

For example, chestnut sawnwood for solid wood<br />

furniture production is in great demand in Tuscany<br />

(Italy), logs for floorings are highly desiderable in France,<br />

poles for land consolidation, torrent and avalanche control<br />

works are used in Switzerland, the production of<br />

chestnut-laminated beams and panels is increasing in<br />

north-east Italy, chestnut flour has an expanding market<br />

in Bosnia, and so on.<br />

A precise quantification of the total amount of<br />

chestnut timber and fruit production is difficult because<br />

of both missing information in the official statistics and<br />

the existence of an unregistered parallel market (direct<br />

sales, self-consumption, fruits left on the ground by<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


DISTRIBUTION AND ECONOMIC POTENTIAL OF THE SWEET CHESTNUT (CASTANEA SATIVA MILL.) IN EUROPE ◆<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 179-193<br />

Fig. 3. Present distribution of chestnut coppices in Europe.<br />

Fruit Timber<br />

Country chestnuts (tons) Sawnwood (m 3 ) Poles (m 3 ) Tannin and industry (m 3 )<br />

Croatia 2,000 1,000 20,000<br />

France 13,000 115,000 310,000 500,000<br />

Greece 12,000<br />

Germany 1,000 5,000<br />

Italy 52,000 54,000 <strong>30</strong>0,000 150,000<br />

Portugal 33,000<br />

Slovenia 16,000<br />

Spain 10,000 8,000 12,000<br />

Turkey 60,000 140,000<br />

Switzerland 10,000 20,000<br />

Other European countries 154,000<br />

Europe 351,000<br />

Tab. 5. Chestnut products in Europe (reference year, 2000). Source: FAO (FAOSTAT Agriculture Data - Agricultural Production -<br />

Crops Primary; http://apps.fao.org/) and Data contributors of the Cost Action G4 (see Table 1).<br />

189


190<br />

◆ M. CONEDERA, M. C. MANETTI, F. GIUDICI & E. AMORINI<br />

Fig. 4. Percentage distribution<br />

of the two different timberproducing<br />

silvicultural systems<br />

coppices (grey) and high forests<br />

(black) in the surveyed countries.<br />

Fig. 5. Present distribution of chestnut orchards in Europe.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


DISTRIBUTION AND ECONOMIC POTENTIAL OF THE SWEET CHESTNUT (CASTANEA SATIVA MILL.) IN EUROPE ◆<br />

livestock, etc.). For fruit, the official statistics provided by<br />

the FAO indicate that around 350 000 tons of chestnuts<br />

are produced a year all over Europe (table 5). No official<br />

statistics exist for chestnut timber production, and only<br />

a few countries were able to provide data within the<br />

framework of the G4 Cost Action (table 5). Although<br />

incomplete, the data clearly show the poor amount of<br />

chestnut timber products of high value (i.e. sawnwood).<br />

This is probably due to the general lack of tradition in<br />

applying silvicultural treatments to improve the wood<br />

quality of the wood in the chestnut coppices.<br />

CONCLUSIONS<br />

Chestnut cultivation has a long tradition and deep roots<br />

in many European countries. The European countries<br />

with chestnut histories and tradition, can be divided into<br />

three main categories: (i) countries with a strong chestnut<br />

tradition (e.g. Italy, France, southern Switzerland, Spain,<br />

Portugal and Greece), where chestnut stands have been<br />

cultivated since centuries with intensive and characteristic<br />

silvicultural methods (coppice and orchards); (ii)<br />

countries with a only partially developed chestnut tra-<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 179-193<br />

dition due to their particular geography (e.g. England)<br />

or history (e.g. Slovenia, Croatia, Turkey, Georgia); (iii)<br />

countries where the chestnut only occurs sporadically<br />

(e.g. Hungary, Bulgaria, Belgium) or has been recently<br />

introduced (e.g. Slovakia, Netherlands).<br />

Despite this historical background, chestnut cultivation<br />

is now at a turning point and is being confronted<br />

with changing needs of a society that has moved from<br />

being rural to becoming industrial and urban-oriented.<br />

The development of the chestnut market in recent<br />

decades confirms the potential of this resource for both<br />

traditional products and new services and goods related<br />

to organic food and environmentally friendly products.<br />

This is particularly important for the chestnut as it is<br />

widespread in the territory particularly cut off from the<br />

main industrial developments. Silvicultural management<br />

trends are already reacting to these developments. The<br />

cultivation of high-value chestnut products (fruit or<br />

timber) is being intensified in the best chestnut-growing<br />

areas, new plantations are being created in potentially<br />

good sites for the chestnut, and traditional old orchards<br />

are being restored as part of a multipurpose landscape.<br />

At the same time, chestnut cultivation is being abandoned<br />

in the very marginal areas, where the old chestnut stands<br />

will evolve into mixed stands.<br />

Fig. 6. Evolution of chestnut fruit<br />

production (tons) in different European<br />

countries since 1960. Source: FAO<br />

(FAOSTAT Agriculture Data<br />

- Agricultural Production - Crops<br />

Primary; http://apps.fao.org/) and<br />

Commission Internationale du<br />

châtaignier (1958).<br />

191


192<br />

◆ M. CONEDERA, M. C. MANETTI, F. GIUDICI & E. AMORINI<br />

Fig. 7. Products and services provided<br />

by chestnut forests classified according<br />

to the management system (modified<br />

from Pettenella 2001).<br />

Given this dynamic situation, new marketing<br />

instruments will have to be developed, such as the<br />

certifying and registering the place of origin and the<br />

system of cultivation (Pettenella, 2001). More research<br />

is also needed to develop sound silvicultural techniques<br />

to solve problems related to the correct management of<br />

chestnut stands to best take into account not only productive<br />

aspects, but also the historical value of the forests,<br />

the establishment of multifunctional stands, and the<br />

improvement of the ecological and environmental value<br />

of the landscape.<br />

Acknowledgements<br />

Our heartfelt thanks go to the data contributors for<br />

providing us with the national information, to our colleagues<br />

François Romane and Patrick Fonti for the critical<br />

reading of the manuscript, to Florian Boller, Damiano<br />

Torriani and Daniela Furrer for the digitalisation of the<br />

chestnut maps, and to Silvia Dingwall for the English<br />

revision of the text.<br />

References<br />

ALVISI F., 1994. Aspetti economici e commerciali della castanicoltura<br />

italiana. Rivista di frutticoltura e di ortofloricoltura,<br />

56, 2: 41-47.<br />

BASSI D., 1993. Castagno da frutto: valorizziamo la qualità.<br />

Rivista di frutticoltura, 55, 12: 39-41.<br />

BERGOUGNOUX F., VERLHAC A., BREISCH H. & CHAPA J. 1998. Le<br />

châtaignier. Production et culture. Invuflec Malemort, 192 p.<br />

BERROCAL DEL BRIO M., GALLARDO LANCHO J.F. & CARDEÑOSO<br />

HERRERO J.M., 1998. El castaño. Ediciones Mundi-Prensa,<br />

Madrid, 288 p.<br />

BOUNOUS G., BOUCHET M. & GOURDON L., 1992. Ricostituzione<br />

del castagneto a frutto tradizionale: interventi in Piemonte e<br />

nel Sud della Francia. L’Informatore Agrario, 9: 155-160.<br />

BOUNOUS G., BAGNARESI U., BELLINI E. & BECCARO G., 2001.<br />

Aspetti paesaggistici e culturali del castagno: problematiche<br />

di tutela e valorizzazione. In: Bellini E. (ed.), Atti del<br />

“Convegno Nazionale Castagno 2001”, Marradi (Firenze)<br />

25-27 ottobre 2001. 365-372.<br />

BOUNOUS G. & DE GUARDA A., 2002. Origine e cenni storici. In:<br />

Bounous G. (ed.) Il castagno. Coltura, ambiente ed utilizzazioni<br />

in Italia e nel mondo. Bologna, Edagricole. 3-17.<br />

BOURGEOIS C., LOPEZ J. & GAROLERA E., 1991. Le châtaignier<br />

en Europe. Forêt-Entreprise 76, 25-42.<br />

BOURGEOIS C., SEVRIN E. & LEMAIRE J., 2004. Le châtaignier: un<br />

arbre, un bois. 2nd revised edition, Institut pour le développement<br />

forestier, Paris, 347 p.<br />

COMMISSION INTERNATIONALE DU CHÂTAIGNIER, 1953. Rapport<br />

de la 2e session. FAO 54/7/4069, Rome, 62 p.<br />

— 1955. Rapport de la 3e session. FAO CH/19, Rome, 62 p.<br />

— 1958. Rapport de la 4e session. FAO CH/26, Rome, 57 p.<br />

CONEDERA M., MÜLLER-STARCK G. & FINESCHI S., 1993.<br />

Genetic characterization of cultivated varieties of European<br />

Chestnut (Castanea sativa Mill.) in Southern Switzerland.<br />

(I) Inventory of chestnut varieties: history and perspectives.<br />

In: Comunità Montana Monti Martani e Serano of Spoleto;<br />

Istituto di Coltivazioni Arboree University of Perugia (eds.)<br />

Proceedings of the International Congress on Chestnut<br />

Spoleto, Italy, October 20-23, 1993: 299-<strong>30</strong>2.<br />

CONEDERA M., JERMINI M. & SASSELLA A., 1997. Nouvelles<br />

perspectives pour la culture du châtaignier au sud des Alpes.<br />

Rev. suisse vitic. arboric. hortic., 29, 6: 337-344.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004


DISTRIBUTION AND ECONOMIC POTENTIAL OF THE SWEET CHESTNUT (CASTANEA SATIVA MILL.) IN EUROPE ◆<br />

CONEDERA M., KREBS P., T INNER W., PRADELLA M. &<br />

TORRIANI D., 2004. The cultivation of Castanea sativa (Mill.)<br />

in Europe: from its origin to its diffusion on a continental<br />

scale. Vegetation History and Archaeobotany, 13: 161-179.<br />

DIAMANDIS S., 2002. Grecia. In: Bounous G. (ed.) Il castagno.<br />

Coltura, ambiente ed utilizzazioni in Italia e nel mondo.<br />

Bologna, Edagricole. 253-260.<br />

EAFV (EIDGENÖSSISCHE FORSCHUNGSANSTALT FÜR DAS<br />

FORSTWESEN), 1988. Schweizerische Landesforstinventar.<br />

Ergebnisse der Erstaufnahme 1982-1986. EAFV Bericht <strong>30</strong>5,<br />

1-375.<br />

FERNANDEZ DE ANA MAGÁN F.J., 2002. Spagna. In: Bounous G.<br />

(ed.) Il castagno. Coltura, ambiente ed utilizzazioni in Italia e<br />

nel mondo. Bologna, Edagricole. 265-273.<br />

GLISIC M., 1975. Le châtaignier (Castanea sativa Mill.) en Serbie<br />

et sa variabilité biologique et écologique. PhD Thesis, Institut<br />

de sylviculture et d’Insdustrie du bois, Belgrade, 211 p. (in<br />

Serbian).<br />

GROUPE DES EXPERTS DU CHÂTAIGNIER, 1951. Rapport de la<br />

première session. FAO 53/2/1423, Rome, 50 p.<br />

HALTOFOVÁ P. & JANKOVSKY L., 2004. Distribution and healt<br />

condition of sweet chestnut (Castanea sativa Mill.) in the Czech<br />

Republic. In: IIIe International Symposium on Chestnut, Chaves,<br />

20-23 October 2004, Abstracts, 60.<br />

HENNION B. & VERNIN X., 2000. Châtaigne. Forces et faiblesses<br />

de la filière. Infos Ctifl, 166, 14-17.<br />

JURC D., 2002. An overview of the history of the chestnut blight<br />

epidemic in Slovenia. Research reports forestry and wood science<br />

and technology, 68: 33-59.<br />

ecologia mediterranea, tome <strong>30</strong>, fascicule 2, 2004, p. 179-193<br />

KREBS P., CONEDERA M., PRADELLA M., TORRIANI D., FELBER M.<br />

& TINNER W., 2004. Quaternary refugia of the sweet chestnut<br />

(Castanea sativa Mill.): an extended palynological approach.<br />

Vegetation History and Archaeobotany, 13, 145-160.<br />

MANETTI M.C., AMORINI E., BECAGLI C., CONEDERA M. &<br />

GIUDICI F., 2001. Productive potential of chestnut (Castanea<br />

sativa Mill.) stands in Europe. For. Snow Landsc. Res. 76, 3:<br />

471-476.<br />

PETTENELLA D., 2001. Marketing perspectives and instruments<br />

for chestnut products and services. For. Snow Landsc. Res.<br />

76, 3: 511-517.<br />

PITTE J.R., 1986. Terres de castanide. Hommes et paysages du châtaignier<br />

de l’Antiquité à nos jours. Librairie Arthème Fayard,<br />

Paris, 479 p.<br />

PORTELA E., ARAHNA J., MARTINS A. & PIRES A.L., 1999.<br />

Soil factors, farmer’s practices and chestnut ink disease:<br />

some interactions. In: Proceedings of the Second International<br />

Symposium on Chestnut (Ed. Salesses G.), Acta Horticulturae<br />

494, 433-441.<br />

SEEMANN P., B OUFFIER V., KEHR R., WULF A., SCHRÖDER<br />

T. & UNGER J., 2001. Die Esskastanie (Castanea sativa<br />

Mill.) in Deutschland und ihre Gefährdung durch den<br />

Kastanienrindenkrebs (Cryphonectria parasitica [Murr.]<br />

Barr.). Nachrichtenbl. Deut. Pflanzenschutzd., 53: 49-60.<br />

SOYLU A., SERDAR Ü., ERTÜRK Ü., 2002. Chestnut growing<br />

in Turkey and researches on its problems. FAO-CIHEAM<br />

Nucis-Newsletter, 11: 34-38.<br />

TANI A., MALTONI A. & MARIOTTI B., 2003. La produzione<br />

legnosa di castagno in Italia. Situazione attuale e prospettive.<br />

Sherwood, 92, 5-9.<br />

193

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!