15.08.2013 Views

Hydrothermal Synthesis of Spherical Perovskite Oxide Powders

Hydrothermal Synthesis of Spherical Perovskite Oxide Powders

Hydrothermal Synthesis of Spherical Perovskite Oxide Powders

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1356 Communications <strong>of</strong> the American Ceramic Society Vol. 81, No. 5<br />

2 L. E. Cross, ‘‘Dielectric, Piezoelectric, and Ferroelectric Components,’’ Am.<br />

Ceram. Soc. Bull., 63 [4] 586–90 (1984).<br />

3 K. S. Mazdiyasni, ‘‘Fine Particle <strong>Perovskite</strong> Processing,’’ Am. Ceram. Soc.<br />

Bull., 63 [4] 591–94 (1984).<br />

4 W. H. Rhodes, ‘‘Agglomerate and Particle Size Effects on Sintering Yttria-<br />

Stabilized Zirconia,’’ J. Am. Ceram. Soc., 64 [1] 19–22 (1981).<br />

5 T. R. N. Kutty and R. Balachandran, ‘‘Direct Precipitation <strong>of</strong> Lead Zirconate<br />

Titanate by the <strong>Hydrothermal</strong> Method,’’ Mater. Res. Bull., 19, 1479–88<br />

(1984).<br />

6 K. C. Beal, ‘‘Precipitation <strong>of</strong> Lead Zirconate Titanate Solid Solutions under<br />

<strong>Hydrothermal</strong> Conditions’’; pp. 33–41 in Advances in Ceramics, Vol. 21, Ceramic<br />

Powder Science. Edited by G. L. Messing, K. S. Mazdiyasni, J. W. Mc-<br />

Cauley, and R. A. Haber. American Ceramic Society, Westerville, OH, 1987.<br />

7 K. H. Lee, K. Asaga, T. Ichihara, and M. Daimon, ‘‘<strong>Synthesis</strong> <strong>of</strong> PZT<br />

Crystalline <strong>Powders</strong> by Reaction <strong>of</strong> Aqueous Solution below 200°C,’’ J. Ceram.<br />

Soc. Jpn., 95 [7] 736–40 (1987).<br />

8 M. M. Lencka, A. Anderko, and R. E. Riman, ‘‘<strong>Hydrothermal</strong> Precipitation<br />

<strong>of</strong> Lead Zirconate Titanate Solid Solutions: Thermodynamic Modeling and<br />

Experimental <strong>Synthesis</strong>,’’ J. Am. Ceram. Soc., 78 [10] 2609–18 (1995).<br />

9 H. K. Kim, ‘‘<strong>Hydrothermal</strong> <strong>Synthesis</strong> <strong>of</strong> Pb(Zr,Ti)O3 <strong>Powders</strong>’’; M.S. Thesis.<br />

Seoul National University, Seoul, Korea, 1993.<br />

10 Y. Ohba, T. Rikitoku, T. Tsurumi, and M. Daimon, ‘‘Precipitation <strong>of</strong> Lead<br />

Zirconate Titanate <strong>Powders</strong> under <strong>Hydrothermal</strong> Conditions,’’ J. Ceram. Soc.<br />

Jpn., 104 [1] 6–10 (1996).<br />

11 S. Kaneko and F. Imoto, ‘‘Reactions between PbO and TiO2 under <strong>Hydrothermal</strong><br />

Conditions,’’ Bull. Chem. Soc. Jpn., 51 [6] 1739–42 (1978).<br />

12 K. Takai, S. Shoji, H. Naito, and A. Sawaoka, ‘‘Fine Powder PbTiO3<br />

Obtained by <strong>Hydrothermal</strong> Technique and Its Sinterbility’’; pp. 877–85 in Proceedings<br />

<strong>of</strong> the First International Symposium on <strong>Hydrothermal</strong> Reactions.<br />

Edited by S. Somiya. Gakujutsu Bunken Fukyu-Kai, Tokyo, Japan, 1982.<br />

13 M. Suzuki, S. Uedaira, H. Masuya, and H. Tamura, ‘‘<strong>Hydrothermal</strong> <strong>Synthesis</strong><br />

<strong>of</strong> Lead Titanate Fine <strong>Powders</strong>’’; pp. 163–70 in Ceramic Transactions,<br />

Vol. 1, Ceramic Powder Science IIA. Edited by G. L. Messing, E. R. Fuller, Jr.,<br />

and H. Hausner. American Ceramic Society, Westerville, OH, 1988.<br />

14 D. J. Watson, C. A. Randall, R. E. Newnham, and J. H. Adair, ‘‘<strong>Hydrothermal</strong><br />

Formation Diagram in the Lead Titanate System’’; pp. 154–62 in Ceramic<br />

Transactions, Vol. 1, Ceramic Powder Science IIA. Edited by G. L. Messing,<br />

E. R. Fuller, Jr., and H. Hausner. American Ceramic Society, Westerville,<br />

OH, 1988.<br />

15 M. M. Lencka and R. E. Riman, ‘‘<strong>Synthesis</strong> <strong>of</strong> Lead Titanate: Thermodynamic<br />

Modeling and Experimental Verification,’’ J. Am. Ceram. Soc., 76 [10]<br />

2649–59 (1993).<br />

16 Y. Oguri, R. E. Riman, and H. K. Bowen, ‘‘Processing <strong>of</strong> Anatase Prepared<br />

from <strong>Hydrothermal</strong>ly Treated Alkoxy-Derived Hydrous Titania,’’ J. Mater. Sci.,<br />

23, 2897–904 (1988).<br />

17 M. Kondo, K. Shinozaki, R. Ooki, and N. Mizutani, ‘‘Crystallization Behavior<br />

and Microstructure <strong>of</strong> <strong>Hydrothermal</strong>ly Treated Monodispersed Titanium<br />

Dioxide Particles,’’ J. Ceram. Soc. Jpn., 102 [8] 742–46 (1994).<br />

18 M. Kondo, H. Funakubo, K. Shinozaki, and N. Mizutani, ‘‘Formability and<br />

Sinterability <strong>of</strong> <strong>Hydrothermal</strong>ly Crystallized Monodispersed Titanium Dioxide<br />

Particles,’’ J. Ceram. Soc. Jpn., 103 [6] 552–56 (1995).<br />

19 R. E. Riman, R. R. Landham, and H. K. Bowen, ‘‘<strong>Synthesis</strong> <strong>of</strong> Uniform<br />

Titanium and 1:1 Strontium-Titanium Carboxyhydrosols by Controlled Hydrolysis<br />

<strong>of</strong> Alkoxymetal Carboxylate Precursors,’’ J. Am. Ceram. Soc., 72 [5]<br />

821–26 (1989).<br />

20 Y. T. Moon, D. K. Kim, and C. H. Kim, ‘‘Preparation <strong>of</strong> Monodisperse<br />

ZrO 2 by the Microwave Heating <strong>of</strong> Zirconyl Chloride Solutions,’’ J. Am. Ceram.<br />

Soc., 78 [4] 1103–106 (1995).<br />

21 Y. T. Moon, H. K. Park, D. K. Kim, C. H. Kim, I.-S. Seog, and C. H. Kim,<br />

‘‘Preparation <strong>of</strong> Monodisperse and <strong>Spherical</strong> Zirconia <strong>Powders</strong> by Heating <strong>of</strong><br />

Alcohol–Aqueous Salt Solutions,’’ J. Am. Ceram. Soc., 78 [10] 2690–94 (1995).<br />

22 H. K. Park, Y. T. Moon, D. K. Kim, and C. H. Kim, ‘‘Formation <strong>of</strong> Monodisperse<br />

<strong>Spherical</strong> TiO 2 <strong>Powders</strong> by Thermal Hydrolysis <strong>of</strong> Ti(SO 4) 2,’’ J. Am.<br />

Ceram. Soc., 79 [10] 2727–32 (1996).<br />

23 H. K. Park, D. K. Kim, and C. H. Kim, ‘‘Effect <strong>of</strong> Solvent on Titania<br />

Particle Formation and Morphology in Thermal Hydrolysis <strong>of</strong> TiCl 4,’’ J. Am.<br />

Ceram. Soc., 80 [3] 743–49 (1997).<br />

24 J. Y. Choi, C. H. Kim, and D. K. Kim, ‘‘Formation <strong>of</strong> <strong>Spherical</strong> Lead<br />

Titanate <strong>Powders</strong> from <strong>Spherical</strong> TiO 2 Gel <strong>Powders</strong> under <strong>Hydrothermal</strong> Conditions,’’<br />

in preparation.<br />

25 P. Gheerandi and E. Matigevic, ‘‘Homogeneous Precipitation <strong>of</strong> <strong>Spherical</strong><br />

Colloidal Barium Titanate Particles,’’ Colloids Surf., 32, 257–74 (1988).<br />

26 A. Celikkaya and M. Akinc, ‘‘Morphology <strong>of</strong> Zinc Sulfide Particles Produced<br />

from Various Zinc Salts by Homogeneous Precipitation,’’ J. Am. Ceram.<br />

Soc., 73 [2] 245–50 (1990).<br />

27 S. Nishikawa and E. Matijevic, ‘‘Preparation <strong>of</strong> Monodispersed <strong>Spherical</strong><br />

Silica–Alumina Particles by Hydrolysis <strong>of</strong> Mixed Alkoxides,’’ J. Colloid Interface<br />

Sci., 165, 141–47 (1994).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!