15.08.2013 Views

Color centers color of crystals To be clear a crystal - no strong ...

Color centers color of crystals To be clear a crystal - no strong ...

Color centers color of crystals To be clear a crystal - no strong ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<<strong>strong</strong>>Color</<strong>strong</strong>> <<strong>strong</strong>>centers</<strong>strong</strong>><br />

<<strong>strong</strong>>color</<strong>strong</strong>> <<strong>strong</strong>>of</<strong>strong</strong>> <<strong>strong</strong>><<strong>strong</strong>>crystal</<strong>strong</strong>>s</<strong>strong</strong>><br />

<<strong>strong</strong>>To</<strong>strong</strong>> <<strong>strong</strong>>be</<strong>strong</strong>> <<strong>strong</strong>>clear</<strong>strong</strong>> a <<strong>strong</strong>>crystal</<strong>strong</strong>> - <<strong>strong</strong>>no</<strong>strong</strong>> <strong>strong</strong> electronic or vibronic transitions in visible<br />

spectral range 7400 3600 ( 1.7 3.5 eV )<br />

Some example <<strong>strong</strong>>of</<strong>strong</strong>> <<strong>strong</strong>>color</<strong>strong</strong>><br />

1) Perfect diamond <<strong>strong</strong>>clear</<strong>strong</strong>><br />

5.4 eV band gap<br />

irradiation lattice defect ( <<strong>strong</strong>>color</<strong>strong</strong>> )<br />

2) CdS yellow orange<br />

2.4 eV band gap blue region is absor<<strong>strong</strong>>be</<strong>strong</strong>>d<br />

3) Silicon metallic luster<br />

1.14 eV - <<strong>strong</strong>>be</<strong>strong</strong>>low visible range<br />

thin section red<br />

silicon absorption<br />

photon<br />

near gap frequency pho<<strong>strong</strong>>no</<strong>strong</strong>>n<br />

4) Ruby dark red - - 0.5% ion substitution<br />

Sapphire blue - - ion substitution<br />

5) Transition elenments containing compounds<br />

<<strong>strong</strong>>no</<strong>strong</strong>> energy gap in visible region<br />

even though the compound has<br />

transition element characteristic electronic excited states at visible region<br />

6) Some <<strong>strong</strong>>crystal</<strong>strong</strong>> <<strong>strong</strong>>color</<strong>strong</strong>>ed by radiation damage<br />

radiation hole or electron trapped in lattice defect have<br />

absorption line in visible region<br />

7) Metallic impurity ppt as fine colloidal particles<br />

glass<br />

gold ppt ruby <<strong>strong</strong>>color</<strong>strong</strong>>ed<br />

wave length dependence <<strong>strong</strong>>of</<strong>strong</strong>> the scattering cross section <<strong>strong</strong>>of</<strong>strong</strong>> the particles


<<strong>strong</strong>>Color</<strong>strong</strong>> <<strong>strong</strong>>centers</<strong>strong</strong>><br />

Pure alkali halide transparent throughout the visible region<br />

centered (1) introduction <<strong>strong</strong>>of</<strong>strong</strong>> chemical impurity<br />

(2) introduction <<strong>strong</strong>>of</<strong>strong</strong>> excess metal ion ( vapor heating )<br />

(3) radiation - X-ray, neutron, electron<br />

(4) electrolysis<br />

<<strong>strong</strong>>color</<strong>strong</strong>> centered - lattice defect which absorbs visible light ordinary<br />

lattice vacancy does <<strong>strong</strong>>no</<strong>strong</strong>>t <<strong>strong</strong>>color</<strong>strong</strong>><br />

<<strong>strong</strong>>Color</<strong>strong</strong>> <<strong>strong</strong>>centers</<strong>strong</strong>><br />

metal<br />

ceramic<br />

alkali halide band gap 9 10 eV<br />

energetic photon hole and electron less energetic photon exciton<br />

exciton mobile uncharged particle higher excited electron + positive hole<br />

self trapped hole : V center<br />

ion vacancy with positive hole ( example center )<br />

Cl - molecule ion


F center<br />

- electron moves cage <<strong>strong</strong>>of</<strong>strong</strong>> positively charged octahedrally disposed cation<br />

" inside out " hydrogen atom like atmosphere<br />

1(s) 2(s)-like 2(p)-like<br />

single unpaired electron paramagnetic ( susceptibility measurement )<br />

Electron spin resonance spectra<br />

Optical properties <<strong>strong</strong>>of</<strong>strong</strong>> F <<strong>strong</strong>>centers</<strong>strong</strong>><br />

trapped electron in vacancy a particle in an infinitely deep 3D potential well<br />

consider time independent wave function, ψ , Schrődinger equation<br />

ψ ψ<br />

boundary condition<br />

ψ and<br />

( E : total energy<br />

P : potantial energy<br />

K : kinetic energy )


ψ<br />

π<br />

lowest eigen state<br />

π<br />

π π<br />

1st excited state - triply degenerate<br />

ψ , ψ , ψ<br />

π<br />

1s 2p excitation<br />

π<br />

This is crude model<br />

problem boundary condition ψ outside the well ( ESR result shows this<br />

is nit reasonable )<br />

( potential reduction from to finite value )<br />

Relation<br />

Experimental relationship<br />

eV<br />

, do <<strong>strong</strong>>no</<strong>strong</strong>>t fit to the relationship<br />

electrons extensive penetration to ions core region A effective is large<br />

F bands are all broad and almost structureless<br />

why !<br />

π


Optical spectroscopic techniques<br />

energy absorption in the band gaps <<strong>strong</strong>>of</<strong>strong</strong>> insulators and semiconductors<br />

Insulator - transparent - large energy gap<br />

impurity atoms - selective absorption<br />

intrinsic lattice defect<br />

Sapphire -<br />

broad absorption bands in blue region<br />

colouration <<strong>strong</strong>>of</<strong>strong</strong>> ruby<br />

characteristic pink<br />

broad absorption band width - coupling <<strong>strong</strong>>be</<strong>strong</strong>>tween electronic motion and lattice<br />

vibration<br />

μ : absorption coefficient<br />

: radiation intensity<br />

μ : thickness<br />

μ<br />

π<br />

: volume concentration <<strong>strong</strong>>of</<strong>strong</strong>> defects<br />

: average electric field in medium<br />

:effective field at the defect<br />

: oscillator frequency <<strong>strong</strong>>of</<strong>strong</strong>> transition<br />

by solving the above equation ( Smakula )<br />

η<br />

η<br />

μ<br />

η : reflective index<br />

μ : band peak absorption coefficient<br />

: full band width at half peak height<br />

1.29 : Lorentzian band shape<br />

0.89 : Gaussian band shape<br />

can <<strong>strong</strong>>be</<strong>strong</strong>> measured if absorption coefficients are measured and oscillator<br />

strength <<strong>strong</strong>>of</<strong>strong</strong>> transition is k<<strong>strong</strong>>no</<strong>strong</strong>>wn.


Actually it should <<strong>strong</strong>>be</<strong>strong</strong>> sharp as in atomic spectra band <<strong>strong</strong>>be</<strong>strong</strong>>comes broad as lattice<br />

pho<<strong>strong</strong>>no</<strong>strong</strong>>n are excited during transition<br />

Configurational coordinate model<br />

Phisical basis<br />

transition simple model<br />

adiabatic Born-Oppen heimer approximation<br />

electron-pho<<strong>strong</strong>>no</<strong>strong</strong>>n interaction<br />

nuclei vibration electron responds ( low mass ) lattice responds only to<br />

average position <<strong>strong</strong>>of</<strong>strong</strong>> electrons<br />

radial in phase vibration eigen state sensitive


electronic states and energies <<strong>strong</strong>>of</<strong>strong</strong>> defects modulated by lattice vibration when<br />

there is electronic transition, this defect - lattice coupling changes delta function<br />

Frank-condon principle<br />

Electronic transition time is much shorter than atomic vibration period.<br />

Lattice coordination does <<strong>strong</strong>>no</<strong>strong</strong>>t change during transition.<br />

Defect-lattice coupling<br />

In specific configurational coordinate (reaction coordinate),<br />

probability <<strong>strong</strong>>of</<strong>strong</strong>> any transition ψ<br />

The maximum value <<strong>strong</strong>>of</<strong>strong</strong>> ψ occurs at equilibrium position <<strong>strong</strong>>of</<strong>strong</strong>><br />

Q = 0 peak <<strong>strong</strong>>of</<strong>strong</strong>> absorption band at 0 K<br />

width <<strong>strong</strong>>of</<strong>strong</strong>> peak in n=0, spatial limit <<strong>strong</strong>>of</<strong>strong</strong>> line<br />

Temp. increase<br />

function.<br />

different vibrational level different probability distinction


Half width,<br />

ν<br />

After excitation<br />

ν<br />

ν<br />

lattice relaxation by emitting pho<<strong>strong</strong>>no</<strong>strong</strong>>n to vibration level.<br />

relative position <<strong>strong</strong>>of</<strong>strong</strong>> emission band and absorption band position Stokes shift<br />

larger num<<strong>strong</strong>>be</<strong>strong</strong>>r <<strong>strong</strong>>of</<strong>strong</strong>> pho<<strong>strong</strong>>no</<strong>strong</strong>>ns excited in a transition, larger the Stokes shift<br />

Weaker coupling ( fewer pho<<strong>strong</strong>>no</<strong>strong</strong>>ns ), overlap <<strong>strong</strong>>be</<strong>strong</strong>>tween the lowest vibrational states<br />

n=m=0


at high temperature, excitation in F band raises F center electron into the<br />

conduction band<br />

- F center luminescence decreases (photoconducting)<br />

measurement <<strong>strong</strong>>of</<strong>strong</strong>> temperature dependence<br />

life time <<strong>strong</strong>>of</<strong>strong</strong>> fluorescence - nature <<strong>strong</strong>>of</<strong>strong</strong>> the excited 2p-state<br />

photoconductivity<br />

τ : mean life time <<strong>strong</strong>>of</<strong>strong</strong>> electron in excited state (microsecond order at low<br />

temperature)<br />

ionization probability :<br />

τ<br />

τ τ τ τ<br />

τ τ τ<br />

τ<br />

τ<br />

: quantum efficiency for luminescence<br />

Δ<br />

τ τ


2p level <<strong>strong</strong>>of</<strong>strong</strong>> F center is 0.16 eV <<strong>strong</strong>>be</<strong>strong</strong>>low the bottom <<strong>strong</strong>>of</<strong>strong</strong>> conduction band<br />

radiative life time <<strong>strong</strong>>of</<strong>strong</strong>> F center : 0.58×10 -6 sec.<br />

(spin memory effect - de-excitation<br />

)<br />

relaxation spin<br />

Excited states <<strong>strong</strong>>of</<strong>strong</strong>> F center<br />

1s 2p<br />

1s np is also expected<br />

n 3<br />

K, L1, L2 , L3 bands were also observed in short wave length<br />

oscillator strength f, F_center ( 1 )<br />

K-bands ( 0.1 )<br />

L-bads ( 0.01 )<br />

K-band is both asymmetric in shape and insensitive to temperature


Pertur<<strong>strong</strong>>be</<strong>strong</strong>>d F <<strong>strong</strong>>centers</<strong>strong</strong>><br />

optical properties <<strong>strong</strong>>of</<strong>strong</strong>> F center - complete isotropic<br />

perturbation<br />

broken<br />

(slight change)<br />

uniaxial stress, electric field F center symmetry can <<strong>strong</strong>>be</<strong>strong</strong>><br />

FA - center - <strong>strong</strong>er perturbation 6 nearest neighbor cation<br />

ion<br />

1 akali<br />

usual octahedral symmetry tetrahedral symmetry<br />

<<strong>strong</strong>>crystal</<strong>strong</strong>> <<strong>strong</strong>>be</<strong>strong</strong>> irradiated with F band light at photoconversion temperature<br />

ν anion vacancy<br />

if the <<strong>strong</strong>>crystal</<strong>strong</strong>> is held at this temperature for some time, center formed<br />

center concentration


cation impurity concentration, num<<strong>strong</strong>>be</<strong>strong</strong>>r <<strong>strong</strong>>of</<strong>strong</strong>><br />

center/anion pair<br />

Firstly center/anion pair formation cation impurity diffusion<br />

1s ground state - spherically symmetry (<<strong>strong</strong>>no</<strong>strong</strong>> effect <<strong>strong</strong>>of</<strong>strong</strong>> impurity atom)<br />

2p excited state - 3 2p state degenerate<br />

2 2p state degenerate (Fig. 4.10 b )<br />

XY plane polarized


<<strong>strong</strong>>color</<strong>strong</strong>> <<strong>strong</strong>>of</<strong>strong</strong>> Luby, Emerald and Sapphire<br />

: corundum, α-alumina or sapphire<br />

bond : 60% ionic, 40% covalent<br />

completely full or empty shells present in<br />

all electrons are paired <<strong>strong</strong>>of</<strong>strong</strong>>f <<strong>strong</strong>>color</<strong>strong</strong>>less<br />

structure<br />

Oxygen ion diameter 2.8<br />

aluminum ion diameter 1.1<br />

located in distorted octahedral site


ion location slightly lower than halfway <<strong>strong</strong>>be</<strong>strong</strong>>tween oxygen layers<br />

ion surrounded by 6 negatively charged oxgyen electrostatic field<br />

(=<<strong>strong</strong>>crystal</<strong>strong</strong>> field)<br />

bond is <<strong>strong</strong>>no</<strong>strong</strong>>t purely ionic<br />

Consider as ligand field<br />

= electric charge (<<strong>strong</strong>>crystal</<strong>strong</strong>>line field) and specific bonding characteristics with<br />

ligands effect<br />

example - Luby<br />

substitute ( size 1.2 )


lo<<strong>strong</strong>>be</<strong>strong</strong>>s protrude toward surrounding octahedron corner oxygen<br />

ion(-)<br />

negative-negative overlap repulsive high energy state ( level)<br />

lo<<strong>strong</strong>>be</<strong>strong</strong>>s protrude halfway <<strong>strong</strong>>be</<strong>strong</strong>>tween the ligands lower energy


than set<br />

( level )<br />

Since overall energy does <<strong>strong</strong>>no</<strong>strong</strong>>t change, energy splitting upward and downward are<br />

inversely proportional to the num<<strong>strong</strong>>be</<strong>strong</strong>>r <<strong>strong</strong>>of</<strong>strong</strong>> equal energy levels<br />

energy splitting due to ligand field<br />

Tetragonal distortion : two oxygen ions in z direction are more removed each<br />

other dz 2 <<strong>strong</strong>>be</<strong>strong</strong>>comes lower energy dzz and dyz <<strong>strong</strong>>be</<strong>strong</strong>>cones lower energy<br />

ground level : : zero energy


: very little change with strength <<strong>strong</strong>>of</<strong>strong</strong>> field<br />

: very much change with strength <<strong>strong</strong>>of</<strong>strong</strong>> field<br />

0 K absorption band will <<strong>strong</strong>>be</<strong>strong</strong>> very sharp<br />

higher temperature ion vibraion broad band absorption<br />

Emerald<br />

"emerald green"<br />

The same structure and the same impurity ?<br />

Emerald<br />

In pure state <<strong>strong</strong>>color</<strong>strong</strong>>less shappire (goshenite)<br />

overall bonding <<strong>strong</strong>>be</<strong>strong</strong>>comes weaker less<br />

<strong>strong</strong>er ligand field (consider oxygen slightly lower effective charge)<br />

Ruby and Neodymium lasers<br />

green, U.V., violet radiation to ruby emission <<strong>strong</strong>>of</<strong>strong</strong>> red right


Laser<br />

"optically pumped" by light source ligand field type materials by light source<br />

"direct electrical excitaion" gas laser semiconductor laser


4f lanthanide Nd<br />

Nd laser<br />

Nd in CaWO4<br />

Nd in Y3Al5O12 garnet<br />

Nd in silicate glass

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!