14.08.2013 Views

MEPDG Presentation - The University of Toledo - Engineering ...

MEPDG Presentation - The University of Toledo - Engineering ...

MEPDG Presentation - The University of Toledo - Engineering ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

By American Structurepoint, Inc.<br />

Cash Canfield, PE ccanfield@structurepoint.com<br />

Jason Koch, PE jkoch@structurepoint.com<br />

614-901-2235


What is <strong>MEPDG</strong>?<br />

Mechanistic-Empirical Pavement Design<br />

Guide by AASHTO<br />

Pavement analysis tool that uses project<br />

specific traffic, climate, and materials data for<br />

estimating damage accumulation over a<br />

specified pavement service life<br />

Design process based on predictive<br />

performance <strong>of</strong> a pavement section designed<br />

to predefined parameters identified as failing


Why use <strong>MEPDG</strong>?<br />

FHWA considers implementation <strong>of</strong> <strong>MEPDG</strong> a high<br />

priority as a critical element in improving the National<br />

Highway System<br />

Existing design procedures based upon 1950’s<br />

AASHO Road Test and use empirical relationships<br />

Current pavement designs <strong>of</strong>ten exceed the data<br />

limits and conditions used in the AASHO Road Test<br />

<strong>MEPDG</strong> provides a more realistic characterization <strong>of</strong><br />

in-service pavements and provides uniform<br />

guidelines for designing in-common features <strong>of</strong> all<br />

pavement types


AASHTO DARWin Method<br />

“Required” Structural Number ≤ “Design” Structural Number<br />

Inputs<br />

1. Design life (analysis period)<br />

2. Traffic (ESAL’s)<br />

3. Foundation stiffness (M r or<br />

CBR)<br />

4. Performance criteria (ΔPSI)<br />

5. Reliability (Z R and S o)<br />

Output<br />

1. Required Structural Number<br />

≤<br />

Inputs<br />

1. Structural Layer Coefficients<br />

2. Drainage Factor<br />

3. Layer Thickness<br />

Output<br />

1. Design Structural Number


AASHTO DARWin Method<br />

“Required” Structural Number ≤ “Design” Structural Number<br />

(structural coefficient)<br />

(drainage coefficient)


AASHTO DARWin Method<br />

Benefits <strong>of</strong> Use<br />

Quick calculation<br />

Data requirements<br />

Universal use<br />

Drawbacks <strong>of</strong> Use<br />

Not calibrated for<br />

regional use<br />

Climatic<br />

Materials<br />

Traffic<br />

Layer Coefficients<br />

Pass/Fail<br />

Empirical design from one test track (Ottawa, IL) in the 1950’s


<strong>MEPDG</strong> Method<br />

Climate<br />

Response<br />

Materials<br />

Damage<br />

Time<br />

Damage<br />

Accumulation<br />

Structure<br />

Traffic<br />

Distress


<strong>MEPDG</strong> Overview<br />

Mechanistic design – finite element analysis<br />

Research grade s<strong>of</strong>tware<br />

Local calibration is the key<br />

Does not “output” a design – your design is an<br />

“input” for analysis<br />

Expandable to new materials<br />

Narrowing down design life deviations


<strong>MEPDG</strong> Overview<br />

User Interface<br />

General Inputs<br />

Requirements from Designers<br />

Inputs provided by INDOT<br />

Traffic Inputs<br />

Requirements from Designers<br />

Inputs provided by INDOT<br />

Climatic Inputs<br />

Material Inputs<br />

Requirements from Designers<br />

Inputs provided by INDOT<br />

Performance Criteria<br />

Requirements from Designers<br />

Inputs provided by INDOT<br />

Outputs


<strong>MEPDG</strong> “Dashboard”


Inputs from Designer - General<br />

Design life<br />

expectancy<br />

Critical milestones<br />

Month <strong>of</strong> subbase<br />

construction<br />

Month <strong>of</strong> pavement<br />

construction<br />

Month that the road is<br />

opened to traffic<br />

Type <strong>of</strong> Design<br />

◦ New pavement<br />

◦ Restoration <strong>of</strong> JPCP<br />

◦ Overlay (HMA or PCC)<br />

Desired pavement type<br />

◦ Flexible (HMA)<br />

◦ Jointed Plain Concrete<br />

Pavement (JPCP)<br />

◦ Continuously Reinforced<br />

Concrete Pavement (CRCP)


Inputs from INDOT - General<br />

INDOT Design Life Expectancy<br />

INDOT Traffic Groups<br />

INDOT Assumed Milestones<br />

Base/Subgrade Construction Month: May<br />

Pavement Construction Month: July<br />

Traffic Open Month: September


Inputs from Designer - Traffic<br />

Roadway classification<br />

Truck traffic data – AADTT (current, future, & growth rate)<br />

Determination <strong>of</strong> Traffic Group (A, B, C, or D)<br />

Traffic direction (north/south or east/west)<br />

No. <strong>of</strong> lanes in design direction<br />

Determination <strong>of</strong> % trucks in design direction<br />

Determination <strong>of</strong> % trucks in design lane<br />

Posted Speed (not design speed)


INDOT Inputs - Traffic<br />

% Trucks in Design Lane<br />

% Trucks in Design Direction<br />

* Based on statewide WIM data<br />

Bottom Line: Lots <strong>of</strong> data<br />

collection & analysis by INDOT


Inputs from Designer - Climate<br />

Project location (latitude, longitude & elevation)<br />

Annual Average Water Table Depth<br />

LTPP Weather Stations


Inputs from Designer - Materials<br />

Soil Resilient Modulus (M R) –<br />

NOT CBR<br />

Untreated Subgrade – “Virgin”<br />

Material<br />

Treated Subgrade<br />

AASHTO Soil Classification<br />

FWD (Falling Weight<br />

Deflectometer) Testing if<br />

Structural Resurface<br />

Modulus <strong>of</strong> Subgrade Reaction<br />

(“k” value)<br />

Subgrade Treatment Type<br />

Underdrain Requirement<br />

Initial Pavement Design


Inputs from Designer - Materials<br />

Typical Sections - PCCP<br />

Fig. 52-13F: PCCP Section with PCCP Shoulder<br />

Fig. 52-13G: PCCP Section with HMA Shoulder


Inputs from Designer - Materials<br />

Typical Sections - HMA<br />

Fig. 52-13A: Full Depth HMA with Full Depth Shoulder<br />

Fig. 52-13B: Full Depth HMA with Composite Shoulder


Inputs from INDOT - Materials<br />

Subgrade Treatment as Determined by Geotechnical Engineer<br />

Type I<br />

14” <strong>of</strong> chemical soil modification, or<br />

12” <strong>of</strong> subgrade excavated and<br />

replaced with C.A. #53, or<br />

24” <strong>of</strong> soil compacted to density and<br />

moisture requirements<br />

Type IA<br />

14” <strong>of</strong> chemical soil modification, or<br />

12” <strong>of</strong> subgrade excavated and<br />

replaced with C.A. #53<br />

Type IB<br />

14” <strong>of</strong> chemical soil modification<br />

Type IC<br />

12” <strong>of</strong> subgrade excavated and<br />

replaced with C.A. #53<br />

Type II<br />

8” <strong>of</strong> chemical soil modification, or<br />

6” <strong>of</strong> subgrade excavated and<br />

replaced with C.A. #53, or<br />

12” <strong>of</strong> soil compacted to density and<br />

moisture requirements<br />

Type IIA<br />

8” <strong>of</strong> chemical soil modification, or<br />

6” <strong>of</strong> subgrade excavated and<br />

replaced with C.A. #53<br />

Type III<br />

6” <strong>of</strong> soil compacted to density and<br />

moisture requirements, or<br />

6” <strong>of</strong> subgrade excavated and<br />

replaced with C.A. #53<br />

Type IIIA<br />

6” <strong>of</strong> subgrade excavated and<br />

replaced with C.A. #53<br />

Type IV<br />

9” <strong>of</strong> subgrade excavated and<br />

replaced with C.A. #53 on geogrid


Inputs from INDOT - Materials<br />

In DARWin, the strength value (resilient modulus) <strong>of</strong> Subgrade<br />

Treatment and Subbase for PCCP were ignored<br />

o Only CBR <strong>of</strong> “virgin soil” used<br />

In <strong>MEPDG</strong>, subgrade & subbase are assigned strength values<br />

◦ Chemical soil modification<br />

◦ Compacted soil<br />

◦ C.A. #53<br />

◦ Virgin soil<br />

◦ Subbase for PCCP<br />

Subbase for PCCP<br />

◦ 3” <strong>of</strong> #8’s for Drainage Layer (25,000 psi)<br />

◦ 6” <strong>of</strong> #53’s for Separation Layer (30,000 psi)


Inputs from INDOT - Performance<br />

HMA Criteria PCCP Criteria


HMA Performance Criteria<br />

INDOT Criteria<br />

Terminal Roughness (IRI)<br />

Bottom-up Cracking / Alligator Cracking (Fig. 1)<br />

Permanent Deformation – Rutting (Fig. 2)<br />

<strong>The</strong>rmal Fracture (Fig. 3)<br />

Dependant on Classification & Reliability<br />

Fig. 1: Alligator Cracking Fig. 2: Rutting Fig. 3: <strong>The</strong>rmal Fracture


PCCP Performance Criteria<br />

INDOT Criteria<br />

Terminal Roughness (IRI)<br />

Transverse Slab Cracking (Fig. 4)<br />

Mean Joint Faulting (Fig. 5)<br />

Dependant on Classification & Reliability<br />

Fig. 4: Transverse Slab Cracking Fig. 5: Mean Joint Faulting


<strong>MEPDG</strong> Output

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!