15.08.2013 Views

Identification of Hedgehog pathway components by RNAi in ...

Identification of Hedgehog pathway components by RNAi in ...

Identification of Hedgehog pathway components by RNAi in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Identification</strong> <strong>of</strong> <strong>Hedgehog</strong> Pathway Components <strong>by</strong><br />

<strong>RNAi</strong> <strong>in</strong> Drosophila Cultured Cells<br />

Lawrence Lum, et al.<br />

Science 299,<br />

2039 (2003);<br />

DOI: 10.1126/science.1081403<br />

The follow<strong>in</strong>g resources related to this article are available onl<strong>in</strong>e at<br />

www.sciencemag.org (this <strong>in</strong>formation is current as <strong>of</strong> January 12, 2008 ):<br />

Updated <strong>in</strong>formation and services, <strong>in</strong>clud<strong>in</strong>g high-resolution figures, can be found <strong>in</strong> the onl<strong>in</strong>e<br />

version <strong>of</strong> this article at:<br />

http://www.sciencemag.org/cgi/content/full/299/5615/2039<br />

Support<strong>in</strong>g Onl<strong>in</strong>e Material can be found at:<br />

http://www.sciencemag.org/cgi/content/full/299/5615/2039/DC1<br />

A list <strong>of</strong> selected additional articles on the Science Web sites related to this article can be<br />

found at:<br />

http://www.sciencemag.org/cgi/content/full/299/5615/2039#related-content<br />

This article cites 35 articles,<br />

10 <strong>of</strong> which can be accessed for free:<br />

http://www.sciencemag.org/cgi/content/full/299/5615/2039#otherarticles<br />

This article has been cited <strong>by</strong> 177 article(s) on the ISI Web <strong>of</strong> Science.<br />

This article has been cited <strong>by</strong> 58 articles hosted <strong>by</strong> HighWire Press; see:<br />

http://www.sciencemag.org/cgi/content/full/299/5615/2039#otherarticles<br />

This article appears <strong>in</strong> the follow<strong>in</strong>g subject collections:<br />

Cell Biology<br />

http://www.sciencemag.org/cgi/collection/cell_biol<br />

Information about obta<strong>in</strong><strong>in</strong>g repr<strong>in</strong>ts <strong>of</strong> this article or about obta<strong>in</strong><strong>in</strong>g permission to reproduce<br />

this article <strong>in</strong> whole or <strong>in</strong> part can be found at:<br />

http://www.sciencemag.org/about/permissions.dtl<br />

Science (pr<strong>in</strong>t ISSN 0036-8075; onl<strong>in</strong>e ISSN 1095-9203) is published weekly, except the last week <strong>in</strong> December, <strong>by</strong> the<br />

American Association for the Advancement <strong>of</strong> Science, 1200 New York Avenue NW, Wash<strong>in</strong>gton, DC 20005. Copyright<br />

2003 <strong>by</strong> the American Association for the Advancement <strong>of</strong> Science; all rights reserved. The title Science is a<br />

registered trademark <strong>of</strong> AAAS.<br />

on January 12, 2008<br />

www.sciencemag.org<br />

Downloaded from


<strong>Identification</strong> <strong>of</strong> <strong>Hedgehog</strong><br />

Pathway Components <strong>by</strong> <strong>RNAi</strong> <strong>in</strong><br />

Drosophila Cultured Cells<br />

Lawrence Lum, 1 Shenq<strong>in</strong> Yao, 1 Brian Mozer, 2<br />

Alessandra Rovescalli, 2 Doris Von Kessler, 1 Marshall Nirenberg, 2<br />

Philip A. Beachy 1 *<br />

Classical genetic screens can be limited <strong>by</strong> the selectivity <strong>of</strong> mutational target<strong>in</strong>g,<br />

the complexities <strong>of</strong> anatomically based phenotypic analysis, or difficulties<br />

<strong>in</strong> subsequent gene identification. Focus<strong>in</strong>g on signal<strong>in</strong>g response to the<br />

secreted morphogen <strong>Hedgehog</strong> (Hh), we used RNA <strong>in</strong>terference (<strong>RNAi</strong>) and a<br />

quantitative cultured cell assay to systematically screen functional roles <strong>of</strong> all<br />

k<strong>in</strong>ases and phosphatases, and subsequently 43% <strong>of</strong> predicted Drosophila<br />

genes. Two gene products reported to function <strong>in</strong> W<strong>in</strong>gless ( Wg) signal<strong>in</strong>g were<br />

identified as Hh <strong>pathway</strong> <strong>components</strong>: a cell surface prote<strong>in</strong> (Dally-like prote<strong>in</strong>)<br />

required for Hh signal reception, and case<strong>in</strong> k<strong>in</strong>ase 1, a candidate tumor<br />

suppressor that regulates basal activities <strong>of</strong> both Hh and Wg <strong>pathway</strong>s. This<br />

type <strong>of</strong> cultured cell–based functional genomics approach may be useful <strong>in</strong> the<br />

systematic analysis <strong>of</strong> other biological processes.<br />

The secreted prote<strong>in</strong> signal <strong>Hedgehog</strong> (Hh)<br />

elicits cellular proliferation and differentiation<br />

responses dur<strong>in</strong>g normal embryonic development,<br />

and <strong>in</strong>appropriate <strong>pathway</strong> activation<br />

can contribute to tumorigenesis. In<br />

Drosophila, this <strong>pathway</strong> is regulated <strong>by</strong> a<br />

series <strong>of</strong> repressive <strong>in</strong>teractions between prote<strong>in</strong><br />

<strong>components</strong> that ultimately result <strong>in</strong> gene<br />

activation mediated <strong>by</strong> the transcription factor<br />

Cubitus <strong>in</strong>terruptus (Ci) (Fig. 1A ) (1, 2).<br />

Ci is regulated <strong>by</strong> a cytoplasmic complex<br />

consist<strong>in</strong>g <strong>of</strong> the k<strong>in</strong>es<strong>in</strong>-like prote<strong>in</strong> Costal 2<br />

(Cos2), the ser<strong>in</strong>e-threon<strong>in</strong>e k<strong>in</strong>ase Fused<br />

(Fu), and Suppressor <strong>of</strong> fused [Su(fu)], a<br />

prote<strong>in</strong> that lacks known functional motifs.<br />

This complex prevents activation and nuclear<br />

localization <strong>of</strong> Ci and stimulates its proteolytic<br />

process<strong>in</strong>g to a truncated form (Ci75)<br />

that represses gene targets. The activity <strong>of</strong><br />

this complex is suppressed <strong>by</strong> Smoothened<br />

(Smo), a seven-transmembrane prote<strong>in</strong>, and<br />

Smo activity <strong>in</strong> turn is suppressed <strong>by</strong> catalytic<br />

action <strong>of</strong> the transporter-like prote<strong>in</strong> Patched<br />

(Ptc). Hh prote<strong>in</strong> releases these sequential<br />

repressive <strong>in</strong>teractions <strong>by</strong> b<strong>in</strong>d<strong>in</strong>g and <strong>in</strong>activat<strong>in</strong>g<br />

Ptc, thus permitt<strong>in</strong>g Smo-mediated<br />

suppression <strong>of</strong> the regulatory complex and<br />

releas<strong>in</strong>g Ci for activation <strong>of</strong> target genes.<br />

Classical genetic approaches to the study <strong>of</strong><br />

embryonic processes such as Hh signal<strong>in</strong>g have<br />

been subject to limitations imposed <strong>by</strong> the selectivity<br />

<strong>of</strong> mutagenesis methods, <strong>by</strong> the diffi-<br />

1Department <strong>of</strong> Molecular Biology and Genetics,<br />

Howard Hughes Medical Institute, Johns Hopk<strong>in</strong>s University<br />

School <strong>of</strong> Medic<strong>in</strong>e, Baltimore, MD 21205,<br />

USA. 2Laboratory <strong>of</strong> Biochemical Genetics, NHLBI,<br />

NIH, Bethesda, MD 20892, USA.<br />

*To whom correspondence should be addressed. Email:<br />

pbeachy@jhmi.edu<br />

culty <strong>of</strong> identify<strong>in</strong>g mutations whose zygotic<br />

phenotypes are cloaked <strong>by</strong> maternal contributions,<br />

and <strong>by</strong> difficulties <strong>in</strong> identify<strong>in</strong>g mutated<br />

genes. The Hh <strong>pathway</strong> suffers from the additional<br />

complication that its embryonic loss-<strong>of</strong>function<br />

phenotype is similar to that controlled<br />

<strong>by</strong> the signal<strong>in</strong>g <strong>pathway</strong> regulated <strong>by</strong> the secreted<br />

prote<strong>in</strong> W<strong>in</strong>gless (Wg), thus h<strong>in</strong>der<strong>in</strong>g<br />

correct assignment <strong>of</strong> gene function. Like Hh,<br />

Wg signal<strong>in</strong>g employs a series <strong>of</strong> repressive<br />

<strong>in</strong>teractions <strong>in</strong> which receptor activity antagonizes<br />

a cytoplasmic complex that <strong>in</strong> turn causes<br />

degradation <strong>of</strong> Armadillo (Arm), a key component<br />

<strong>in</strong> the activation <strong>of</strong> the Wg transcriptional<br />

response (Fig. 1A). Indeed, certa<strong>in</strong> <strong>components</strong><br />

<strong>of</strong> these <strong>pathway</strong>s are shared, <strong>in</strong>clud<strong>in</strong>g the<br />

F-box prote<strong>in</strong> Slimb (Sli) (3) and glycogen<br />

synthase k<strong>in</strong>ase 3 (GSK3 or Sgg) (4, 5), each<br />

with dual roles <strong>in</strong> the proteolytic degradation <strong>of</strong><br />

Arm and <strong>in</strong> the proteolytic formation <strong>of</strong> Ci75.<br />

In addition, a case<strong>in</strong> k<strong>in</strong>ase 1 (CK1) activity<br />

triggers these proteolytic events (5), although<br />

the actual CK1 family member that functions <strong>in</strong><br />

Ci75 formation rema<strong>in</strong>s to be identified.<br />

<strong>RNAi</strong> <strong>in</strong> Hh and Wg cultured cell assays.<br />

To identify additional <strong>components</strong> <strong>in</strong> Hh<br />

signal response while also circumvent<strong>in</strong>g the<br />

difficulties <strong>of</strong> classical genetic screens, we used<br />

a cultured cell assay (6) and RNA <strong>in</strong>terference<br />

(<strong>RNAi</strong>)–mediated disruption <strong>of</strong> gene function<br />

(7, 8) to systematically screen Drosophila<br />

genes. This assay is based on transfection <strong>of</strong><br />

w<strong>in</strong>g imag<strong>in</strong>al disc–derived cl-8 cells with a<br />

control reporter and a Hh-responsive luciferase<br />

reporter. Unlike Drosophila S2 cultured cells,<br />

simply bath<strong>in</strong>g cl-8 cells <strong>in</strong> double-stranded<br />

RNA (dsRNA) had no effect on Hh <strong>pathway</strong><br />

response (9). However, transfection <strong>of</strong> dsRNA<br />

together with both reporter constructs affected<br />

<strong>pathway</strong> response <strong>in</strong> such a way that <strong>RNAi</strong><br />

R ESEARCH A RTICLES<br />

target<strong>in</strong>g <strong>of</strong> the positive regulatory <strong>components</strong><br />

Smo, Fu, and Ci <strong>in</strong>hibited response to the Hh<br />

signal (Fig. 1B), and target<strong>in</strong>g <strong>of</strong> the negative<br />

regulatory <strong>components</strong> Cos2 and Ptc resulted<br />

either <strong>in</strong> basal activation or enhanced responsiveness<br />

to Hh (10, 11). Consistent effects on<br />

the prote<strong>in</strong> levels <strong>of</strong> several <strong>pathway</strong> <strong>components</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g Smo and Ptc, were also observed<br />

<strong>in</strong> S2 cells after treatment with dsRNA<br />

(Fig. 1B, <strong>in</strong>set). <strong>RNAi</strong> <strong>in</strong> Drosophila cultured<br />

cells thus provides a functional test for gene<br />

products <strong>of</strong> known or predicted sequence. The<br />

Hh signal<strong>in</strong>g assay <strong>in</strong> cl-8 cells is quantitative<br />

and is specific for cellular response, because the<br />

addition <strong>of</strong> exogenous Hh prote<strong>in</strong> elim<strong>in</strong>ates<br />

the requirement for functions <strong>in</strong>volved <strong>in</strong> Hh<br />

prote<strong>in</strong> synthesis or distribution.<br />

We also found that multiple dsRNA species<br />

could be comb<strong>in</strong>ed <strong>in</strong> these transfection experiments,<br />

facilitat<strong>in</strong>g large-scale screen<strong>in</strong>g and tests<br />

<strong>of</strong> gene <strong>in</strong>teractions and epistasis. <strong>RNAi</strong> <strong>of</strong><br />

Su(fu) <strong>in</strong> cl-8 cells, for example, produced little<br />

effect on Hh response but reversed the reduction<br />

<strong>in</strong> responsiveness elicited <strong>by</strong> <strong>RNAi</strong> <strong>of</strong> Fu (Fig.<br />

1B), thus mimick<strong>in</strong>g phenotypic suppression <strong>of</strong><br />

fu mutations <strong>by</strong> Su(fu) mutations <strong>in</strong> flies (12). In<br />

addition, comb<strong>in</strong>ed <strong>RNAi</strong> <strong>of</strong> Cos2 and Ci yielded<br />

a loss <strong>of</strong> responsiveness (Fig. 1C), <strong>in</strong>dicat<strong>in</strong>g<br />

that Ci is epistatic to Cos2, <strong>in</strong> agreement with<br />

phenotypic analysis <strong>of</strong> mutant comb<strong>in</strong>ations<br />

(13). Ci rema<strong>in</strong>ed epistatic to Cos2 even when<br />

the amount <strong>of</strong> Cos2 dsRNA was 10 times greater<br />

than that <strong>of</strong> Ci dsRNA (Fig. 1C). This <strong>in</strong>dicates<br />

that the <strong>RNAi</strong> mach<strong>in</strong>ery was not overwhelmed<br />

<strong>by</strong> the transfection <strong>of</strong> excess dsRNA, even at<br />

levels 10-fold higher than those rout<strong>in</strong>ely used.<br />

To facilitate <strong>in</strong>dependent test<strong>in</strong>g <strong>of</strong> gene<br />

function <strong>in</strong> response to Wg and Hh, we also<br />

established a Drosophila cultured cell–based<br />

reporter assay for Wg response based on stabilization<br />

<strong>of</strong> Arm <strong>in</strong> the presence <strong>of</strong> Wg prote<strong>in</strong><br />

(10, 14). In contrast to S2 cells, both embryoderived<br />

Kc cells and cl-8 cells were responsive<br />

to Wg (Fig. 1D, <strong>in</strong>set) (9, 15), but the Kc cells<br />

consistently displayed a stronger transcriptional<br />

response (9). <strong>RNAi</strong> <strong>of</strong> positively act<strong>in</strong>g <strong>components</strong><br />

Frizzled 1 and 2 receptors (Fz1 and Fz2),<br />

Arm, or Pangol<strong>in</strong> [Pan, the Drosophila T cell–<br />

specific transcription factor (Tcf) homolog]<br />

caused loss <strong>of</strong> Wg responsiveness, and <strong>RNAi</strong> <strong>of</strong><br />

GSK3 <strong>in</strong>creased the response to Wg (Fig. 1D).<br />

Taken together, <strong>RNAi</strong> <strong>of</strong> 11 known <strong>components</strong><br />

<strong>of</strong> the Hh and Wg <strong>pathway</strong>s produced the effects<br />

predicted <strong>by</strong> classical genetic analyses,<br />

<strong>in</strong>dicat<strong>in</strong>g that <strong>RNAi</strong> <strong>in</strong> these assays can provide<br />

a rapid and reliable <strong>in</strong>dication <strong>of</strong> gene function.<br />

Genomewide <strong>RNAi</strong> screen for k<strong>in</strong>ases<br />

and phosphatases <strong>in</strong> Hh signal<strong>in</strong>g. To test<br />

this assay system and establish high-throughput<br />

methods for ds<strong>RNAi</strong> synthesis and<br />

screen<strong>in</strong>g, a library was prepared conta<strong>in</strong><strong>in</strong>g<br />

dsRNAs correspond<strong>in</strong>g to all k<strong>in</strong>ases and<br />

phosphatases predicted from the completed<br />

Drosophila genome sequence (fig. S1A and<br />

table S2) (10, 16). The <strong>in</strong>itial screen identi-<br />

www.sciencemag.org SCIENCE VOL 299 28 MARCH 2003 2039<br />

on January 12, 2008<br />

www.sciencemag.org<br />

Downloaded from


2040<br />

R ESEARCH A RTICLES<br />

fied several dsRNA pools that showed either<br />

a ga<strong>in</strong> <strong>in</strong> basal reporter activity <strong>in</strong> the absence<br />

<strong>of</strong> Hh (Fig. 2, top panel), as expected for<br />

<strong>components</strong> with a predom<strong>in</strong>antly negative<br />

regulatory role <strong>in</strong> the <strong>pathway</strong>, or a reduction<br />

<strong>in</strong> average fold <strong>in</strong>duction (the ratio <strong>of</strong> reporter<br />

activity <strong>in</strong> the presence and absence <strong>of</strong> Hh;<br />

Fig. 2, bottom panel), as expected for <strong>components</strong><br />

with either positive or negative <strong>pathway</strong>-regulatory<br />

roles (10). When pooled<br />

RNAs and <strong>in</strong>dividual dsRNAs were rescreened,<br />

three dsRNAs emerged that had<br />

reproducible effects on <strong>pathway</strong> activity.<br />

These dsRNAs targeted the putative ser<strong>in</strong>ethreon<strong>in</strong>e<br />

k<strong>in</strong>ase Fu and cAMP-dependent<br />

k<strong>in</strong>ase 1 (PKA-C1), two known regulators <strong>of</strong><br />

Hh signal<strong>in</strong>g (1, 2). CK1, not previously<br />

implicated <strong>in</strong> Hh signal<strong>in</strong>g, was also identified<br />

<strong>in</strong> the screen, because it was required to<br />

ma<strong>in</strong>ta<strong>in</strong> the regulated state <strong>of</strong> the <strong>pathway</strong>.<br />

<strong>RNAi</strong> <strong>of</strong> CK1 elevated basal reporter activ-<br />

Fig. 1. <strong>RNAi</strong> <strong>in</strong> Drosophila cultured cell assays for Hh and Wg signal<strong>in</strong>g.<br />

(A) Schematic view <strong>of</strong> Hh and Wg signal<strong>in</strong>g <strong>pathway</strong>s. For clarity, only<br />

<strong>components</strong> tested <strong>by</strong> <strong>RNAi</strong> <strong>in</strong> (B) and (D) are shown. Green or red text<br />

denotes predom<strong>in</strong>antly positive or negative effects <strong>of</strong> a particular component<br />

<strong>in</strong> the <strong>pathway</strong> response, respectively. (B) Effects <strong>of</strong> <strong>RNAi</strong> <strong>of</strong><br />

known <strong>pathway</strong> <strong>components</strong> on Hh response <strong>in</strong> cl-8 cells (10). Su(fu)<br />

<strong>RNAi</strong> <strong>in</strong> comb<strong>in</strong>ation with Fu <strong>RNAi</strong> reverses the loss <strong>of</strong> Hh response<br />

caused <strong>by</strong> Fu <strong>RNAi</strong> alone. yfp, yellow fluorescent prote<strong>in</strong>. (Inset) Western<br />

blot analysis <strong>of</strong> Ptc prote<strong>in</strong> levels after ptc dsRNA treatment. <strong>RNAi</strong> <strong>of</strong> ptc<br />

<strong>in</strong> S2 cells, which do not express Ci, results <strong>in</strong> a decrease <strong>in</strong> Ptc prote<strong>in</strong><br />

levels and stabilization <strong>of</strong> Smo prote<strong>in</strong> (42). A Western blot <strong>of</strong> k<strong>in</strong>es<strong>in</strong><br />

ity <strong>in</strong> the absence <strong>of</strong> Hh (Fig. 2, left <strong>in</strong> <strong>in</strong>set)<br />

and expanded the segmental doma<strong>in</strong> <strong>of</strong> Wg<br />

expression <strong>in</strong> embryos <strong>in</strong>jected with CK1<br />

dsRNA (Fig. 2, right <strong>in</strong> <strong>in</strong>set) (10).<br />

Systematic screen <strong>of</strong> Drosophila Gene<br />

Collection Release 1. The screen was extended<br />

with a dsRNA library based on the<br />

Drosophila Gene Collection Release 1<br />

(DGCr1), which conta<strong>in</strong>s approximately 43%<br />

<strong>of</strong> the predicted genes <strong>in</strong> the Drosophila genome<br />

(Fig. 3A and fig. S1B) (10). When pooled<br />

RNAs and <strong>in</strong>dividual dsRNAs were rescreened,<br />

20 dsRNAs with reproducible effects on apparent<br />

<strong>pathway</strong> activity were identified, and these<br />

effects were confirmed with dsRNA from dist<strong>in</strong>ct<br />

sets <strong>of</strong> gene-specific primers (10). N<strong>in</strong>eteen<br />

<strong>of</strong> these genes [not <strong>in</strong>clud<strong>in</strong>g thread (Fig.<br />

3)] were classified <strong>in</strong>to three groups (Fig. 3B).<br />

Class I genes encod<strong>in</strong>g prote<strong>in</strong>s with known<br />

roles <strong>in</strong> Hh response <strong>in</strong>clude Smo, Cos2, PKA,<br />

and combgap, which encodes a z<strong>in</strong>c f<strong>in</strong>ger pro-<br />

28 MARCH 2003 VOL 299 SCIENCE www.sciencemag.org<br />

te<strong>in</strong> that regulates Ci expression (17). Our<br />

screen identified all genes with<strong>in</strong> DGCr1 that<br />

are known to regulate expression <strong>of</strong> Ptc, the Hh<br />

<strong>pathway</strong> target on which our reporter is based.<br />

Our screen thus is highly reliable and is not<br />

affected <strong>by</strong> pool<strong>in</strong>g <strong>of</strong> dsRNAs.<br />

The 11 genes <strong>in</strong> class II encode <strong>in</strong>dividual<br />

<strong>components</strong> <strong>of</strong> complexes with broad cellular<br />

roles that are not restricted to Hh signal<strong>in</strong>g. This<br />

group <strong>in</strong>cludes n<strong>in</strong>e genes encod<strong>in</strong>g prote<strong>in</strong>s<br />

that likely affect ribosome function, which,<br />

when targeted <strong>by</strong> <strong>RNAi</strong>, reduced reporter activity,<br />

probably because <strong>of</strong> loss <strong>of</strong> luciferase<br />

expression <strong>in</strong> response to Hh. Two additional<br />

prote<strong>in</strong>s, DeltaCOP and BetaCOP, are <strong>in</strong>volved<br />

<strong>in</strong> retrograde vesicle traffick<strong>in</strong>g from the Golgi<br />

complex to the endoplasmic reticulum. <strong>RNAi</strong><br />

target<strong>in</strong>g <strong>of</strong> these prote<strong>in</strong>s <strong>in</strong>creased basal reporter<br />

activity, but the effects were weaker and<br />

more variable than that produced <strong>by</strong> <strong>RNAi</strong> <strong>of</strong><br />

Cos2. Other <strong>components</strong> <strong>of</strong> the COP1 complex<br />

heavy cha<strong>in</strong> (Khc) is shown as a control for prote<strong>in</strong> load<strong>in</strong>g. (C) Epistasis<br />

analysis <strong>of</strong> Ci relative to Cos2 <strong>in</strong> cl-8 cells. <strong>RNAi</strong> <strong>of</strong> Ci <strong>in</strong>hibited Hh<br />

<strong>in</strong>duction <strong>of</strong> reporter activity, whereas <strong>RNAi</strong> <strong>of</strong> Cos2 <strong>in</strong>creased basal<br />

reporter activity. The epistatic effect exerted <strong>by</strong> <strong>RNAi</strong> <strong>of</strong> Ci on <strong>RNAi</strong> <strong>of</strong><br />

Cos2 prevailed, even at levels <strong>of</strong> cos2 dsRNA 10-fold higher than those<br />

<strong>of</strong> ci dsRNA. (D) Effects on Wg response <strong>of</strong> <strong>RNAi</strong> <strong>of</strong> <strong>pathway</strong> <strong>components</strong><br />

<strong>in</strong> Kc cells. <strong>RNAi</strong> effects <strong>of</strong> known Wg <strong>pathway</strong> <strong>components</strong> on Wg<br />

response were monitored with an assay similar to that described for Hh<br />

response us<strong>in</strong>g the Wg-responsive reporter Super TopFlash (10). The<br />

<strong>in</strong>set shows the accumulation <strong>of</strong> Arm <strong>in</strong> Kc cells after 2 hours <strong>of</strong><br />

<strong>in</strong>cubation <strong>in</strong> the presence <strong>of</strong> Wg (<strong>in</strong> duplicate).<br />

on January 12, 2008<br />

www.sciencemag.org<br />

Downloaded from


also produced similar variable effects when targeted<br />

(9). How these prote<strong>in</strong>s function <strong>in</strong> a<br />

<strong>pathway</strong>-regulatory traffick<strong>in</strong>g event rema<strong>in</strong>s to<br />

be determ<strong>in</strong>ed.<br />

Class III comprises four genes with previously<br />

unrecognized roles <strong>in</strong> the Hh <strong>pathway</strong>,<br />

two <strong>of</strong> which have been characterized <strong>in</strong> other<br />

contexts. Dally-like prote<strong>in</strong> (Dlp) is a member<br />

<strong>of</strong> the glypican family <strong>of</strong> heparan sulfate proteoglycans<br />

(HSPGs) and is required for Hh<br />

responsiveness <strong>in</strong> cl-8 cell–based assay and<br />

ma<strong>in</strong>tenance <strong>of</strong> normal Wg expression <strong>in</strong> embryos<br />

(Fig. 3A, <strong>in</strong>set). CK1 was also identified<br />

<strong>in</strong> the k<strong>in</strong>ase and phosphatase library<br />

screen as a negative regulator <strong>of</strong> Hh <strong>pathway</strong><br />

activity. A potential role for HSPGs <strong>in</strong> Hh<br />

signal<strong>in</strong>g is suggested <strong>by</strong> b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> the Hh<br />

signal<strong>in</strong>g doma<strong>in</strong> to hepar<strong>in</strong> (18) and <strong>by</strong> the<br />

requirement <strong>in</strong> Hh signal<strong>in</strong>g for tout velu (ttv),<br />

which encodes a heparan sulfate polymerase<br />

that is important <strong>in</strong> synthesis <strong>of</strong> the glycosam<strong>in</strong>oglycan<br />

(GAG) cha<strong>in</strong>s <strong>of</strong> HSPGs (19). To<br />

characterize the requirement for Dlp <strong>in</strong> Hh signal<br />

response, we exam<strong>in</strong>ed the roles all four<br />

known or predicted Drosophila HSPGs, <strong>in</strong>clud<strong>in</strong>g<br />

a second glypican, Dally, Syndecan (Sdc),<br />

and Perlecan (Pcan). Only <strong>RNAi</strong> <strong>of</strong> Dlp affected<br />

Hh signal response (Fig. 4A) (20), and the<br />

Fig. 2. An <strong>RNAi</strong> screen <strong>of</strong> Drosophila k<strong>in</strong>ases and phosphatases <strong>in</strong> Hh signal<strong>in</strong>g. The effects <strong>of</strong><br />

dsRNA correspond<strong>in</strong>g to all known and predicted k<strong>in</strong>ases and phosphatases <strong>in</strong> the Drosophila<br />

genome are plotted as basal luciferase activity (top) and fold <strong>in</strong>duction <strong>by</strong> Hh (bottom). STDEV,<br />

standard deviation. Data po<strong>in</strong>ts represent averages <strong>of</strong> three <strong>in</strong>dependent Hh signal<strong>in</strong>g assays us<strong>in</strong>g<br />

pools <strong>of</strong> three dsRNAs, with each dsRNA target<strong>in</strong>g a separate transcript. Cut<strong>of</strong>fs for selection <strong>of</strong><br />

dsRNA pools for identification <strong>of</strong> the gene <strong>of</strong> <strong>in</strong>terest are <strong>in</strong>dicated <strong>by</strong> the horizontal dotted l<strong>in</strong>es<br />

(10). Data po<strong>in</strong>ts <strong>in</strong> which a s<strong>in</strong>gle gene could be identified are colored as <strong>in</strong>dicated <strong>in</strong> the figure<br />

and labeled with the gene name. Controls <strong>in</strong>cluded <strong>in</strong> the screen were dsRNA target<strong>in</strong>g Smo, Cos2,<br />

and a genomic noncod<strong>in</strong>g sequence (700 base pairs <strong>in</strong> length). Fu and PKA-C1, k<strong>in</strong>ases that are<br />

known to affect the <strong>pathway</strong>, were identified <strong>in</strong> this screen. In addition, a dsRNA pool target<strong>in</strong>g<br />

CK1 and CK1ε <strong>in</strong>duced basal reporter activity (red dot <strong>in</strong> upper panel). (Inset) Exam<strong>in</strong>ation <strong>of</strong><br />

<strong>in</strong>dividual dsRNAs <strong>in</strong> this pool revealed that a decrease <strong>in</strong> the expression <strong>of</strong> CT6528, a transcript<br />

encod<strong>in</strong>g CK1, resulted <strong>in</strong> activation <strong>of</strong> the Hh <strong>pathway</strong> (29). Injection <strong>of</strong> this ck1 dsRNA <strong>in</strong>to<br />

preblastoderm Drosophila embryos resulted <strong>in</strong> an expansion <strong>of</strong> Wg expression doma<strong>in</strong>s at the<br />

extended germ band stage, consistent with a role <strong>in</strong> regulat<strong>in</strong>g basal Hh <strong>pathway</strong> activity.<br />

R ESEARCH A RTICLES<br />

effect was comparable to <strong>RNAi</strong> <strong>of</strong> Smo. Expression<br />

<strong>of</strong> Dlp also <strong>in</strong>creased the response to<br />

Hh, comparable to the <strong>in</strong>crease caused <strong>by</strong> expression<br />

<strong>of</strong> Ci (9).<br />

Dlp, a cell surface HSPG, is required for<br />

reception <strong>of</strong> the Hh signal. The glypican<br />

Dlp has 14 conserved cyste<strong>in</strong>es that are predicted<br />

to form an N-term<strong>in</strong>al globular doma<strong>in</strong> and<br />

several putative GAG modification sites next to<br />

a consensus glycosylphosphatidyl<strong>in</strong>ositol (GPI)<br />

attachment sequence. A monoclonal antibody<br />

directed aga<strong>in</strong>st the juxtamembrane portion <strong>of</strong><br />

the prote<strong>in</strong> (10) revealed Dlp at the surface <strong>of</strong><br />

cl-8 cells (Fig. 4B). The sensitivity <strong>of</strong> Dlp to<br />

treatment with hepar<strong>in</strong>ase III, but not chondroit<strong>in</strong>ase<br />

ABC, <strong>in</strong>dicates modification <strong>by</strong> heparan<br />

sulfate (Fig. 4B). Treatment with hepar<strong>in</strong>ase<br />

III reduced the broad electrophoretic mobility <strong>of</strong><br />

Dlp to a more compact band that migrates faster<br />

than the predicted molecular weight <strong>of</strong> the mature<br />

prote<strong>in</strong> (78 kD), suggest<strong>in</strong>g that, like<br />

other glypicans, maturation <strong>of</strong> Dlp may <strong>in</strong>volve<br />

proteolytic process<strong>in</strong>g (21, 22).<br />

The heparan sulfate modification <strong>of</strong> Dlp<br />

could <strong>in</strong>volve activity <strong>of</strong> the Ttv heparan<br />

sulfate polymerase, whose prote<strong>in</strong> targets are<br />

unknown. Loss <strong>of</strong> Ttv function, however,<br />

primarily affects movement <strong>of</strong> the Hh prote<strong>in</strong><br />

signal through target tissues (18, 23), whereas<br />

our assays show that Dlp plays a cell-autonomous<br />

role <strong>in</strong> response to the Hh signal.<br />

Although it rema<strong>in</strong>s possible that Dlp could<br />

also have a role <strong>in</strong> extracellular Hh transport,<br />

perhaps alongside <strong>of</strong> other HSPGs, the cellautonomous<br />

function <strong>of</strong> Dlp <strong>in</strong> signal response<br />

is dist<strong>in</strong>ct from that <strong>of</strong> Ttv targets <strong>in</strong><br />

Hh transport. Consistent with an extracellular<br />

transport role for the GAG cha<strong>in</strong>s elaborated<br />

<strong>by</strong> Ttv, we failed to observe an effect on Hh<br />

response when <strong>RNAi</strong> <strong>of</strong> Ttv or its relatives<br />

Sotv (Dext2) and Botv (Dext3) were applied,<br />

either s<strong>in</strong>gly or <strong>in</strong> comb<strong>in</strong>ations (9). Similarly,<br />

although <strong>RNAi</strong> <strong>of</strong> Dally or Dlp produced<br />

segment polarity defects <strong>in</strong> embryos, there<br />

was no effect <strong>in</strong> the Kc cell Wg assay (9),<br />

suggest<strong>in</strong>g that the previously reported roles<br />

<strong>of</strong> these prote<strong>in</strong>s <strong>in</strong> Wg signal<strong>in</strong>g (24–26)<br />

may be largely restricted to non–cell-autonomous<br />

extracellular effects on Wg transport.<br />

To further <strong>in</strong>vestigate the mechanism <strong>of</strong><br />

Dlp action on Hh signal response, we exam<strong>in</strong>ed<br />

<strong>RNAi</strong> <strong>of</strong> Dlp <strong>in</strong> comb<strong>in</strong>ation with <strong>RNAi</strong><br />

<strong>of</strong> other <strong>pathway</strong> <strong>components</strong>. Dlp function<br />

was not required for the <strong>in</strong>creased basal <strong>pathway</strong><br />

activity produced <strong>by</strong> loss <strong>of</strong> Cos2 (Fig.<br />

4C). Moreover, the requirement for Dlp <strong>in</strong> Hh<br />

response was suppressed <strong>by</strong> <strong>RNAi</strong> <strong>of</strong> Ptc,<br />

suggest<strong>in</strong>g that Dlp may act upstream or at<br />

the level <strong>of</strong> the Ptc receptor (Fig. 4C). Given<br />

its localization, Dlp could function to concentrate<br />

Hh on the surface <strong>of</strong> respond<strong>in</strong>g cells,<br />

perhaps aid<strong>in</strong>g <strong>in</strong> the delivery <strong>of</strong> Hh to Ptc.<br />

Prelim<strong>in</strong>ary biochemical analysis shows that<br />

a soluble fusion prote<strong>in</strong> conta<strong>in</strong><strong>in</strong>g the extracellular<br />

doma<strong>in</strong> <strong>of</strong> Dlp can associate with a<br />

www.sciencemag.org SCIENCE VOL 299 28 MARCH 2003 2041<br />

on January 12, 2008<br />

www.sciencemag.org<br />

Downloaded from


2042<br />

R ESEARCH A RTICLES<br />

tagged form <strong>of</strong> Hh (9). Also consistent with<br />

such a role, <strong>RNAi</strong> <strong>of</strong> Dlp did not block signal<br />

response when Hh was expressed <strong>in</strong> respond<strong>in</strong>g<br />

cells (Fig. 4D). In this case, mature Hh is<br />

anchored to the plasma membrane via its<br />

lipid modifications (27, 28). Circumvention<br />

<strong>of</strong> the requirement for Dlp <strong>by</strong> expression <strong>of</strong> a<br />

tethered Hh signal <strong>in</strong> respond<strong>in</strong>g cells suggests<br />

that Dlp may function normally to concentrate<br />

Hh released from produc<strong>in</strong>g cells.<br />

A dual role for CK1 <strong>in</strong> regulation <strong>of</strong><br />

Hh and Wg <strong>pathway</strong> activity. In contrast<br />

to the positive role <strong>of</strong> Dlp <strong>in</strong> Hh response, our<br />

<strong>in</strong>itial observations from the k<strong>in</strong>ase-phospha-<br />

tase and DGCr1 library screens suggested that<br />

CK1 may control basal <strong>pathway</strong> activity<br />

(Figs. 2 and 3). A role for k<strong>in</strong>ases other than<br />

PKA <strong>in</strong> regulation <strong>of</strong> Ci process<strong>in</strong>g was proposed<br />

(6), and CK1 sites essential for process<strong>in</strong>g<br />

Ci to Ci75 were reported (5). However, no<br />

CK1 gene required for Hh <strong>pathway</strong> regulation<br />

has been identified, although the gene encod<strong>in</strong>g<br />

CK1ε was proposed on the basis <strong>of</strong> the effects<br />

<strong>of</strong> CK1ε overexpression <strong>in</strong> imag<strong>in</strong>al discs (5).<br />

To <strong>in</strong>vestigate the role <strong>of</strong> CK1 <strong>in</strong> Hh <strong>pathway</strong><br />

regulation, <strong>RNAi</strong> <strong>of</strong> CK1 and CK1ε <strong>in</strong> cl-8<br />

cells were compared. Three dsRNAs conta<strong>in</strong><strong>in</strong>g<br />

dist<strong>in</strong>ct portions <strong>of</strong> the CK1 open read<strong>in</strong>g<br />

frame (ORF) <strong>in</strong>creased basal reporter activity<br />

(29). DsRNA correspond<strong>in</strong>g to either the catalytic<br />

region or the extracatalytic region <strong>of</strong> CK1ε<br />

had no effect (Fig. 5A). In contrast, overexpression<br />

<strong>of</strong> either CK1 or CK1ε suppressed Hh<strong>in</strong>duced<br />

<strong>pathway</strong> activation (Fig. 5B). These<br />

results <strong>in</strong>dicate that both CK1 and CK1ε affect<br />

basal <strong>pathway</strong> activity when overexpressed,<br />

but that physiological regulation depends<br />

primarily on CK1.<br />

Both CK1 and CK1ε have been implicated<br />

<strong>in</strong> Wnt <strong>pathway</strong> signal<strong>in</strong>g <strong>in</strong> vertebrates, largely<br />

on the basis <strong>of</strong> overexpression studies (30). In<br />

the Wg signal<strong>in</strong>g assay, only overexpression <strong>of</strong><br />

Fig. 3. <strong>RNAi</strong> screen <strong>of</strong><br />

43% <strong>of</strong> predicted Drosophila<br />

genes for <strong>components</strong><br />

<strong>of</strong> the Hh <strong>pathway</strong>.<br />

(A) A screen <strong>of</strong> the<br />

DGCr1 dsRNA library.<br />

The upper panel shows<br />

relative basal luciferase<br />

activity and the lower<br />

panel shows relative<br />

fold <strong>in</strong>duction, as described<br />

<strong>in</strong> the Fig. 2 legend.<br />

(Inset) Dlp was<br />

identified as a positive<br />

component <strong>in</strong> <strong>pathway</strong><br />

activation <strong>in</strong> a dsRNA<br />

pool that also <strong>in</strong>cluded<br />

dsRNA target<strong>in</strong>g Mbt<br />

and Mus210 transcripts.<br />

Injection <strong>of</strong> dlp dsRNA<br />

<strong>in</strong>to Drosophila embryos<br />

resulted <strong>in</strong> decreased<br />

Wg expression, consistent<br />

with a reduction <strong>in</strong><br />

response to Hh signal<strong>in</strong>g.<br />

(B) Genes and gene<br />

products identified <strong>in</strong><br />

the screen are grouped<br />

<strong>in</strong>to three different<br />

classes: known <strong>pathway</strong><br />

<strong>components</strong> and regulators<br />

(class I), <strong>components</strong><br />

<strong>of</strong> large multifunctional<br />

prote<strong>in</strong><br />

complexes that are<br />

not likely to be <strong>in</strong>volved<br />

exclusively <strong>in</strong><br />

Hh signal<strong>in</strong>g (class II),<br />

and genes with previously<br />

unrecognized<br />

roles <strong>in</strong> the Hh <strong>pathway</strong><br />

(class III). The apparent<br />

effect <strong>of</strong> <strong>RNAi</strong><br />

<strong>of</strong> thread, an antiapoptosis<br />

gene, is unreliable<br />

because <strong>of</strong> a dramatic reduction <strong>in</strong> control reporter activity, <strong>in</strong>dicative<br />

<strong>of</strong> cell death.<br />

28 MARCH 2003 VOL 299 SCIENCE www.sciencemag.org<br />

on January 12, 2008<br />

www.sciencemag.org<br />

Downloaded from


CK1ε elevated basal <strong>pathway</strong> activity (Fig. 5D,<br />

right panel). In contrast, <strong>RNAi</strong> target<strong>in</strong>g revealed<br />

that only loss <strong>of</strong> CK1 function <strong>in</strong>creased basal<br />

<strong>pathway</strong> activity (Fig. 5E, left panel), <strong>in</strong>dicat<strong>in</strong>g<br />

that physiological regulation <strong>of</strong> basal Wg <strong>pathway</strong><br />

activity depends on CK1. The <strong>in</strong>crease <strong>in</strong><br />

<strong>pathway</strong> activity produced <strong>by</strong> <strong>RNAi</strong> <strong>of</strong> CK1<br />

was blocked <strong>by</strong> <strong>RNAi</strong> <strong>of</strong> Arm, consistent with<br />

the proposed role <strong>of</strong> CK1 <strong>in</strong> Arm degradation<br />

(31, 32). Similarly, Ci function is required for<br />

basal activation <strong>of</strong> the Hh <strong>pathway</strong> <strong>by</strong> <strong>RNAi</strong> <strong>of</strong><br />

CK1, whereas other positively act<strong>in</strong>g <strong>components</strong><br />

Smo and Fu were not (Fig. 5C, left<br />

panel). The <strong>in</strong>crease <strong>in</strong> basal reporter activity<br />

produced <strong>by</strong> <strong>RNAi</strong> <strong>of</strong> CK1 was enhanced <strong>by</strong><br />

<strong>RNAi</strong> <strong>of</strong> Sli, which is thought to be <strong>in</strong>volved <strong>in</strong><br />

target<strong>in</strong>g Ci for process<strong>in</strong>g to Ci75 (Fig. 5C,<br />

right panel). These results suggest that CK1<br />

acts downstream <strong>of</strong> Smo and Fu, and at or<br />

upstream <strong>of</strong> Ci. The role <strong>of</strong> CK1 <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

the quiescent state <strong>of</strong> both Wg and Hh<br />

<strong>pathway</strong>s suggests that these <strong>pathway</strong>s might<br />

be simultaneously activated upon loss <strong>of</strong> CK1<br />

activity (Fig. 5D, table).<br />

In addition to Dlp and CK1, class III<br />

<strong>components</strong> with previously unrecognized<br />

roles <strong>in</strong> Hh signal<strong>in</strong>g <strong>in</strong>clude caupolican,<br />

one <strong>of</strong> a cluster <strong>of</strong> homeodoma<strong>in</strong> genes<br />

with roles <strong>in</strong> specify<strong>in</strong>g w<strong>in</strong>g ve<strong>in</strong> and sensory<br />

organ pattern (33). A closely related<br />

gene with<strong>in</strong> the cluster, araucan, also reduced<br />

Hh-<strong>in</strong>duced reporter activity when targeted<br />

<strong>by</strong> <strong>RNAi</strong> (9). Curiously, both <strong>of</strong> these<br />

genes have been characterized as targets rather<br />

than mediators <strong>of</strong> Hh signal<strong>in</strong>g. The rema<strong>in</strong><strong>in</strong>g<br />

gene <strong>in</strong> class III, CG9211<br />

(CT26314), encodes a putative cell surface<br />

prote<strong>in</strong> that shares features with a subfamily<br />

<strong>of</strong> the immunoglobul<strong>in</strong> (Ig) Superfamily, <strong>in</strong>clud<strong>in</strong>g<br />

fibronect<strong>in</strong> type III and Ig doma<strong>in</strong><br />

repeats (34).<br />

Implications for human disease. The<br />

identification <strong>of</strong> signal<strong>in</strong>g <strong>pathway</strong> <strong>components</strong><br />

<strong>in</strong> Drosophila can have implications for human<br />

disease. For example, the role <strong>of</strong> CK1 <strong>in</strong> regulat<strong>in</strong>g<br />

basal activity <strong>of</strong> both Wg and Hh signal<strong>in</strong>g<br />

<strong>pathway</strong>s suggests that it could act as a<br />

tumor suppressor <strong>in</strong> colon cancer, basal cell<br />

carc<strong>in</strong>oma, rhabdomyosarcoma, or medulloblastoma.<br />

These tumors are associated with <strong>in</strong>appropriate<br />

activity <strong>of</strong> one or the other <strong>pathway</strong>,<br />

except medulloblastoma, which is associated<br />

R ESEARCH A RTICLES<br />

with the activation <strong>of</strong> either (2). In the case <strong>of</strong><br />

Dlp, GPC4 and GPC6 are the most closely<br />

related <strong>of</strong> the six mammalian glypican family<br />

members (35). GPC6 maps to 13q32 (36), a<br />

human chromosomal locus whose deletion<br />

(13q32 syndrome) is associated with defects,<br />

<strong>in</strong>clud<strong>in</strong>g holoprosencephaly (HPE), anogenital<br />

malformations, and an absent thumb (37); all <strong>of</strong><br />

these malformations are consistent with loss <strong>of</strong><br />

vary<strong>in</strong>g degrees <strong>of</strong> Sonic hedgehog signal<strong>in</strong>g<br />

(38, 39). If GPC6 levels are limit<strong>in</strong>g <strong>in</strong> mammalian<br />

Hh responsiveness, then loss <strong>of</strong> GPC6<br />

function may play a role <strong>in</strong> 13q32 syndrome<br />

malformations, possibly alongside other HPE<br />

genes <strong>in</strong> or near this region (40). F<strong>in</strong>ally, mutation<br />

<strong>of</strong> CDO, the mammalian homolog <strong>of</strong><br />

CG9211, results <strong>in</strong> a form <strong>of</strong> HPE (41), consistent<br />

with a role for CDO <strong>in</strong> signal<strong>in</strong>g.<br />

An <strong>RNAi</strong>-based approach to functional<br />

genomics <strong>in</strong> a Drosophila cultured cell assay<br />

has provided a rapid screen that is sufficiently<br />

sensitive to detect known maternal and zygotic<br />

functions <strong>in</strong> Hh signal<strong>in</strong>g, as well as the functions<br />

<strong>of</strong> previously unknown <strong>pathway</strong> <strong>components</strong>.<br />

This screen, together with <strong>RNAi</strong>-based<br />

functional characterization, has allowed identi-<br />

Fig. 4. A role for the<br />

cell surface HSPG Dlp<br />

<strong>in</strong> Hh response. (A) A<br />

specific role <strong>of</strong> Dlp <strong>in</strong><br />

Hh signal<strong>in</strong>g. Of four<br />

characterized Drosophila<br />

HSPGs (Sdc,<br />

Pcan, Dally, and Dlp),<br />

only <strong>RNAi</strong> <strong>of</strong> Dlp resulted<br />

<strong>in</strong> loss <strong>of</strong> <strong>pathway</strong><br />

responsiveness<br />

(left panel). Similar<br />

effects were observed<br />

with dsRNA correspond<strong>in</strong>g<br />

to the Dlp<br />

5 UTR. YFP and Smo<br />

dsRNAs were negative<br />

and positive controls.<br />

Conversely, expression<br />

<strong>of</strong> Dlp but<br />

not <strong>of</strong> Dally or YFP<br />

resulted <strong>in</strong> <strong>in</strong>creased<br />

responsiveness to Hh<br />

(10) (right panel). (B)<br />

Dlp is a cell surface–<br />

localized, heparan<br />

sulfate–modified prote<strong>in</strong>.<br />

(Top) A diagram <strong>of</strong> the Dlp precursor <strong>in</strong>dicat<strong>in</strong>g the 14 conserved<br />

cyste<strong>in</strong>es <strong>in</strong> the globular doma<strong>in</strong>, several putative GAG attachment<br />

sites, a hydrophobic GPI attachment sequence, and the region recognized<br />

<strong>by</strong> the monoclonal antibody to Dlp (10). (Left) Immun<strong>of</strong>luorescence<br />

analysis <strong>of</strong> nonpermeabilized or detergent-permeabilized cl-8<br />

cells express<strong>in</strong>g Dlp and green fluorescent prote<strong>in</strong> (GFP) (10). Epitopes<br />

for both Dlp and GFP were accessible <strong>in</strong> permeabilized cells, whereas<br />

only Dlp prote<strong>in</strong> was detected <strong>in</strong> nonpermeabilized cells. (Right) Analysis<br />

<strong>of</strong> the GAG modifications <strong>of</strong> Dlp <strong>in</strong> S2 cells. Control Arm prote<strong>in</strong> (left lane) or Dlp (right lanes) was immunoprecipitated and treated before<br />

Western blot analysis with hepar<strong>in</strong>ase III (HepIII), chondroit<strong>in</strong>ase ABC (ChABC), and the reduc<strong>in</strong>g agent dithiothreitol (DTT) as <strong>in</strong>dicated (10). The<br />

vertical l<strong>in</strong>e <strong>in</strong>dicates migration <strong>of</strong> the hepar<strong>in</strong>ase III–treated juxtamembrane subunit <strong>of</strong> Dlp <strong>in</strong> DTT-treated samples. Hepar<strong>in</strong>ase III–treated Dlp<br />

migrates substantially more slowly <strong>in</strong> the absence <strong>of</strong> DTT (arrow), suggest<strong>in</strong>g that Dlp undergoes proteolytic process<strong>in</strong>g to yield a disulfide-l<strong>in</strong>ked<br />

product. Background immunoglobul<strong>in</strong> G bands are <strong>in</strong>dicated <strong>by</strong> asterisks. (C) Mapp<strong>in</strong>g <strong>of</strong> Dlp activity with<strong>in</strong> the Hh <strong>pathway</strong>. Pathway activation<br />

result<strong>in</strong>g from <strong>RNAi</strong> <strong>of</strong> Ptc or Cos2 was not affected <strong>by</strong> <strong>RNAi</strong> <strong>of</strong> Dlp, plac<strong>in</strong>g Dlp function upstream <strong>of</strong> both <strong>components</strong>. (D) Dlp is not required when<br />

Hh is expressed with<strong>in</strong> respond<strong>in</strong>g cells. Hh responsiveness <strong>in</strong> cl-8 cells was measured when Hh was supplied either <strong>in</strong> conditioned medium or <strong>by</strong><br />

transfection <strong>of</strong> a construct for the expression <strong>of</strong> full-length Hh. Hh response was not affected <strong>by</strong> loss <strong>of</strong> Dlp <strong>in</strong> Hh-transfected cells, demonstrat<strong>in</strong>g<br />

that delivery <strong>of</strong> membrane-tethered Hh directly <strong>in</strong>to respond<strong>in</strong>g cells circumvents the requirement for Dlp.<br />

www.sciencemag.org SCIENCE VOL 299 28 MARCH 2003 2043<br />

on January 12, 2008<br />

www.sciencemag.org<br />

Downloaded from


2044<br />

R ESEARCH A RTICLES<br />

Fig. 5. CK1 regulates basal activity <strong>of</strong> both<br />

the Hh and Wg <strong>pathway</strong>s. (A) Specificity <strong>of</strong><br />

dsRNA target<strong>in</strong>g CK1. (Left) Schematic diagram<br />

<strong>of</strong> the different dsRNAs target<strong>in</strong>g CK1<br />

and its closest homolog CK1ε. Highly homologous<br />

regions and nucleotides correspond<strong>in</strong>g<br />

to the catalytic doma<strong>in</strong>s are <strong>in</strong>dicated. CT<br />

numbers correspond<strong>in</strong>g to transcripts and<br />

lengths <strong>of</strong> exon sequences targeted <strong>by</strong> <strong>RNAi</strong><br />

are noted for dsRNAs <strong>in</strong>cluded <strong>in</strong> the k<strong>in</strong>ase/<br />

phosphatase library (th<strong>in</strong> l<strong>in</strong>e); only the length<br />

<strong>of</strong> the targeted sequence is noted for dsRNAs<br />

derived from a separate synthesis (thick l<strong>in</strong>e) (10). (Right)<br />

Transfection <strong>of</strong> three out <strong>of</strong> four dsRNAs target<strong>in</strong>g CK1 but<br />

neither <strong>of</strong> the two dsRNAs target<strong>in</strong>g CK1ε results <strong>in</strong> <strong>pathway</strong><br />

activation. Three additional dsRNAs target<strong>in</strong>g CK1ε (left panel,<br />

th<strong>in</strong> l<strong>in</strong>es that are not numbered) were <strong>in</strong>cluded <strong>in</strong> the screen<br />

described <strong>in</strong> Fig. 2 and had no effect on <strong>pathway</strong> responsiveness.<br />

(B) Expression <strong>of</strong> CK1 or CK1ε suppresses the Hh <strong>pathway</strong>.<br />

CK1, CK1ε, or known <strong>pathway</strong> <strong>components</strong> were expressed<br />

<strong>in</strong> cl-8 cells and <strong>pathway</strong> response was measured.<br />

Expression <strong>of</strong> both CK1 and CK1ε blocked <strong>pathway</strong> response.<br />

(C) Mapp<strong>in</strong>g <strong>of</strong> CK1 activity with<strong>in</strong> the Hh <strong>pathway</strong>. Pathway<br />

<strong>components</strong> were targeted <strong>by</strong> <strong>RNAi</strong> <strong>in</strong>dividually or <strong>in</strong> comb<strong>in</strong>ation<br />

with <strong>RNAi</strong> <strong>of</strong> CK1. Only Ci was epistatic to CK1. <strong>RNAi</strong><br />

<strong>of</strong> Sli, an F-box prote<strong>in</strong> that regulates Ci proteolytic process<strong>in</strong>g,<br />

<strong>in</strong> comb<strong>in</strong>ation with <strong>RNAi</strong> <strong>of</strong> CK1 <strong>in</strong>creased both basal and Hh-<strong>in</strong>duced <strong>pathway</strong> activity more than did either <strong>in</strong>dividually. (D) CK1 also acts<br />

as a negative regulator <strong>of</strong> the Wg <strong>pathway</strong>. <strong>RNAi</strong> <strong>of</strong> CK1 resulted <strong>in</strong> <strong>in</strong>creased basal activity <strong>of</strong> the Wg <strong>pathway</strong>, whereas <strong>RNAi</strong> <strong>of</strong> Arm resulted<br />

<strong>in</strong> loss <strong>of</strong> <strong>pathway</strong> responsiveness. <strong>RNAi</strong> <strong>of</strong> Arm was epistatic to <strong>RNAi</strong> <strong>of</strong> CK1, consistent with CK1 action upstream <strong>of</strong> Arm. Expression <strong>of</strong><br />

CK1 did not suppress Wg <strong>pathway</strong> response, and expression <strong>of</strong> CK1ε activated the <strong>pathway</strong>. (Right) Summary <strong>of</strong> the effects <strong>of</strong> <strong>RNAi</strong> or<br />

overexpression (OEX ) <strong>of</strong> CK1 or CK1ε <strong>in</strong> Hh and Wg <strong>pathway</strong>s.<br />

fication <strong>of</strong> CK1 and Dlp <strong>in</strong> Hh response. In the<br />

case <strong>of</strong> Dlp, the <strong>in</strong>fluence <strong>of</strong> possible effects on<br />

extracellular signal transport was avoided, because<br />

the assay monitors only responses with<strong>in</strong><br />

target cells. Furthermore, although both <strong>of</strong> these<br />

genes were previously implicated <strong>in</strong> Wg signal<strong>in</strong>g,<br />

the use <strong>of</strong> a quantitative Hh signal<strong>in</strong>g assay<br />

avoided the complexities <strong>of</strong> phenotypic analysis<br />

and elucidated roles <strong>in</strong> the Hh response. Activity<br />

assays for Hh, Wg, and other signal<strong>in</strong>g <strong>pathway</strong>s<br />

<strong>in</strong> a sett<strong>in</strong>g amenable to <strong>RNAi</strong>-based functional<br />

genomics approaches should make possible<br />

the systematic identification <strong>of</strong> <strong>components</strong><br />

with<strong>in</strong> each <strong>pathway</strong>, there<strong>by</strong> provid<strong>in</strong>g the basis<br />

for a more complete view <strong>of</strong> the mechanisms<br />

<strong>of</strong> signal<strong>in</strong>g. In addition, a fuller knowledge <strong>of</strong><br />

common, as well as unique, <strong>components</strong> <strong>in</strong> Hh,<br />

Wg, and other <strong>pathway</strong>s should lead to a better<br />

understand<strong>in</strong>g <strong>of</strong> the relationships and regulatory<br />

cross-talk between <strong>pathway</strong>s.<br />

References and Notes<br />

1. P. W. Ingham, EMBO J. 17, 3505 (1998).<br />

2. J. Taipale, P. A. Beachy, Nature 411, 349 (2001).<br />

3. J. Jiang, G. Struhl, Cell 86, 401 (1996).<br />

4. J. Jia et al., Nature 416, 548 (2002).<br />

5. M. A. Price, D. Kalderon, Cell 108, 823 (2002).<br />

6. C. H. Chen et al., Cell 98, 305 (1999).<br />

7. J. C. Clemens et al., Proc.Natl.Acad.Sci.U.S.A.97,<br />

6499 (2000).<br />

8. A. Fire et al., Nature 391, 806 (1998).<br />

9. L. Lum et al., data not shown.<br />

10. Materials and methods are available as support<strong>in</strong>g<br />

material on Science Onl<strong>in</strong>e.<br />

11. In contrast to Ptc <strong>in</strong>activation <strong>by</strong> mutation, dsRNA<br />

directed aga<strong>in</strong>st Ptc does not cause constitutive <strong>pathway</strong><br />

activation, probably because <strong>RNAi</strong>-<strong>in</strong>duced loss<br />

<strong>of</strong> ptc mRNA and prote<strong>in</strong> is balanced <strong>by</strong> a consequent<br />

<strong>in</strong>crease <strong>in</strong> transcription <strong>of</strong> the still <strong>in</strong>tact ptc gene,<br />

result<strong>in</strong>g <strong>in</strong> sufficient levels <strong>of</strong> Ptc prote<strong>in</strong> to ma<strong>in</strong>ta<strong>in</strong><br />

<strong>pathway</strong> regulation. In S2 cells, which lack Ci and<br />

consequently this regulatory feedback, Ptc-directed<br />

<strong>RNAi</strong> treatment results <strong>in</strong> a decrease <strong>in</strong> Ptc prote<strong>in</strong><br />

and an <strong>in</strong>crease <strong>in</strong> Smo prote<strong>in</strong> similar to that produced<br />

<strong>by</strong> Hh stimulation (Fig. 1B, <strong>in</strong>set).<br />

12. T. Preat, Genetics 132, 725 (1992).<br />

13. A. J. Forbes, Y. Nakano, A. M. Taylor, P. W. Ingham,<br />

Development (Suppl.) 1993, 115 (1993).<br />

14. M. T. Veemon et al., Curr.Biol., <strong>in</strong> press.<br />

15. F. van Leeuwen, C. H. Samos, R. Nusse, Nature 368,<br />

342 (1994).<br />

16. D. K. Morrison, M. S. Murakami, V. Cleghon, J.Cell<br />

Biol. 150, F57 (2000).<br />

17. G. L. Campbell, A. Toml<strong>in</strong>son, Development 127,<br />

4095 (2000).<br />

18. J. J. Lee et al., Science 266, 1528 (1994).<br />

19. I. The, Y. Bellaiche, N. Perrimon, Mol.Cell 4, 633<br />

(1999).<br />

28 MARCH 2003 VOL 299 SCIENCE www.sciencemag.org<br />

20. Injection <strong>of</strong> dally dsRNA used <strong>in</strong> cell-based assays<br />

resulted <strong>in</strong> dramatically weakened or <strong>in</strong> some cases<br />

loss <strong>of</strong> Wg sta<strong>in</strong><strong>in</strong>g, consistent with the loss <strong>of</strong> naked<br />

cuticle associated with loss <strong>of</strong> Dally.<br />

21. K. Watanabe, H. Yamada, Y. Yamaguchi, J.Cell.Biol.<br />

130, 1207 (1995).<br />

22. H. H. Song, J. Filmus, Biochim.Biophys.Acta 1573,<br />

241 (2002).<br />

23. Y. Bellaiche, I. The, N. Perrimon, Nature 394, 85<br />

(1998).<br />

24. G. H. Baeg, X. L<strong>in</strong>, N. Khare, S. Baumgartner, N.<br />

Perrimon, Development 128, 87 (2001).<br />

25. X. L<strong>in</strong>, N. Perrimon, Nature 400, 281 (1999).<br />

26. M. Tsuda et al., Nature 400, 276 (1999).<br />

27. Z. Chamoun et al., Science 293, 2080 (2001).<br />

28. J. A. Porter et al., Cell 86, 21 (1996).<br />

29. Of the two dsRNAs target<strong>in</strong>g CK1 <strong>in</strong>cluded <strong>in</strong> the<br />

k<strong>in</strong>ase-phosphatase library, only one <strong>of</strong> these target<strong>in</strong>g<br />

the ORF resulted <strong>in</strong> a ga<strong>in</strong> <strong>in</strong> basal reporter<br />

activity. The other dsRNA targets the 5 untranslated<br />

region (UTR) and is <strong>in</strong>effective, perhaps as a result <strong>of</strong><br />

possible alternative splic<strong>in</strong>g <strong>of</strong> the transcript.<br />

30. R. M. McKay, J. M. Peters, J. M. Graff, Dev.Biol.235,<br />

388 (2001).<br />

31. C. Liu et al., Cell 108, 837 (2002).<br />

32. S. Yanagawa et al., EMBO J. 21, 1733 (2002).<br />

33. J. L. Gomez-Skarmeta, J. Modolell, Genes Dev. 10,<br />

2935 (1996).<br />

34. J. S. Kang et al., EMBO J. 21, 114 (2002).<br />

35. B. De Cat, G. David, Sem<strong>in</strong>.Cell Dev.Biol.12, 117<br />

(2001).<br />

on January 12, 2008<br />

www.sciencemag.org<br />

Downloaded from


36. S. Pa<strong>in</strong>e-Saunders, B. L. Viviano, S. Saunders, Genomics<br />

57, 455 (1999).<br />

37. S. Brown, J. Russo, D. Chitayat, D. Warburton, Am.J.<br />

Hum.Genet.57, 859 (1995).<br />

38. M. Ramalho-Santos, D. A. Melton, A. P. McMahon,<br />

Development 127, 2763 (2000).<br />

39. C. Chiang et al., Nature 383, 407 (1996).<br />

40. S. A. Brown et al., Nature Genet. 20, 180 (1998).<br />

41. F. Cole, R. S. Krauss, Curr.Biol.13, 411 (2003).<br />

42. N. Denef, D. Neubuser, L. Perez, S. M. Cohen, Cell<br />

102, 521 (2000).<br />

43. We thank A. Kaykas and R. Moon for provid<strong>in</strong>g the<br />

Super TopFlash reporter; F. Weiss-Garcia and the<br />

Sloan-Ketter<strong>in</strong>g Hybridoma Core Facility (NY) for<br />

development <strong>of</strong> monoclonal antibodies; R. Gong<br />

for technical assistance; S. Celniker for help with<br />

annotation <strong>of</strong> DGCr1; R. L. Johnson and S. M. Cohen<br />

for antibodies; S. Zusman at Genetic Services (MA)<br />

for help with dally dsRNA embryo <strong>in</strong>jections; and J.<br />

Taipale for critical review <strong>of</strong> the manuscipt. Supported<br />

<strong>by</strong> grants and fellowships from NIH and a<br />

Life Sciences Research Foundation Fellowship (L.L).<br />

Polymer Replicas <strong>of</strong> Photonic<br />

Porous Silicon for Sens<strong>in</strong>g and<br />

Drug Delivery Applications<br />

Yang Yang Li, 1 Frédérique Cun<strong>in</strong>, 1 Jamie R. L<strong>in</strong>k, 1 T<strong>in</strong>g Gao, 1<br />

Ronald E. Betts, 1 Sarah H. Reiver, 1 Vicki Ch<strong>in</strong>, 2<br />

Sangeeta N. Bhatia, 2 Michael J. Sailor1 Elaborate one-dimensional photonic crystals are constructed from a variety <strong>of</strong><br />

organic and biopolymers, which can be dissolved or melted, <strong>by</strong> templat<strong>in</strong>g the<br />

solution-cast or <strong>in</strong>jection-molded materials <strong>in</strong> porous silicon or porous silicon<br />

dioxide multilayer (rugate dielectric mirror) structures. After the removal <strong>of</strong> the<br />

template <strong>by</strong> chemical dissolution, the polymer cast<strong>in</strong>gs replicate the photonic<br />

features and the nanostructure <strong>of</strong> the master. We demonstrate that these<br />

cast<strong>in</strong>gs can be used as vapor sensors, as deformable and tunable optical filters,<br />

and as self-report<strong>in</strong>g, bioresorbable materials.<br />

Synthesis <strong>of</strong> materials us<strong>in</strong>g nanostructured<br />

templates has emerged as a useful and versatile<br />

technique to generate ordered nanostructures<br />

(1). Templates consist<strong>in</strong>g <strong>of</strong> microporous membranes<br />

(2, 3), zeolites (4), and crystall<strong>in</strong>e colloidal<br />

arrays (5–7) have been used to construct<br />

elaborate electronic, mechanical, or optical<br />

structures. Porous Si is an attractive candidate<br />

for use as a template (8) because the porosity<br />

and average pore size can be tuned <strong>by</strong> adjust<strong>in</strong>g<br />

the electrochemical preparation conditions that<br />

allow the construction <strong>of</strong> photonic crystals,<br />

dielectric mirrors, microcavities, and other<br />

optical structures (9). For many applications,<br />

porous Si is limited <strong>by</strong> its chemical and mechanical<br />

stability. The use <strong>of</strong> porous Si as a<br />

template elim<strong>in</strong>ates these issues while provid<strong>in</strong>g<br />

the means for construction <strong>of</strong> complex<br />

optical structures from flexible materials that<br />

are compatible with biological systems or<br />

harsh environments.<br />

Multilayered porous Si templates conta<strong>in</strong><strong>in</strong>g<br />

nanometer-scale pores are prepared (10) <strong>by</strong>an<br />

1 Department <strong>of</strong> Chemistry and Biochemistry, University<br />

<strong>of</strong> California, San Diego, 9500 Gilman Drive,<br />

Department 0358, La Jolla, CA 92093–0358, USA.<br />

2 Department <strong>of</strong> Bioeng<strong>in</strong>eer<strong>in</strong>g, University <strong>of</strong> California,<br />

San Diego, 9500 Gilman Drive, Department 0412,<br />

La Jolla, CA 92093–0412, USA.<br />

anodic electrochemical etch <strong>of</strong> crystall<strong>in</strong>e silicon<br />

wafers with the use <strong>of</strong> a pseudos<strong>in</strong>usoidal current-time<br />

waveform, accord<strong>in</strong>g to published procedures<br />

(9, 11–16). The thickness, pore size, and<br />

porosity <strong>of</strong> a given layer is controlled <strong>by</strong> the<br />

current density, duration <strong>of</strong> the etch cycle, and<br />

etchant solution composition (17). The multilayer<br />

templates possess a s<strong>in</strong>usoidally vary<strong>in</strong>g<br />

porosity gradient, provid<strong>in</strong>g sharp features <strong>in</strong> the<br />

optical reflectivity spectrum (Fig. 1) that approximate<br />

a rugate filter (18). The porous Si is converted<br />

to porous SiO 2 <strong>by</strong> thermal oxidation, and<br />

the oxidized nanostructure (fig. S1) (10) is used<br />

as a template for solution-cast or <strong>in</strong>jection-molded<br />

thermoplastic polymers.<br />

Removal <strong>of</strong> the porous SiO 2 template<br />

from the polymer or biopolymer impr<strong>in</strong>t <strong>by</strong><br />

chemical dissolution provides a freestand<strong>in</strong>g<br />

porous polymer film with the optical characteristics<br />

<strong>of</strong> the photonic crystal master (figs.<br />

S2 to S4). Reflection spectroscopy (Fig. 1)<br />

and scann<strong>in</strong>g electron microscopy (SEM)<br />

(Fig. 2) confirm that the photonic structure <strong>of</strong><br />

the porous Si master is reta<strong>in</strong>ed <strong>in</strong> the polymer<br />

cast<strong>in</strong>g. The sharp optical reflectivity<br />

feature expected <strong>of</strong> a rugate filter is observed<br />

<strong>in</strong> both the template and the polymer cast<strong>in</strong>g<br />

(Fig. 1), confirm<strong>in</strong>g that the process replicates<br />

the microstructure. Cross-sectional<br />

R ESEARCH A RTICLES<br />

P.A.B. is an <strong>in</strong>vestigator <strong>of</strong> the Howard Hughes<br />

Medical Institute.<br />

Support<strong>in</strong>g Onl<strong>in</strong>e Material<br />

www.sciencemag.org/cgi/content/full/299/5615/2039/<br />

DC1<br />

Materials and Methods<br />

Fig. S1<br />

Tables S1 and S2<br />

References<br />

11 December 2002; accepted 6 March 2003<br />

REPORTS<br />

SEM measurements (Fig. 2 and fig. S5) corroborate<br />

the optical data.<br />

Vapor dos<strong>in</strong>g experiments confirm that the<br />

microporous nanostructure is reta<strong>in</strong>ed <strong>in</strong> the<br />

cast<strong>in</strong>gs. The position <strong>of</strong> the spectral feature for<br />

a rugate filter depends on the periodicity and<br />

refractive <strong>in</strong>dex gradient <strong>of</strong> the structure. When<br />

porous Si multilayers are exposed to condensable<br />

vapors such as ethanol or hexane, microcapillary<br />

condensation <strong>in</strong> the nanometer-scale<br />

pores produces an <strong>in</strong>crease <strong>in</strong> the average refractive<br />

<strong>in</strong>dex <strong>of</strong> the matrix and a spectral red shift <strong>of</strong><br />

the photonic feature (11, 19, 20). The shift <strong>of</strong> the<br />

spectral peak correlates with partial pressure <strong>of</strong><br />

the analyte <strong>in</strong> the gas stream, follow<strong>in</strong>g the<br />

Kelv<strong>in</strong> equation for condensible vapors (15, 19–<br />

21). Dose-response curves for ethanol vapor for<br />

the porous Si template and for the polystyrene<br />

Fig. 1. Reflectivity spectra <strong>of</strong> an oxidized porous<br />

Si rugate film (top) and a polystyrene film<br />

cast from the porous Si template (bottom). The<br />

spectral peaks correspond to the second-order<br />

diffraction peak <strong>of</strong> the template and the second-<br />

and third-order diffraction peaks <strong>of</strong> the<br />

impr<strong>in</strong>t. The porous Si template was etched<br />

us<strong>in</strong>g a s<strong>in</strong>usoidal current vary<strong>in</strong>g between 38.5<br />

and 192.3 mA/cm 2 , with 70 repeats and a<br />

periodicity <strong>of</strong> 8 s. The total thickness <strong>of</strong> the<br />

porous Si film is 40 m. The reflected light<br />

spectra were obta<strong>in</strong>ed us<strong>in</strong>g an Ocean Optics<br />

SD2000 charge-coupled device spectrometer<br />

us<strong>in</strong>g tungsten light illum<strong>in</strong>ation. Spectra are<br />

<strong>of</strong>fset along the y axis for clarity.<br />

www.sciencemag.org SCIENCE VOL 299 28 MARCH 2003 2045<br />

on January 12, 2008<br />

www.sciencemag.org<br />

Downloaded from

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!