14.08.2013 Views

Changing Concepts in Thyroid Pathology - Departments of ...

Changing Concepts in Thyroid Pathology - Departments of ...

Changing Concepts in Thyroid Pathology - Departments of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dr. S. L. Asa<br />

<strong>Chang<strong>in</strong>g</strong> <strong>Concepts</strong><br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Sylvia L. Asa, M.D., Ph.D.<br />

Pr<strong>of</strong>essor<br />

Department <strong>of</strong> Laboratory Medic<strong>in</strong>e and Pathobiology<br />

University <strong>of</strong> Toronto<br />

Pathologist-<strong>in</strong>-Chief<br />

Medical Director, Laboratory Medic<strong>in</strong>e Program<br />

University Health Network<br />

Toronto General Hospital/ Toronto Western Hospital/Pr<strong>in</strong>cess Margaret Hospital<br />

<strong>Thyroid</strong> Cancer Mortality<br />

<strong>in</strong> the United States<br />

• It is estimated that 1,530<br />

americans (880 women, 650<br />

men) will die <strong>of</strong> thyroid<br />

cancer <strong>in</strong> 2007<br />

• <strong>Thyroid</strong> cancer is the<br />

fastest-ris<strong>in</strong>g cause <strong>of</strong><br />

cancer-related death <strong>in</strong> men<br />

• ¾ <strong>of</strong> annual deaths are from<br />

well-differentiated<br />

thyroid cancers<br />

Follicular<br />

27%<br />

Estimated <strong>Thyroid</strong><br />

Cancer-Related Deaths<br />

Hurthle<br />

12%<br />

Anaplastic<br />

11%<br />

Papillary<br />

50%<br />

1. American Cancer Society, Cancer Facts and Figures. 2007<br />

2. National Cancer Institute, SEER Cancer Statistics Review, 1975-2002<br />

3. Robb<strong>in</strong>s et al. Adv Intern Med. 2001; 46: 277-294<br />

4. Hundahl et al. Cancer. 1998; 83: 2638-2648<br />

1<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Cancers on the Rise:<br />

Trends <strong>in</strong> SEER Incidence Rates<br />

by Primary Cancer Site 1992-2002<br />

<strong>Thyroid</strong><br />

Liver<br />

& IBD<br />

Melanoma <strong>of</strong><br />

the Sk<strong>in</strong><br />

All Races, Males<br />

0 1 2 3 4 5<br />

2.5 *<br />

3.1 *<br />

3.0 *<br />

<strong>Thyroid</strong><br />

Liver<br />

& IBD<br />

Melanoma <strong>of</strong><br />

the Sk<strong>in</strong><br />

All Races, Females<br />

0 1 2 3 4 5<br />

2.3 *<br />

3.3 *<br />

4.8 *<br />

Annual Percentage Change Over Time<br />

Annual Percentage Change Over Time<br />

Underly<strong>in</strong>g rates are per 100,000 and age-adjusted to the 2000 U.S. standard population<br />

* The APC is significantly different from zero (p


Dr. S. L. Asa<br />

Question:<br />

1. Follicular Adenoma or<br />

2. Papillary Carc<strong>in</strong>oma?<br />

Sporadic Nodular Goiter<br />

• Mult<strong>in</strong>odular<br />

“colloid” goiter<br />

• Occasionally<br />

associated with<br />

hyperthyroidism<br />

» “Plummer’s<br />

disease”<br />

• Etiology and<br />

pathogenesis<br />

NOT understood<br />

78%<br />

22%<br />

1 2<br />

2<br />

The Answer:<br />

5 Years Later<br />

• Do we overcall many<br />

to catch this one?<br />

• Do we undercall many<br />

and miss this one?<br />

• Do we f<strong>in</strong>d scientific<br />

markers to predict<br />

behavior?<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Clonality Studies <strong>of</strong><br />

Sporadic Nodular Goiter<br />

• Dom<strong>in</strong>ant nodules <strong>of</strong>ten monoclonal<br />

• Nodules may show LOH or aberrant methylation<br />

• Multiple nodules from a s<strong>in</strong>gle goiter exhibit<br />

activation <strong>of</strong> the same allele<br />

?Diagnostic criteria<br />

Apel et al; Diagn. Mol. Pathol. 1995; 42:113-121


Dr. S. L. Asa<br />

Follicular Adenomas with<br />

Papillary Architecture<br />

• “Papillary adenomas”<br />

• Monoclonal benign neoplasms<br />

• Activat<strong>in</strong>g mutations <strong>of</strong><br />

TSH-receptor or Gsα<br />

• Plummer’s disease<br />

(Lyons et al, Science 249:635, 1990;<br />

van Sande et al,<br />

J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 80:2577, 1995)<br />

Def<strong>in</strong>itions: Capsular<br />

Invasion<br />

1. Nests, cords or cells <strong>in</strong><br />

capsule<br />

2. Islands <strong>in</strong> capsule<br />

associated with<br />

perpendicular rupture <strong>of</strong><br />

collagen<br />

3. In capsule beyond bulk<br />

<strong>of</strong> lesion<br />

4. Total thickness <strong>in</strong>to<br />

adjacent parenchyma<br />

12%<br />

12%<br />

30%<br />

47%<br />

1 2 3 4<br />

?? Artefactual trapp<strong>in</strong>g<br />

?? postFNA<br />

3<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Follicular Adenoma & Carc<strong>in</strong>oma<br />

What If There Is NO<br />

Tumor Capsule?<br />

• Capsular <strong>in</strong>vasion<br />

cannot be evaluated<br />

• Invasion must be<br />

assessed as<br />

<strong>in</strong>filtration <strong>in</strong>to<br />

surround<strong>in</strong>g<br />

parenchyma,<br />

per<strong>in</strong>eural or<br />

vascular <strong>in</strong>volvement<br />

• Encapsulated<br />

expansile growth<br />

• Malignant by<br />

capsular or<br />

vascular <strong>in</strong>vasion<br />

• Hematogenous<br />

spread


Dr. S. L. Asa<br />

Classification <strong>of</strong><br />

Follicular Carc<strong>in</strong>oma<br />

• M<strong>in</strong>imally <strong>in</strong>vasive carc<strong>in</strong>oma<br />

up to 100% 10 year survival<br />

• Widely <strong>in</strong>vasive carc<strong>in</strong>oma<br />

25-45% 10 year survival<br />

• Angio<strong>in</strong>vasive carc<strong>in</strong>oma<br />

controversial<br />

Identification <strong>of</strong> Vascular Invasion<br />

by Follicular Neoplasms<br />

• Rigid criteria<br />

predict high<br />

likelihood <strong>of</strong><br />

metastasis<br />

EVEN<br />

<strong>in</strong> differentiated<br />

thyroid carc<strong>in</strong>oma<br />

Mete and Asa, submitted<br />

4<br />

Vascular Invasion by<br />

Endocr<strong>in</strong>e Neoplasms<br />

1. Tumor cells bulg<strong>in</strong>g <strong>in</strong>to an<br />

endothelial-l<strong>in</strong>ed lumen<br />

2. Intravascular tumor nests<br />

covered with endothelium<br />

3. Tumor casts with<strong>in</strong> vessel lumen<br />

4. Thrombus adherent to <strong>in</strong>vasive<br />

tumor<br />

30%<br />

36%<br />

17% 17%<br />

1 2 3 4<br />

Papillary Carc<strong>in</strong>oma:<br />

A Cytologic Diagnosis<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

X<br />

? artificial<br />

implantation<br />

• Architecture irrelevant<br />

» Papillary, Follicular, Mixed, Solid , Cystic<br />

» Diffuse sclerosis variant is hard to recognize<br />

• Invasion not a criterion<br />

» Encapsulated variant<br />

• Nuclear features predict behavior


Dr. S. L. Asa<br />

Papillary Carc<strong>in</strong>oma<br />

Cytologic Features <strong>of</strong><br />

Papillary Carc<strong>in</strong>oma<br />

1. Enlarged, overlapp<strong>in</strong>g nuclei<br />

2. Pale vacuolated nucleoplasm with<br />

peripheral marg<strong>in</strong>ation <strong>of</strong> chromat<strong>in</strong><br />

3. Irregular nuclear membrane<br />

4. Nuclear grooves<br />

5. Nuclear pseudo<strong>in</strong>clusions<br />

14% 12%<br />

11%<br />

19%<br />

1 2 3 4 5<br />

• Often multifocal<br />

• Locally <strong>in</strong>filtrative<br />

• Lymphatic spread<br />

45%<br />

5<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Follicular Variant <strong>of</strong> Papillary Ca<br />

• Encapsulated<br />

expansile<br />

growth<br />

• Malignant by<br />

nuclear features<br />

• Often<br />

multifocal<br />

• Lymphatic<br />

spread<br />

Emer<strong>in</strong> Identifies Nuclear Features


Dr. S. L. Asa<br />

What Can Molecular <strong>Pathology</strong><br />

Teach Us<br />

About <strong>Thyroid</strong> Cancer?<br />

Markers <strong>of</strong> <strong>Thyroid</strong> Malignancy:<br />

Galect<strong>in</strong>-3<br />

• 31kD β-galactosideb<strong>in</strong>d<strong>in</strong>g<br />

lect<strong>in</strong><br />

• High percentage <strong>of</strong><br />

malignant thyroid<br />

tumors, not <strong>in</strong><br />

normal or benign<br />

lesions<br />

6<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Markers <strong>of</strong> <strong>Thyroid</strong> Malignancy:<br />

HBME-1<br />

• Monoclonal antibody<br />

• Unknown epitope<br />

• Unknown significance<br />

• Identified <strong>in</strong> 60% <strong>of</strong><br />

thyroid malignancies,<br />

not <strong>in</strong> normal or<br />

benign lesions<br />

Markers <strong>of</strong> Papillary Carc<strong>in</strong>oma:<br />

CK19<br />

• one <strong>of</strong> many kerat<strong>in</strong>s<br />

• identified diffusely <strong>in</strong> 60%<br />

<strong>of</strong> papillary carc<strong>in</strong>omas<br />

• also seen <strong>in</strong> reactive<br />

nontumorous thyroid<br />

Raphael et al, Mod Pathol. 1995;8(8):870-2


Dr. S. L. Asa<br />

Mechanisms <strong>of</strong> <strong>Thyroid</strong> Tumorigenesis<br />

TSH signal<strong>in</strong>g MAPK signal<strong>in</strong>g<br />

TSH GF<br />

TSH receptor<br />

Po<strong>in</strong>t mutation <strong>in</strong><br />

hyperfunction<strong>in</strong>g<br />

adenomas<br />

CREB<br />

Gsa<br />

PKA<br />

cAMP<br />

P<br />

CREB<br />

Adenylyl<br />

cyclase P<br />

RTK<br />

P<br />

ERK<br />

P<br />

P<br />

P<br />

ERK<br />

MEK<br />

GTP<br />

RAS<br />

BRAF<br />

Transcription<br />

Po<strong>in</strong>t mutations or<br />

rearrangement <strong>in</strong><br />

thyroid cancers<br />

Follicular cell<br />

Kondo, Ezzat and Asa, Nature Reviews Cancer 2006<br />

BRAF Mutations<br />

Cell differentiation<br />

Cell proliferation<br />

• Most common genetic event<br />

<strong>in</strong> thyroid cancer<br />

• Diagnostic marker <strong>of</strong> PTC<br />

• Genotype-phenotype correlations<br />

» BRAF V600E <strong>in</strong> classical variant PTC (common)<br />

» BRAF K601E <strong>in</strong> FVPTC (rare)<br />

» VK600-1E deletion (BRAF VK600-1E ) <strong>in</strong> solid variant<br />

(s<strong>in</strong>gle case)<br />

• Prognostic significance controversial<br />

7<br />

Follicular Adenomas with<br />

Papillary Architecture<br />

• “Papillary adenomas”<br />

• Monoclonal benign neoplasms<br />

• Activat<strong>in</strong>g mutations <strong>of</strong><br />

TSH-receptor or Gsα<br />

• Plummer’s disease<br />

Lyons et al, Science 249:635, 1990;<br />

van Sande et al,<br />

J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 80:2577, 1995<br />

Ret/PTC Rearrangements<br />

• Chromosomal rearrangement<br />

<strong>in</strong>volv<strong>in</strong>g chromosome 10 ret<br />

• Fusion <strong>of</strong> the ret tyros<strong>in</strong>e k<strong>in</strong>ase<br />

to :<br />

CCDC6 (H4) = ret/PTC1*<br />

R1α = ret/PTC2<br />

NcoA4 (ele) = ret/PTC3*<br />

» Chromosome 10 <strong>in</strong>versions<br />

most common<br />

At least 15 identified to date<br />

<strong>Thyroid</strong> <strong>Pathology</strong>


Dr. S. L. Asa<br />

Ret/PTC Rearrangements<br />

ret<br />

ret/PTC-1<br />

ret/PTC-2<br />

ret/PTC-3<br />

EC TM TK<br />

CCDC6 (H4)<br />

R1α<br />

NcoA4 (ele 1)<br />

These rearrangements result <strong>in</strong> cytoplasmic prote<strong>in</strong>;<br />

antibodies aga<strong>in</strong>st ret identify the C term<strong>in</strong>us that is conserved<br />

Different promoters drive transcript levels that modulate<br />

oncogenicity <strong>of</strong> RET/PTC oncoprote<strong>in</strong>s.<br />

Richardson et al: Cancer Res 2009;69:4861-4869.<br />

RAS Mutations Characterize<br />

Follicular Lesions<br />

• Follicular Variant PTC<br />

• Follicular Adenoma<br />

• Follicular Carc<strong>in</strong>oma<br />

• Poorly Differentiated Carc<strong>in</strong>oma<br />

8<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Methods <strong>of</strong> Ret/PTC Analysis<br />

• DNA<br />

» PCR analysis difficult due to variable break-po<strong>in</strong>t<br />

sites lead<strong>in</strong>g to heterogeneous tumor pr<strong>of</strong>iles<br />

• RNA<br />

» RT-PCR for ret/PTC mRNA is the “gold standard”<br />

» Variability <strong>of</strong> expression; not “all or none”<br />

• Prote<strong>in</strong><br />

» Immunohistochemistry us<strong>in</strong>g antisera to C term<strong>in</strong>us<br />

• FISH<br />

» Not widely available but promis<strong>in</strong>g<br />

Rhoden et al, JCEM 2006<br />

Pax 8-PPARγ 1 Fusion Oncogene<br />

• Identified <strong>in</strong> angio<strong>in</strong>vasive follicular ca<br />

Kroll TG et al, Science, 2000; 289:135<br />

• Diagnostically applicable by FISH and IHC for PPARγ<br />

• Also found <strong>in</strong> PTC Nikiforova et al: AJSP2002;26(8):1016-23


Dr. S. L. Asa<br />

CTNNB1 Mutations are Found <strong>in</strong><br />

Poorly Differentiated (Insular)<br />

<strong>Thyroid</strong> Carc<strong>in</strong>oma<br />

• Reduced membrane sta<strong>in</strong> for<br />

β-Caten<strong>in</strong> correlates with<br />

dedifferentiation<br />

• Nuclear translocation due to<br />

exon 3 mutation <strong>in</strong> 25% <strong>of</strong><br />

<strong>in</strong>sular carc<strong>in</strong>omas and 65%<br />

<strong>of</strong> anaplastic carc<strong>in</strong>omas<br />

Garcia-Rostan et al, Am J Pathol 2001;158:987<br />

p53 Alterations <strong>in</strong> <strong>Thyroid</strong> Carc<strong>in</strong>oma<br />

Mutations are common <strong>in</strong><br />

Anaplastic carc<strong>in</strong>oma ↓<br />

Immunolocalization correlates<br />

with extent <strong>of</strong> disease,<br />

extrathyroidal <strong>in</strong>volvement,<br />

recurrence and poor outcome <strong>in</strong><br />

differentiated carc<strong>in</strong>oma<br />

Hosal et al, Endocr Pathol 1997, 8:21-28<br />

9<br />

<strong>Thyroid</strong><br />

Follicular<br />

Cell<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

PIK3CA Mutations Predict<br />

Aggressive Behavior<br />

• Identified <strong>in</strong> anaplastic carc<strong>in</strong>oma<br />

» Garcia-Rostan et al, Cancer Res 2005;65:10199-207<br />

» Wang et al, JCEM 2007;92:2387-90<br />

• Accompanies other mutations <strong>in</strong> aggressive<br />

papillary carc<strong>in</strong>oma and metastases<br />

» Costa et al, Cl<strong>in</strong> Endocr<strong>in</strong>ol 2008;68:618-34<br />

» Ricate-Filho et al, Cancer Res 2009;69:4885-93<br />

Molecular Studies:<br />

Progression <strong>in</strong> <strong>Thyroid</strong> Cancer<br />

TSH-R<br />

Gs<br />

Hyperplasia<br />

BRAF<br />

RET/PTC<br />

TRK<br />

Ras<br />

Function<strong>in</strong>g<br />

Follicular<br />

Adenoma<br />

Follicular<br />

Adenoma<br />

Papillary<br />

Carc<strong>in</strong>oma<br />

PPARγ<br />

Metastatic<br />

Papillary<br />

Carc<strong>in</strong>oma<br />

Follicular<br />

Carc<strong>in</strong>oma<br />

Tall Cell<br />

Papillary<br />

Carc<strong>in</strong>oma<br />

β-caten<strong>in</strong><br />

PIK3CA<br />

Insular<br />

Carc<strong>in</strong>oma<br />

β-caten<strong>in</strong><br />

PIK3CA<br />

p53<br />

Anaplastic<br />

Carc<strong>in</strong>oma


Dr. S. L. Asa<br />

What is the Cl<strong>in</strong>ical Significance <strong>of</strong><br />

Papillary Microcarc<strong>in</strong>oma?<br />

1. Potentially metastasiz<strong>in</strong>g<br />

2. Metastatic focus <strong>of</strong><br />

papillary carc<strong>in</strong>oma<br />

3. Cl<strong>in</strong>ically <strong>in</strong>significant<br />

24%<br />

11%<br />

66%<br />

1 2 3<br />

Implications <strong>of</strong> ret/PTC Data <strong>in</strong><br />

Multifocal Papillary Carc<strong>in</strong>oma<br />

• One major rationale for<br />

completion thyroidectomy<br />

<strong>in</strong> patients with “low risk”<br />

papillary carc<strong>in</strong>oma is<br />

unjustified<br />

F<strong>in</strong>k et al, Modern Pathol 1996; 9: 816-820<br />

10<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

ret/PTC <strong>in</strong><br />

Multifocal Papillary Carc<strong>in</strong>oma<br />

• ret/PTC expression is highly prevalent <strong>in</strong><br />

multifocal micropapillary thyroid cancer<br />

• Identical ret/PTC rearrangements are found <strong>in</strong> 32%<br />

<strong>of</strong> patients<br />

» possible spread <strong>of</strong> a s<strong>in</strong>gle tumor<br />

• Discordant ret/PTC patterns <strong>in</strong> 68%<br />

» discrete primary tumors<br />

Sugg et al, J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 83:4116-4122, 1998<br />

• Identical data us<strong>in</strong>g X-chromosome <strong>in</strong>activation<br />

Shattuck et al, N Engl J Med. 2005 Jun 9;352(23):2406-12<br />

Hürthle Cell Tumors<br />

• Hürthle cell adenoma,<br />

Hürthle cell carc<strong>in</strong>oma<br />

» dist<strong>in</strong>guished by<br />

<strong>in</strong>vasive behavior<br />

» controversial because <strong>of</strong><br />

unpredictable behavior<br />

• Hürthle cell PTC<br />

» def<strong>in</strong>ed by papillary<br />

architecture


Dr. S. L. Asa<br />

Molecular Basis <strong>of</strong> Hürthle Cell<br />

Papillary Carc<strong>in</strong>oma<br />

• ret/PTC identifies Hürthle cell tumors with lymph node mets<br />

» allows dist<strong>in</strong>ction from Hürthle cell adenoma<br />

» better prognosis than Hürthle cell carc<strong>in</strong>oma<br />

Cheung et al, J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 85: 878-882, 2000<br />

Molecular Diagnosis <strong>in</strong> <strong>Thyroid</strong><br />

Aspirates- Papillary Carc<strong>in</strong>oma<br />

• ret/PTC<br />

Cheung et al, J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 2001<br />

• BRAF<br />

Salvatore et al, J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 2004<br />

Improved diagnosis with comb<strong>in</strong>ed<br />

morphology and molecular test<strong>in</strong>g<br />

11<br />

mtDNA, GRIM19<br />

• Altered ATP synthesis<br />

Savagner et al, JCEM 2001;86:4920–4925<br />

• mtDNA somatic events<br />

Bonore et al, Cancer Res 2006; 66:6087–6096<br />

Gasparre et al, PNAS 2007: 104, 9001–9006<br />

• Mutations <strong>in</strong> non-neoplastic<br />

and neoplastic oncocytic cells<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

» Not specific to neoplastic transformation<br />

» Associated with BRAF, ret/PTC etc<br />

• GRIM19 (19p13.2) somatic and germl<strong>in</strong>e events<br />

Maximo et al, Virchows Arch 2000<br />

Sobr<strong>in</strong>ho-Simoes et al, Int J Surg Pathol 2005<br />

After “The Anatomy Lecture <strong>of</strong> Dr. Nicolaes Tulp” – Rembrandt, 1632<br />

(Courtesy <strong>of</strong> Dr. Carlos Cordón, New York, USA)


Dr. S. L. Asa<br />

BRAF K<strong>in</strong>ase Inhibition Arrests<br />

<strong>Thyroid</strong> Cancer Growth In Vivo<br />

Salvatore G et al, Cl<strong>in</strong> Cancer Res 2006;12:1623-9<br />

However ………<br />

Cl<strong>in</strong>ical trials have failed to show<br />

effectiveness <strong>of</strong> BRAF <strong>in</strong>hibitors<br />

Epigenetic Control: DNA Methylation<br />

N Engl J Med. 2007 Feb 15;356(7):731-3<br />

12<br />

<strong>Thyroid</strong><br />

Follicular<br />

Cell<br />

<strong>Thyroid</strong><br />

Follicular<br />

Cell<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Molecular Studies:<br />

Progression <strong>in</strong> <strong>Thyroid</strong> Cancer<br />

TSH-R<br />

Gs<br />

Hyperplasia<br />

BRAF<br />

RET/PTC<br />

TRK<br />

Ras<br />

Function<strong>in</strong>g<br />

Follicular<br />

Adenoma<br />

Follicular<br />

Adenoma<br />

Papillary<br />

Carc<strong>in</strong>oma<br />

???????<br />

PPARγ<br />

Metastatic<br />

Papillary<br />

Carc<strong>in</strong>oma<br />

Follicular<br />

Carc<strong>in</strong>oma<br />

Tall Cell<br />

Papillary<br />

Carc<strong>in</strong>oma<br />

β-caten<strong>in</strong><br />

PIK3CA<br />

Insular<br />

Carc<strong>in</strong>oma<br />

β-caten<strong>in</strong><br />

PIK3CA<br />

Molecular Studies:<br />

Progression <strong>in</strong> <strong>Thyroid</strong> Cancer<br />

TSH-R<br />

Gs<br />

Hyperplasia<br />

RET/PTC<br />

BRAF<br />

TRK<br />

Function<strong>in</strong>g<br />

Follicular<br />

Adenoma<br />

Follicular<br />

Adenoma<br />

Papillary<br />

Carc<strong>in</strong>oma<br />

PPARγ<br />

Metastatic<br />

Papillary<br />

Carc<strong>in</strong>oma<br />

Epigenetic<br />

Dysregulation<br />

Follicular<br />

Carc<strong>in</strong>oma<br />

Tall Cell<br />

Papillary<br />

Carc<strong>in</strong>oma<br />

ras<br />

β-caten<strong>in</strong><br />

Insular<br />

Carc<strong>in</strong>oma<br />

ras<br />

β-caten<strong>in</strong><br />

p53<br />

p53<br />

Anaplastic<br />

Carc<strong>in</strong>oma<br />

Anaplastic<br />

Carc<strong>in</strong>oma


Dr. S. L. Asa<br />

Cycl<strong>in</strong> D1 and p27 Predict Metastasis<br />

<strong>in</strong> Papillary Carc<strong>in</strong>oma<br />

Khoo et al, J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 2002, 87:1814-8<br />

• CITED-1 (L)<br />

• Galect<strong>in</strong>-3<br />

• Fibronect<strong>in</strong> ( R)<br />

• HGF, MET<br />

• TPO<br />

• COX-2<br />

• CD44V6<br />

• CD57<br />

Prasad et al: Modern <strong>Pathology</strong> 2005;18:48-57<br />

13<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Vitam<strong>in</strong> D Targets p27 Degradation<br />

<strong>in</strong> <strong>Thyroid</strong> Cancer<br />

• VD/EB1089 <strong>in</strong>duce <strong>in</strong>tranuclear p27 accumulation by<br />

dim<strong>in</strong>ished degradation<br />

• VD/EB1089 hypophosphorylate p27 <strong>in</strong> a phosphatase<br />

dependent process that <strong>in</strong>volves the Akt pathway but<br />

may be PTEN <strong>in</strong>dependent<br />

Liu et al, Am J Pathol 2002;160:511-9<br />

• In an orthotopic model, <strong>in</strong> vivo VD adm<strong>in</strong>istration<br />

» decreases tumor volume<br />

» <strong>in</strong>creases p27 accumulation<br />

» enhances cellular differentiation<br />

» decreases lung metastases<br />

Dackiw et al, Endocr<strong>in</strong>ology 2004;145:5840-6<br />

Are There Other Targets <strong>of</strong> VD? Fibronect<strong>in</strong> is Upregulated <strong>in</strong><br />

Papillary <strong>Thyroid</strong> Carc<strong>in</strong>oma<br />

• Increased cDNA expression <strong>in</strong> microarray studies<br />

<strong>of</strong> papillary carc<strong>in</strong>oma cf normal<br />

• Dim<strong>in</strong>ished FN immunoreactivity reported at<br />

<strong>in</strong>vad<strong>in</strong>g edge <strong>of</strong> aggressive thyroid cancers<br />

• Negative <strong>in</strong> poorly-differentiated and anaplastic<br />

carc<strong>in</strong>omas<br />

• Function unclear<br />

» Increas<strong>in</strong>g <strong>in</strong>vasion?<br />

» Reactive upregulation?


Dr. S. L. Asa<br />

Down-regulation <strong>of</strong> FN Promotes<br />

Tumor Growth and Metastasis<br />

Control FN-siRNA<br />

Tumor volume (mm 3 )<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Control<br />

siRNA<br />

FN siRNA<br />

0 5 10 15 21 26<br />

Days after cancer cell <strong>in</strong>jection<br />

Mice n # <strong>of</strong> mice with mets # <strong>of</strong> lesions/mouse p<br />

Control 9 1 s<strong>in</strong>gle<br />

FN-siRNA 9 6 multiple


Dr. S. L. Asa<br />

CEACAM1 <strong>in</strong> <strong>Thyroid</strong> Cancer<br />

• CEACAM1 is expressed <strong>in</strong> a small thyroid malignancies<br />

with lymph node spread<br />

• CEACAM1 has a novel dual role <strong>in</strong> thyroid carc<strong>in</strong>oma:<br />

it suppresses thyroid cell proliferation, while promot<strong>in</strong>g<br />

<strong>in</strong>vasion and metastasis<br />

Liu et al, Oncogene 2007; 26:2747-58<br />

• VD <strong>in</strong>hibits CEACAM1 to promote <strong>in</strong>sul<strong>in</strong>/IGF-I receptor<br />

signal<strong>in</strong>g without compromis<strong>in</strong>g anti-proliferative action<br />

• CEACAM1 represents a target for VD therapy which may<br />

have potential therapeutic applications<br />

Liu et al, Lab Invest 2011 ;91(1):147-56<br />

FGFR2-IIIb Interrupts Signal<strong>in</strong>g<br />

Upstream <strong>of</strong> BRAF/MAPK<br />

Kondo et al,<br />

Cancer Res<br />

2007;67: 5461<br />

15<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

TMA Pr<strong>of</strong>il<strong>in</strong>g Shows Divergent<br />

Expression <strong>of</strong> FGFRs <strong>in</strong> the <strong>Thyroid</strong><br />

FGFR2, Normal thyroid<br />

FGFR2 is expressed<br />

exclusively <strong>in</strong> normal<br />

thyroid<br />

FGFR1, PTC<br />

FGFR1 is expressed <strong>in</strong><br />

hyperplastic and neoplastic<br />

lesions<br />

St Bernard et al, Endocr<strong>in</strong>ology 146:1145-1153, 2005<br />

FGFR2-IIIb Represses MAGE-A3/6<br />

MAGE subgroup I members , MAGE-A, B, C,<br />

are expressed <strong>in</strong> several tumors, but not <strong>in</strong><br />

normal tissues except testis and placenta<br />

“Cancer-testis antigens”<br />

Kondo et al, Cl<strong>in</strong> Cancer Res 2007;13(16):4713-20


Dr. S. L. Asa<br />

MAGE-A3 Control<br />

Time: 0 5 10 15 20 (hrs)<br />

Control<br />

MAGE-A3<br />

MAGE-A3 Promotes Migration & Invasion<br />

Control MAGE-A3<br />

Invasive Cells<br />

300%<br />

250%<br />

200%<br />

150%<br />

100%<br />

Liu et al, Cancer Res 2008;68:8104-8112<br />

50%<br />

0%<br />

C MAGE A3<br />

MAGE-A3 Promotes Metastasis<br />

Day 15 Day 20 Day 25<br />

Liu et al, Cancer Res 2008;68:8104-8112<br />

16<br />

Tumor volume (mm 3 )<br />

2500<br />

2250<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

0<br />

Control<br />

0 5 10 15 21<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

MAGE-A3 Enhances Tumor Growth<br />

Control MAGE-A3<br />

Tumor volume (mm 3 )<br />

6500<br />

6000<br />

5500<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

MAGE A3<br />

*<br />

*<br />

Days after <strong>in</strong>jection<br />

*<br />

Control<br />

MAGE<br />

A3<br />

*<br />

*<br />

0 5 10 15 21 25<br />

MAGE <strong>in</strong> <strong>Thyroid</strong> Cancer<br />

*<br />

*<br />

Tumor weight (gram)<br />

Tumor weight (gram)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

6<br />

5.5<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

*<br />

N=20 N=20<br />

*<br />

N=20 N=17<br />

Control MAGE-A3<br />

• Downregulation or FN or FGFR2 <strong>in</strong>crease tumor<br />

growth and metastasis<br />

• Downregulation <strong>of</strong> FN or FGFR2 <strong>in</strong>duce expression <strong>of</strong><br />

MAGE-A3 through histone methylation<br />

• MAGE- A3 mediates p21 down-regulation,<br />

accelerated cell cycle progression, <strong>in</strong>creased cell<br />

migration rate, <strong>in</strong>vasion and metastasis<br />

• MAGE-A3 is a functional <strong>in</strong>tegrator <strong>of</strong> diverse signals<br />

<strong>in</strong> mediat<strong>in</strong>g cancer progression<br />

Liu et al, Cancer Res 2008;68:8104-8112


Dr. S. L. Asa<br />

MAGE<br />

• Normal thyroid tissue exhibits weak cytoplasmic and<br />

strong nuclear MAGE reactivity.<br />

• Tumors exhibit an <strong>in</strong>crease <strong>in</strong> cytoplasmic MAGE scores<br />

that correlates with cl<strong>in</strong>ical behavior<br />

» larger tumors have higher MAGE scores<br />

» correlation between MAGE cytoplasmic score and<br />

number <strong>of</strong> lymph node metastases<br />

Cheng et al, Endocr<strong>in</strong>e Related Cancer 2009;16:455-466<br />

BRAF Mutations & Outcome<br />

410 PTCs<br />

Cheng et al, Cl<strong>in</strong> Cancer Res 2011:17(8):2385-94<br />

17<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

Proteomic Biomarkers <strong>in</strong> PTC<br />

• 410 PTCs with morphologic and cl<strong>in</strong>ical data<br />

• BRAF status known<br />

• TMA analysis <strong>of</strong>:<br />

• Histopathologic biomarkers <strong>of</strong> malignancy:<br />

Galect<strong>in</strong>-3, CK 19, HBME-1<br />

• Cell differentiation factors: NIS, CITED-1<br />

• Nuclear receptors: ERα, ERβ, and PPAR-γ<br />

• Adhesion molecules: CEACAM-1, Osteopont<strong>in</strong>,<br />

Fibronect<strong>in</strong>, E-Cadher<strong>in</strong><br />

• Cell cycle regulators: Cycl<strong>in</strong>-D1, p53, p27, p21<br />

PTC Proteome<br />

ETE:<br />

↑membranous CK19, HBME, Gal 3,OPN<br />

↓cytoplasmic HBME , CK19<br />

↑ nuclear ERβ, Gal3, p53<br />

LNM:<br />

↑ membranous HBME1, CK19, Gal3<br />

↓ cytoplasmic FBN and CK19<br />

↑ nuclear Gal3, Erβ<br />

VI:<br />

↑ membranous Gal3<br />

↓ cytoplasmic Gal3<br />

Cheng et al, Cl<strong>in</strong> Cancer<br />

Res 2011:17(8):2385-94


Dr. S. L. Asa<br />

Proteome <strong>of</strong><br />

Invasive PTC<br />

ETE:<br />

↑membranous CK19, HBME, Gal 3,OPN<br />

↓cytoplasmic HBME , CK19<br />

↑ nuclear ERβ, Gal3, p53<br />

LNM:<br />

↑ membranous HBME1, CK19, Gal3<br />

↓ cytoplasmic FBN and CK19<br />

↑ nuclear Gal3, Erβ<br />

VI:<br />

↑ membranous Gal3<br />

↓ cytoplasmic Gal3<br />

Cheng et al, Cl<strong>in</strong> Cancer Res<br />

2011 <strong>in</strong> press<br />

Conclusions Thanks To…….<br />

• The diagnosis <strong>of</strong> thyroid cancer is evolv<strong>in</strong>g as<br />

molecular data clarify the significance <strong>of</strong><br />

morphologic features and behaviors<br />

• Our data predict the need for target<strong>in</strong>g<br />

epigenetic factors along with <strong>in</strong>tragenic mutations<br />

<strong>in</strong> the control <strong>of</strong> thyroid cancer progression.<br />

18<br />

• Robyn Apel<br />

• Lei Zheng<br />

• Sonia Sugg<br />

• Mark Khoo<br />

• Carol Cheung<br />

• Wei Liu<br />

• P. Huang<br />

• Rosanne St. Bernard<br />

• Cather<strong>in</strong>e Wei<br />

• Daniel W<strong>in</strong>er<br />

• Tetsuo Kondo<br />

• Xuegong Zhu<br />

• Sonia Cheng<br />

<strong>Thyroid</strong> <strong>Pathology</strong><br />

PTC Proteome<br />

By Morphology<br />

FVPTC:<br />

ETE:<br />

↑ membranous CK19, HBME, Gal3, OPN<br />

↓cytoplasmic CK19<br />

↑nuclear Gal3<br />

LNM:<br />

↑membranous HBME1, CK19 and Gal3<br />

↓membranous E-Cadher<strong>in</strong><br />

↓cytoplasmic HBME1, CK19, FBN<br />

↑ nuclear Gal3<br />

↓nuclear PPARγ<br />

VI:<br />

↓ nuclear PPARγ<br />

Classic PTC<br />

ETE: ↑ ERβ<br />

LNM: ↑cycl<strong>in</strong> D1, ↓FBN<br />

VI: ↓ p27<br />

• Alan Dackiw<br />

• Lorne Rotste<strong>in</strong><br />

• Ana-Maria Bamberger<br />

• Christoph Bamberger<br />

• Christoph Wagener<br />

♥ Shereen Ezzat

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!