14.08.2013 Views

The Roles of Radiologic Imaging in Sturge-Weber Syndrome

The Roles of Radiologic Imaging in Sturge-Weber Syndrome

The Roles of Radiologic Imaging in Sturge-Weber Syndrome

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Roles</strong> <strong>of</strong> <strong>Radiologic</strong> <strong>Imag<strong>in</strong>g</strong> <strong>in</strong><br />

<strong>Sturge</strong>-<strong>Weber</strong> <strong>Syndrome</strong><br />

Audrey S. Wang, HMS-III<br />

BIDMC Department <strong>of</strong> Radiology<br />

May 19, 2008


• Patient TR<br />

• <strong>The</strong> Phakomatoses<br />

Overview<br />

• <strong>Sturge</strong>-<strong>Weber</strong> <strong>Syndrome</strong><br />

– Cl<strong>in</strong>ical Features<br />

– Epidemiology<br />

– Pathogenesis<br />

• Patient TR: <strong>Imag<strong>in</strong>g</strong><br />

• Companion Patient RW<br />

• Summary


Patient TR<br />

• Newborn baby girl with a<br />

L-sided Port-W<strong>in</strong>e Sta<strong>in</strong><br />

primarily <strong>in</strong> the V1<br />

distribution at birth<br />

• L-sided ocular glaucoma<br />

What should we be<br />

concerned about? http://www.childrenshospital.org/cl<strong>in</strong>ic<br />

alservices/Site2566/ma<strong>in</strong>pageS2566<br />

P7.html


Patient TR: <strong>Sturge</strong>-<strong>Weber</strong> <strong>Syndrome</strong>?<br />

She has classic features <strong>of</strong> <strong>Sturge</strong>-<strong>Weber</strong><br />

<strong>Syndrome</strong>, a phakomatosis.


<strong>The</strong> Phakomatoses<br />

• “Phakos” (Gr.) = birth mark, spot, mole<br />

• Neurocutaneous syndromes/Congenital<br />

neuroectodermal dysplasias:<br />

– Neur<strong>of</strong>ibromatosis<br />

– Tuberous Sclerosis<br />

– Von Hippel L<strong>in</strong>dau<br />

– <strong>Sturge</strong>-<strong>Weber</strong> <strong>Syndrome</strong> (SWS)<br />

• the only phakomatosis that is NOT associated with<br />

<strong>in</strong>tracranial neoplasms (Di Rocco and Tamburr<strong>in</strong>i, 2006)


SWS: Classic Cl<strong>in</strong>ical Features<br />

• Encephalotrigem<strong>in</strong>al<br />

angiomatosis:<br />

– Capillary-venous malformation<br />

(leptomen<strong>in</strong>geal<br />

angiomatosis)<br />

– Facial port-w<strong>in</strong>e sta<strong>in</strong> (PWS or<br />

nevus flammeus) <strong>in</strong> trigem<strong>in</strong>al<br />

V1-V3 distribution<br />

– Congenital glaucoma<br />

– Intractable epilepsy<br />

– Progressive mental<br />

retardation<br />

http://www.childrenshospital.org/cl<strong>in</strong>ic<br />

alservices/Site2566/ma<strong>in</strong>pageS2566<br />

P7.html


SWS: Epidemiology<br />

• Rare (estimated 1/50,000 live births)<br />

• Sporadic<br />

• Affects males and females with equal<br />

frequency<br />

• No racial bias<br />

(Di Rocco and Tamburr<strong>in</strong>i, 2006)


SWS: Classification<br />

SWS Type Cl<strong>in</strong>ical Features<br />

1 (“classic”) Facial and <strong>in</strong>tracranial manifestations<br />

2 Facial lesion only (primarily dermatological)<br />

3 Intracranial manifestations without facial<br />

lesions<br />

(Adapted from Tortori-Donati et al, 2005)<br />

• Overall risk <strong>of</strong> PWS associated with leptomen<strong>in</strong>geal<br />

angiomatosis: ~8%<br />

– In the first year <strong>of</strong> life, 75-90% <strong>of</strong> these patients develop<br />

seizures, about 60% <strong>of</strong> which become progressively refractory to<br />

medical treatment<br />

– May require surgical lobectomy or hemispherectomy if severe<br />

(Di Rocco and Tamburr<strong>in</strong>i, 2006)


SWS: Pathogenesis<br />

• SWS is thought to develop from localized<br />

primary venous dysplasia, unrelated to any<br />

trigem<strong>in</strong>al nerve dysfunction.<br />

– <strong>The</strong> facial distribution <strong>of</strong> PWS appears to be<br />

co<strong>in</strong>cidental (Parsa, 2008).<br />

• Dur<strong>in</strong>g development at ~4-5 weeks gestation, a<br />

primordial s<strong>in</strong>usoidal vascular plexus forms<br />

around the cephalic portion <strong>of</strong> the neural tube<br />

and under the ectoderm that later becomes<br />

facial sk<strong>in</strong>.<br />

– This vascular plexus normally regresses at ~9 weeks<br />

gestation (Tortori-Donati et al, 2005).


SWS: Pathogenesis<br />

• In SWS, cortical bridg<strong>in</strong>g ve<strong>in</strong>s fail to form, the<br />

vascular plexus persists, and the rema<strong>in</strong><strong>in</strong>g ve<strong>in</strong>s<br />

become engorged with redirected blood flow<br />

(Parsa, 2008).<br />

Intraoperative images show<strong>in</strong>g leptomen<strong>in</strong>geal “angiomatosis,”<br />

reflect<strong>in</strong>g venous engorgement with diffuse hemispheric <strong>in</strong>volvement<br />

<strong>in</strong> (a) and more focal <strong>in</strong>volvement <strong>in</strong> (b). (Di Rocco and Tamburr<strong>in</strong>i, 2006)


Cerebral Ve<strong>in</strong>s are Emissary Ve<strong>in</strong>s<br />

* Key po<strong>in</strong>t: Because all emissary ve<strong>in</strong>s lack<br />

valves, they allow for bidirectional flow.<br />

Let’s review the cerebral venous system to<br />

better understand the key features <strong>of</strong> SWS.


Normal Cerebral Venous System<br />

Superior<br />

sagittal<br />

s<strong>in</strong>us<br />

Cortical<br />

bridg<strong>in</strong>g<br />

ve<strong>in</strong>s<br />

Cavernous<br />

s<strong>in</strong>us<br />

(Modified from<br />

Nolte, J., 2002)<br />

<strong>The</strong> superficial parts <strong>of</strong> the bra<strong>in</strong> are primarily dra<strong>in</strong>ed by the superior sagittal s<strong>in</strong>us,<br />

while the deeper structures are dra<strong>in</strong>ed by the cavernous s<strong>in</strong>us, straight s<strong>in</strong>us, and<br />

other deep ve<strong>in</strong>s. <strong>The</strong> cortical bridg<strong>in</strong>g ve<strong>in</strong>s serve as the conduits that connect the<br />

two venous systems, which ultimately dra<strong>in</strong> <strong>in</strong>to the <strong>in</strong>ternal jugular ve<strong>in</strong>.


Abnormal Venous Dra<strong>in</strong>age <strong>in</strong> SWS<br />

• With absent or fewer<br />

cortical bridg<strong>in</strong>g ve<strong>in</strong>s,<br />

normal cerebral<br />

outflow is impaired,<br />

lead<strong>in</strong>g to<br />

engorgement <strong>of</strong> the<br />

rema<strong>in</strong><strong>in</strong>g ve<strong>in</strong>s.<br />

• S<strong>in</strong>ce cerebral ve<strong>in</strong>s<br />

have bidirectional flow,<br />

venous blood can<br />

travel to superficial<br />

(e.g. leptomen<strong>in</strong>geal,<br />

facial) ve<strong>in</strong>s or to deep<br />

ve<strong>in</strong>s/s<strong>in</strong>uses,<br />

<strong>in</strong>clud<strong>in</strong>g the choroidal<br />

plexus ve<strong>in</strong>s and<br />

ophthalmic ve<strong>in</strong>s.<br />

(Modified from Parsa, 2008)


Neurologic Deterioration <strong>in</strong><br />

SWS<br />

• Processes (<strong>in</strong>clud<strong>in</strong>g normal bra<strong>in</strong> development<br />

and seizures) that <strong>in</strong>crease the oxygen and<br />

glucose demand <strong>of</strong> bra<strong>in</strong> tissue lead to<br />

<strong>in</strong>creased cerebral blood flow.<br />

• <strong>The</strong>se changes exacerbate the pre-exist<strong>in</strong>g venous<br />

engorgement and further elevate venous pressures,<br />

result<strong>in</strong>g <strong>in</strong> more severe cerebral ischemia and tissue<br />

damage (Parsa, 2008).<br />

• With this <strong>in</strong> m<strong>in</strong>d, let’s return to Patient TR…


Back to Patient TR<br />

• Newborn baby girl with a L-sided Port-W<strong>in</strong>e<br />

Sta<strong>in</strong> <strong>in</strong> primarily the V1 distribution at birth<br />

• L-sided ocular glaucoma<br />

• We are concerned about <strong>in</strong>tracranial<br />

<strong>in</strong>volvement <strong>of</strong> SWS.<br />

Which imag<strong>in</strong>g modality should we use?


Pt TR: MRI Bra<strong>in</strong> (4 days old)<br />

• MRI is optimal for s<strong>of</strong>t tissue<br />

imag<strong>in</strong>g; therefore, it is the<br />

modality <strong>of</strong> choice to evaluate<br />

for white or gray matter<br />

alterations, vascular<br />

abnormalities, and parenchymal<br />

volume loss.<br />

– Superior to CT for correlation with<br />

cl<strong>in</strong>ical status (Marti-Bonmati et al,<br />

1993)<br />

• Axial T1-weighted FLAIR, post-<br />

gadol<strong>in</strong>ium:<br />

– Slight asymmetry <strong>of</strong> the vessels<br />

over the L high convexity; no other<br />

significant f<strong>in</strong>d<strong>in</strong>gs<br />

PACS, Children’s Hospital Boston


Pt TR: MRI Bra<strong>in</strong> (4 days old)<br />

• History <strong>of</strong> L-sided glaucoma and choroid<br />

“hemangioma”<br />

Axial T1-weighted post-gad<br />

Increased enhancement,<br />

thickness <strong>of</strong> L choroid relative to R<br />

Not a true hemangioma; <strong>in</strong>stead, reflects<br />

engorgement <strong>of</strong> pre-exist<strong>in</strong>g vessels, related to<br />

<strong>in</strong>creased ocular venous pressure (Parsa, 2008)<br />

PACS, Children’s Hospital Boston


Pt TR: At 8 Months <strong>of</strong> Age<br />

• Patient TR presented to the ED with new-onset<br />

seizures/status epilepticus, R facial droop, and<br />

little spontaneous movement <strong>of</strong> her R arm.<br />

• No head trauma<br />

• No family history <strong>of</strong> seizures<br />

• Afebrile, vital signs with<strong>in</strong> normal limits<br />

What k<strong>in</strong>d <strong>of</strong> imag<strong>in</strong>g would you do to R/O<br />

possible causes <strong>of</strong> her seizures?


Pt TR: CT Bra<strong>in</strong> (8 months <strong>of</strong> age)<br />

• R/O acute <strong>in</strong>tracranial<br />

hemorrhage/<strong>in</strong>farction as<br />

the most urgent<br />

possibilities, also evaluate<br />

for mass lesions and<br />

hydrocephalus<br />

• Non-contrast Axial CT:<br />

– No sign <strong>of</strong> acute bleed,<br />

territorial <strong>in</strong>farct, mass<br />

lesions, or hydrocephalus<br />

– Bilateral subcortical<br />

m<strong>in</strong>eralization <strong>in</strong>volv<strong>in</strong>g the<br />

parietal and temporal lobes<br />

(L>R)<br />

– Parenchymal volume loss<br />

(L>R)<br />

PACS, Children’s Hospital Boston


DDx <strong>of</strong> Intracranial Calcifications<br />

• <strong>Sturge</strong>-<strong>Weber</strong> syndrome<br />

• Arteriovenous malformation<br />

• Hemangiomas<br />

• Choroid plexus<br />

• Craniopharyngioma<br />

• Glioma<br />

• Tuberculosis<br />

• Idiopathic<br />

(Reeder, 2003)<br />

PACS, Children’s Hospital Boston


“Tram-track<strong>in</strong>g” <strong>in</strong> SWS<br />

• Gyriform cortical calcifications<br />

on CT and pla<strong>in</strong> film due to:<br />

– Altered vessel wall permeability<br />

leakage <strong>of</strong> calcium phosphate<br />

or carbonate with subsequent<br />

secondary crystallization with<strong>in</strong><br />

perivascular parenchyma<br />

– Dystrophic calcification: related<br />

to prolonged convulsive states<br />

with local ischemia anoxia,<br />

neuronal necrosis<br />

Posteroanterior skull radiograph.<br />

(Akp<strong>in</strong>ar, 2004)<br />

• Calcifications develop over time, usually beg<strong>in</strong>n<strong>in</strong>g at<br />

>2 yrs <strong>of</strong> age<br />

(Di Rocco and Tamburr<strong>in</strong>i, 2006)


Pt TR: MRI Bra<strong>in</strong> (8 months <strong>of</strong> age)<br />

• Evaluate for s<strong>of</strong>t tissue<br />

changes, vascular<br />

abnormalities<br />

• Axial MPGR<br />

Susceptibility:<br />

– Progressive cerebral<br />

atrophy with widened<br />

subarachnoid space<br />

– Increased<br />

leptomen<strong>in</strong>geal<br />

enhancement <strong>in</strong>volv<strong>in</strong>g<br />

both cerebral<br />

hemispheres (L>R)<br />

PACS, Children’s Hospital Boston


Pt TR: At 2 Years <strong>of</strong> Age<br />

• Patient TR presented to the ED with an<br />

<strong>in</strong>creas<strong>in</strong>g frequency <strong>of</strong> seizures and a<br />

change from her basel<strong>in</strong>e seizure<br />

characteristics<br />

• Developmental delay was noted on exam<br />

What k<strong>in</strong>d <strong>of</strong> imag<strong>in</strong>g would you do?


PT TR: CT Bra<strong>in</strong> (2 yrs <strong>of</strong> age)<br />

• R/O <strong>in</strong>tracranial bleed due to<br />

concern for change <strong>in</strong> seizure<br />

characteristics; evaluate for<br />

SWS progression<br />

• Non-contrast Axial CT:<br />

– Interval progression <strong>of</strong> marked<br />

gyriform cerebral calcification and<br />

associated parenchymal volume<br />

loss (L>R).<br />

Compare<br />

with prior CT<br />

(at 8 mo):<br />

PACS, Children’s Hospital Boston


Pt TR: MRI Bra<strong>in</strong> (2 yrs <strong>of</strong> age)<br />

• Evaluate for <strong>in</strong>terval<br />

progression <strong>of</strong> SWS features<br />

• Axial T1-weighted, post-gad:<br />

– More pronounced b/l<br />

leptomen<strong>in</strong>geal enhancement,<br />

especially with<strong>in</strong> R parietal,<br />

temporal, occipital lobes<br />

– Engorgement <strong>of</strong> choroid plexus<br />

(related to impaired venous<br />

outflow)<br />

– Choroid plexus cysts<br />

PACS, Children’s Hospital Boston


Pt TR: MRI Bra<strong>in</strong> (2 yrs <strong>of</strong> age)<br />

• Axial gradient echo:<br />

– Dilated collateral<br />

ve<strong>in</strong>s<br />

– Calcifications<br />

appear dark<br />

Calcifications are<br />

more prom<strong>in</strong>ent<br />

on CT:<br />

PACS, Children’s Hospital Boston


Patient TR: Management<br />

• Patient TR’s seizures responded to<br />

oxcarbazep<strong>in</strong>e and valproic acid.<br />

• She was discharged home on these<br />

anticonvulsants with <strong>in</strong>structions to follow<br />

up with the neurology service.


Companion Patient RW: History<br />

• Boy with <strong>Sturge</strong>-<strong>Weber</strong> <strong>Syndrome</strong> with<br />

associated R-sided facial port-w<strong>in</strong>e sta<strong>in</strong> <strong>in</strong><br />

V1 distribution<br />

• Diagnosed at 5 weeks <strong>of</strong> age with SWS<br />

based on MRI f<strong>in</strong>d<strong>in</strong>gs<br />

• First seizures presented at 6 months <strong>of</strong><br />

age<br />

Let’s look at some imag<strong>in</strong>g.


Pt RW: What do you see?<br />

Leptomen<strong>in</strong>geal enhancement Cortical calcifications<br />

Contrast-enhanced Axial T1<br />

weighted MRI (5 wks <strong>of</strong> age)<br />

Non-contrast Axial CT (6 months <strong>of</strong> age)<br />

PACS, Children’s Hospital Boston


Pt RW: Rapid Progression on MR<br />

(Axial T1-weighted Post-gad Images)<br />

Leptomen<strong>in</strong>geal enhancement Parenchymal atrophy<br />

PACS, Children’s Hospital Boston<br />

5 wks <strong>of</strong> age<br />

9 mo <strong>of</strong> age<br />

Choroid plexus enlargement


Pt RW: Progression to Intractable<br />

Seizures<br />

• Patient RW cont<strong>in</strong>ued to have seizures, which<br />

became refractory to medical therapy.<br />

• Surgical options were considered to remove the<br />

epileptogenic focus and protect the normal bra<strong>in</strong><br />

from excitotoxic <strong>in</strong>jury secondary to the seizures.<br />

How can we functionally determ<strong>in</strong>e the extent<br />

<strong>of</strong> bra<strong>in</strong> <strong>in</strong>volvement?


Nuclear <strong>Imag<strong>in</strong>g</strong>: PET<br />

• Positron Emission Tomography<br />

• F-18-FDG (Fluorodeoxyglucose)<br />

– Measure F-18-FDG metabolism <strong>in</strong> bra<strong>in</strong> tissue<br />

to determ<strong>in</strong>e its metabolic function<br />

• More recently used for prognostic<br />

evaluation and to aid surgical plann<strong>in</strong>g<br />

– Extent and severity <strong>of</strong> FDG hypometabolism<br />

have been shown to correlate with seizure<br />

severity and cognitive decl<strong>in</strong>e (Lee et al, 2001)


Pt RW: Pre-surgical Evaluation with<br />

Bra<strong>in</strong> PET<br />

PET scan shows decreased FDG uptake throughout the R cerebrum,<br />

suggest<strong>in</strong>g decreased metabolic activity with<strong>in</strong> the entire hemisphere,<br />

which correlates with the region <strong>of</strong> cerebral hemiatrophy seen on MRI.<br />

Normal FDG<br />

uptake is<br />

denoted by<br />

the yellow<br />

regions.<br />

Axial T1w MRI PET Image Image Overlay<br />

PACS, Children’s Hospital Boston


Pt RW: Management<br />

PET scann<strong>in</strong>g demonstrated diffuse reduction <strong>in</strong><br />

metabolic activity throughout the entire R cerebrum.<br />

<strong>The</strong>refore, the decision was made for Patient RW<br />

to undergo R cerebral hemispherectomy.


Pt RW: s/p R Cerebral Hemispherectomy<br />

CSF<br />

Contrast-enhanced Coronal T1w MRI<br />

CSF<br />

Contrast-enhanced Axial T2w MRI<br />

PACS, Children’s Hospital Boston


Let’s Review<br />

• You have been <strong>in</strong>troduced to two different<br />

patients with <strong>Sturge</strong>-<strong>Weber</strong> <strong>Syndrome</strong>.<br />

• Both demonstrated classic radiologic<br />

f<strong>in</strong>d<strong>in</strong>gs on MRI and CT but cl<strong>in</strong>ically<br />

progressed at different rates.<br />

• One patient’s seizures were managed<br />

medically, but the other patient’s became<br />

<strong>in</strong>tractable, requir<strong>in</strong>g surgical <strong>in</strong>tervention.<br />

We can use what we have learned from these two patients to<br />

construct a simple algorithm for the diagnosis and management <strong>of</strong><br />

SWS patients <strong>in</strong> general.


SWS: Algorithm for Dx and Management<br />

Facial port-w<strong>in</strong>e sta<strong>in</strong> at birth <strong>in</strong> V1-V3 distribution<br />

R/O <strong>in</strong>tracranial <strong>in</strong>volvement<br />

with radiologic imag<strong>in</strong>g<br />

Leptomen<strong>in</strong>geal enhancement<br />

and parenchymal atrophy (MRI);<br />

gyriform calcifications (CT)?<br />

Repeat imag<strong>in</strong>g if<br />

develop cl<strong>in</strong>ical<br />

symptoms (e.g.<br />

seizures)<br />

No Yes<br />

Dermatologic<br />

evaluation for laser<br />

Rx <strong>of</strong> nevus for<br />

cosmetic concerns<br />

Close neurology follow-up with radiologic<br />

documentation <strong>of</strong> <strong>in</strong>tracranial progression<br />

if cl<strong>in</strong>ical status changes; manage<br />

seizures medically<br />

Consider surgical management if refractory to<br />

medical therapy; employ functional imag<strong>in</strong>g (PET)<br />

for prognostic and pre-surgical evaluation<br />

Ophthalmologic<br />

evaluation for<br />

glaucoma


Summary<br />

• <strong>Sturge</strong>-<strong>Weber</strong> <strong>Syndrome</strong> is a rare,<br />

sporadic condition due to primary venous<br />

dysplasia caus<strong>in</strong>g impaired venous outflow<br />

and subsequent cerebral ischemia.<br />

• Certa<strong>in</strong> types can progress to <strong>in</strong>tractable<br />

epilepsy and may necessitate radical<br />

surgical <strong>in</strong>tervention.<br />

• <strong>Radiologic</strong> imag<strong>in</strong>g plays several key roles<br />

<strong>in</strong> the management <strong>of</strong> SWS patients.


Summary - 2<br />

• MRI correlates better than CT with cl<strong>in</strong>ical<br />

progression.<br />

– Confirms the diagnosis <strong>of</strong> <strong>in</strong>tracranial<br />

<strong>in</strong>volvement<br />

– Helps document the extent <strong>of</strong> <strong>in</strong>volvement<br />

(e.g. R/O bilateral SWS)<br />

• CT is more sensitive than MRI for<br />

detect<strong>in</strong>g cortical calcifications.


Summary - 3<br />

• PET <strong>of</strong>fers functional (metabolic activity)<br />

data to determ<strong>in</strong>e the full extent <strong>of</strong><br />

<strong>in</strong>volvement <strong>of</strong> the bra<strong>in</strong> parenchyma.<br />

– Complements MRI/CT f<strong>in</strong>d<strong>in</strong>gs<br />

– Provides prognostic <strong>in</strong>formation that can help<br />

guide management, <strong>in</strong>clud<strong>in</strong>g surgical<br />

plann<strong>in</strong>g


Acknowledgements<br />

• Dr. Jason Handwerker<br />

(Children’s Hospital Boston,<br />

Radiology)<br />

• Dr. Marilyn Liang<br />

(Children’s Hospital Boston,<br />

Dermatology)<br />

• Dr. Kei Yamada<br />

(BIDMC, Radiology)<br />

• Dr. Gillian Lieberman<br />

(BIDMC, Radiology)<br />

• Maria Levantakis<br />

(BIDMC, Radiology) http://www.childrenshospital.org/cl<strong>in</strong>ic<br />

alservices/Site2566/ma<strong>in</strong>pageS2566<br />

P7.html


References<br />

• Akp<strong>in</strong>ar E. <strong>The</strong> tram-track sign: cortical calcifications. Radiology. 2004;231:515-6.<br />

• Di Rocco C, Tamburr<strong>in</strong>i G. <strong>Sturge</strong>-<strong>Weber</strong> syndrome. Childs Nerv Syst. 2006;22:909-21.<br />

• Lee JS, Asano E, Muzik O, Chugani DC, Juhász C, Pfund Z, Philip S, Behen M, Chugani<br />

HT. <strong>Sturge</strong>-<strong>Weber</strong> syndrome: correlation between cl<strong>in</strong>ical course and FDG PET f<strong>in</strong>d<strong>in</strong>gs.<br />

Neurology. 2001;57:189-95.<br />

• Martí-Bonmatí L, Menor F, Mulas F. <strong>The</strong> <strong>Sturge</strong>-<strong>Weber</strong> syndrome: correlation between<br />

the cl<strong>in</strong>ical status and radiological CT and MRI f<strong>in</strong>d<strong>in</strong>gs. Childs Nerv Syst. 1993;9:107-9.<br />

• Nolte, J. <strong>The</strong> Human Bra<strong>in</strong>: An Introduction to Its Functional Anatomy, 5th ed. St. Louis:<br />

Mosby, 2002.<br />

• Parsa CF. <strong>Sturge</strong>-<strong>Weber</strong> <strong>Syndrome</strong>: A Unified Pathophysiologic Mechanism. Curr Treat<br />

Options Neurol. 2008;10:47-54.<br />

• Reeder MM. Reeder and Felson’s Gamuts <strong>in</strong> Radiology, 4th ed. New York: Spr<strong>in</strong>ger,<br />

2003.<br />

• Tortori-Donati P, Rossi A, Biancheri R, Andreula CF. Pediatric Neuroradiology: Bra<strong>in</strong>.<br />

Berl<strong>in</strong>: Spr<strong>in</strong>ger, 2005.<br />

• Children’s Hospital Boston - <strong>Sturge</strong>-<strong>Weber</strong> <strong>Syndrome</strong> Cl<strong>in</strong>ic.<br />

http://www.childrenshospital.org/cl<strong>in</strong>icalservices/Site2566/ma<strong>in</strong>pageS2566P7.html<br />

Accessed 5/18/2008.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!