11.08.2013 Views

Basics of Credit Risk - Universität Hohenheim

Basics of Credit Risk - Universität Hohenheim

Basics of Credit Risk - Universität Hohenheim

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

<strong>Basics</strong> <strong>of</strong> <strong>Credit</strong> <strong>Risk</strong><br />

Investment Banking and Capital Markets<br />

Winter 2009/10<br />

Chair for Banking and Finance Winter term 2009 Slide 1


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Risk</strong> associated with <strong>Credit</strong><br />

◮ Default risk<br />

◮ Market price risk<br />

What drives the market’s view <strong>of</strong> credit risk?<br />

◮ Rating changes<br />

◮ Balance sheet information<br />

◮ Implied equity volatility<br />

◮ new issuance activity<br />

◮ economic growth<br />

⇒ no chance <strong>of</strong> using simple models<br />

Chair for Banking and Finance Winter term 2009 Slide 2


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> <strong>Risk</strong> Models<br />

◮ Structural models<br />

◮ Go back to a seminal work <strong>of</strong> Robert Merton<br />

◮ default event if value <strong>of</strong> assets does not exceed the value <strong>of</strong> debt, equity’s<br />

worth zero<br />

◮ allows for the relative valuation <strong>of</strong> debt and equity → investment strategies<br />

◮ Reduced-form or intensity-based models<br />

◮ Default is not clearly defined<br />

◮ Error term which hits the company by accident<br />

◮ Default probability drawn from the traded credit spread<br />

◮ Transition matrix models<br />

◮ try to derive the probability <strong>of</strong> default from rating migrations<br />

◮ not very successful: rating transitions are just one price-driving factor<br />

◮ spreads for rating classes vary significantly<br />

Chair for Banking and Finance Winter term 2009 Slide 3


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

Moody’s Definition <strong>of</strong> Default Events<br />

◮ A missed or delayed interest or principal payment, including payments<br />

made within a grace period<br />

◮ Filing for bankruptcy and related legal triggers that block the timely<br />

payments <strong>of</strong> interest or principal<br />

◮ Consummation <strong>of</strong> a distressed exchange<br />

Chair for Banking and Finance Winter term 2009 Slide 4


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Single-Step, Two-Stage Model<br />

V risky<br />

◮ V risky : Value <strong>of</strong> the bond<br />

◮ PD: Probability <strong>of</strong> default<br />

◮ LGD: Loss given default<br />

1 - PD<br />

PD<br />

No Default<br />

V<br />

V Default<br />

LGD<br />

Chair for Banking and Finance Winter term 2009 Slide 5


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Single-Step, Two-Stage Model (continued)<br />

◮ The expected loss is calculated by<br />

◮ EL: Expected Loss<br />

◮ Rec: Recovery rate<br />

EL = PD × LGD = PD × (1 − Rec) (23)<br />

◮ The value <strong>of</strong> the risky contract is therefore<br />

V risky = (1 − PD) × V No default + PD × V Default<br />

Chair for Banking and Finance Winter term 2009 Slide 6<br />

(24)


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Single-Step, Two-Stage Model (continued)<br />

Rearranging yields<br />

V risky = V No default − PD × (V No default − V Default<br />

= V No default × [1 − PD × (1 −<br />

default<br />

V<br />

) ] (25)<br />

V No default<br />

| {z }<br />

Rec<br />

| {z }<br />

LGD<br />

| {z }<br />

EL<br />

Equation (25) is a well-known expression on credit risk<br />

Chair for Banking and Finance Winter term 2009 Slide 7


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Multi-Step Model for Zero Coupon Bonds<br />

V risky<br />

0<br />

1 - p 1<br />

p 1<br />

No Default<br />

V1 V Default<br />

1<br />

= V risky<br />

1<br />

1 - p 2<br />

p 2<br />

Cash Flow Structure zero-coupon-bond<br />

No Default<br />

V2 = V terminal<br />

V Default<br />

2<br />

0 1 2<br />

◮ V risky<br />

i : Value <strong>of</strong> the risky claim at time i<br />

◮ V Default<br />

i<br />

: Value <strong>of</strong> the claim in the case <strong>of</strong> a default<br />

◮ pi: PD between i − 1 and i<br />

Chair for Banking and Finance Winter term 2009 Slide 8


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Multi-Step Model for Zero Coupon Bonds<br />

◮ Expectation for V risky<br />

i<br />

or<br />

V risky<br />

0 = (1 − p1) × V<br />

V risky<br />

1 = (1 − p2) × V<br />

No default<br />

1<br />

No default<br />

2<br />

V risky<br />

0 = (1 − p1)(1 − p2)<br />

| {z }<br />

survival probability for two time steps<br />

+p1V default<br />

1<br />

+ p1 × V Default<br />

1<br />

+ p2 × V Default<br />

2<br />

+ (1 − p1)p2V default<br />

2<br />

No default<br />

V2 +<br />

Chair for Banking and Finance Winter term 2009 Slide 9


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Multi-Step Model for Zero Coupon Bonds<br />

◮ Generalisation <strong>of</strong> the above<br />

◮ equidistant points in time τi with i = 1, . . . , n<br />

◮ pi is the PD between τi−1 and τi (if it has not defaulted before)<br />

◮ V risky<br />

i (m) indicates the value <strong>of</strong> a claim at time τi that runs until τm<br />

◮ and the survival rate<br />

S(m) =<br />

◮ note that S(m) = S(m − 1)(1 − pm)<br />

mY<br />

(1 − pi)<br />

Chair for Banking and Finance Winter term 2009 Slide 10<br />

i=1


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Multi-Step Model for Zero Coupon Bonds<br />

◮ The unconditional probability <strong>of</strong> default between i − 1 and i is therefore<br />

◮ it follows that<br />

S(i − 1) − S(i) = S(i − 1) − S(i − 1)(1 − pi)<br />

V risky<br />

0 (m) = S(m)V terminal +<br />

= S(i − 1)(1 − (1 − pi))<br />

= S(i − 1)pi (26)<br />

mX<br />

i=1<br />

(S(i − 1) − S(i))V default<br />

i<br />

Chair for Banking and Finance Winter term 2009 Slide 11<br />

(27)


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Multi-Step Model for Zero Coupon Bonds<br />

◮ The cumulative default probability is the complement <strong>of</strong> the survival<br />

probability<br />

Fi(m) = 1 − Si(m)<br />

◮ which is the cumulative default probability from t + τi to t + τm, and<br />

obviously<br />

Fi−1(i) = pi<br />

Chair for Banking and Finance Winter term 2009 Slide 12


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Multi-Step Model<br />

◮ calculating with zero-coupon bonds is nice, but coupon bonds and other<br />

instruments (as CDS) have regular payments, thus<br />

V risky<br />

0<br />

1 - p 1<br />

p 1<br />

V risky<br />

V<br />

+<br />

1<br />

cf<br />

1<br />

V Default<br />

1<br />

1 - p 2<br />

p 2<br />

V risky<br />

V<br />

+<br />

2<br />

cf<br />

2 ...<br />

V Default<br />

2<br />

Cash Flow Structure coupon bond<br />

V risky<br />

V<br />

+<br />

m-1<br />

cf<br />

m-1<br />

1 - p m<br />

0 1 2<br />

m-1<br />

m<br />

◮ note the cash-flows in each period (coupon payments)<br />

...<br />

p m<br />

V cf<br />

m<br />

Default<br />

Vm<br />

Chair for Banking and Finance Winter term 2009 Slide 13


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

A Multi-Step Model<br />

◮ The value <strong>of</strong> the claim in this case is<br />

◮ thus, we arrive at<br />

V risky<br />

i−1<br />

V0(m) =<br />

= (1 − pi)(V risky<br />

i<br />

mX<br />

i=1<br />

S(i)V cf<br />

i +<br />

mX<br />

i=1<br />

+ V cf<br />

i ) + piV default<br />

i<br />

(S(i − 1) − S(i))V default<br />

i<br />

(28)<br />

(29)<br />

which is the price <strong>of</strong> a central pricing relation for credit-risky instruments<br />

with multiple cash-flows, you can value regular bonds, zero coupon bonds,<br />

credit derivatives such as credit default swaps, and even portfolio<br />

derivatives such as collateralised debt obligations.<br />

◮ survival function and the recovery model necessary<br />

◮ if V default is independent <strong>of</strong> the time, the second term <strong>of</strong> (29) will collapse<br />

to (1 − S(m))V default<br />

Chair for Banking and Finance Winter term 2009 Slide 14


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

Default Probability in a Continuous-Time Approach<br />

◮ τ ∗ : stochastic variable as the time until default<br />

◮ Ft(τ) = P(τ ∗ ≤ τ) St(τ) = P(τ ∗ > τ) with<br />

◮ Ft(0) = 0, lim Ft(τ) = 1, Ft(τ + ∆τ) ≥ Ft(τ) ∀ ∆τ > 0, and St(τ) =<br />

τ→∞<br />

1 − Ft(τ)<br />

◮ The default probability <strong>of</strong> the claim in the time frame τ to τ + ∆τ is<br />

Ft(τ + ∆τ) = P(τ ∗ ≤ τ + ∆τ)<br />

which is equivalent to<br />

= P(τ ∗ ≤ τ) + [1 − P(τ<br />

| {z }<br />

Ft (τ)<br />

∗ ≤ τ)]<br />

| {z }<br />

St (τ)<br />

· P(τ ∗ ≤ τ + ∆τ|τ ∗ > τ)<br />

| {z }<br />

probability for τ ∗ ∈[τ,τ+∆τ]<br />

St(τ) − St(τ + ∆τ) = St(τ) · P(τ ∗ ≤ τ + ∆τ|τ ∗ > τ) (30)<br />

Chair for Banking and Finance Winter term 2009 Slide 15


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

Dealing with <strong>Credit</strong> <strong>Risk</strong><br />

◮ The default risk modeled before is tradable<br />

◮ The main instruments are<br />

◮ <strong>Credit</strong> Default Swaps (CDS),<br />

◮ <strong>Credit</strong> Linked Notes (CLN),<br />

◮ Indices on CDS, in Europe especially iTraxx and the very young SovX WE,<br />

◮ Total Return Swaps (TRS), and<br />

◮ Collateralised Debt Obligations (CDOs)<br />

Chair for Banking and Finance Winter term 2009 Slide 16


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Derivatives – Market Participants<br />

End Users Application<br />

Asset Managers Diversify in credit risk<br />

Portfolio balancing tools<br />

Hedge funds Relative value trading<br />

Gaining leveraged exposure<br />

Proxy hedge against CDO tranches<br />

Circumspect trading strategies<br />

<strong>Credit</strong> correlation trading desks Proxy hedge against CDO tranches<br />

Gaining leveraged exposure<br />

Model trading<br />

Bank proprietary desks Trading and market-making credit books<br />

Chair for Banking and Finance Winter term 2009 Slide 17


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – Basic Structure<br />

Chair for Banking and Finance Winter term 2009 Slide 18


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – Market<br />

◮ Huge market, open position end <strong>of</strong> 2007: USD 60 trillion, today ca USD<br />

24 trillion<br />

70,000.00<br />

60,000.00<br />

50,000.00<br />

40,000.00<br />

30,000.00<br />

20,000.00<br />

10,000.00<br />

-<br />

<strong>Credit</strong> default swaps Outstanding, billions <strong>of</strong> USD<br />

1H01<br />

2H01<br />

1H02<br />

2H02<br />

1H03<br />

2H03<br />

1H04<br />

2H04<br />

1H05<br />

2H05<br />

1H06<br />

2H06<br />

1H07<br />

2H07<br />

1H08<br />

2H08<br />

1H09<br />

Chair for Banking and Finance Winter term 2009 Slide 19


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – <strong>Credit</strong> Event Definition<br />

◮ Standardised products, easy to trade<br />

◮ Before the crisis: pure over-the-counter (OTC) product, now more and<br />

more clearing house usage<br />

◮ ISDA (International Swaps and Derivatives Association) issued the<br />

standardised “credit event” definition (1999/2003)<br />

1. Failure to pay<br />

2. Bankruptcy<br />

3. Restructuring<br />

4. Repudiation/moratorium (relevant to sovereign underlyings)<br />

5. Obligation acceleration<br />

6. Obligation default<br />

Chair for Banking and Finance Winter term 2009 Slide 20


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – Settlement in the case <strong>of</strong> a credit event<br />

1. Physical settlement<br />

◮ Protection seller pays face value<br />

◮ Protection buyer hands over the reference obligation<br />

◮ Widely used, problems if the total value <strong>of</strong> the CDS exceeds the total value<br />

<strong>of</strong> the underlying entity (e.g. Delphi)<br />

2. Cash settlement<br />

◮ Protection seller pays<br />

P = 1 − (Rec + accrued interest on reference obligation)<br />

◮ Recovery rate is usually agreed upon in advance or estimated after the<br />

default<br />

◮ If recovery rate is fixed in advance: digital settlement<br />

Chair for Banking and Finance Winter term 2009 Slide 21


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – An Example<br />

◮ Bank A has granted loans to corporations from the semiconductor<br />

industry, C1 and C2, USD 10mn each<br />

◮ High default correlation, A buys protection on C1 to lower overall risk<br />

◮ This costs 125bps per year on USD 10mn, or<br />

0.0125 · USD 10 000 000 = USD 125 000<br />

◮ To prevent negative cash-flows, the bank sells protection on a corporation<br />

with a low default correlation to the semiconductor industry. If the spread<br />

<strong>of</strong> this CDS is 125bps as well, the bank has diversified its portfolio for a<br />

cost <strong>of</strong> zero (+ fees)<br />

Chair for Banking and Finance Winter term 2009 Slide 22


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – Basic Valuation<br />

◮ From the perspective <strong>of</strong> the protection seller:<br />

V CDS<br />

PS<br />

= V PL − V DL<br />

◮ the value consists therefore <strong>of</strong> a premium leg (PL) and a default leg (DL)<br />

◮ From the perspective <strong>of</strong> a protection buyer, it is obviously<br />

V CDS<br />

PB = −V CDS<br />

PS = V DL − V PL<br />

◮ The default leg usually consists <strong>of</strong> two components: the default payment<br />

and the accrued premium<br />

V DL = V DP − V AP<br />

Chair for Banking and Finance Winter term 2009 Slide 23<br />

(31)<br />

(32)<br />

(33)


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – Basic Valuation<br />

◮ Discrete-time CDS pricing algorithm (market standard): JP Morgan model<br />

V (τm) =<br />

mX<br />

CFi · R(τi) · S(τi) +<br />

i=1<br />

| {z }<br />

V PL<br />

+<br />

mX<br />

CF default<br />

i<br />

· R(τi) · (S(τi−1) − S(τi))<br />

i=1<br />

| {z<br />

−V<br />

}<br />

DL<br />

◮ Note that this is a modification <strong>of</strong> (29), with a discount factor R<br />

◮ Needed: structure the premium payments CFi and the payment<br />

conditional on default, CF default<br />

i , the survival probability function S(τ);<br />

R(τi) can be derived by bootstrapping<br />

Chair for Banking and Finance Winter term 2009 Slide 24<br />

(34)


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – Basic Valuation<br />

◮ With CFi being simply the product <strong>of</strong> ∆τ = τi − τi−1 and the contractual<br />

CDS rate c(τm)<br />

V PL =<br />

mX<br />

c(τm) · ∆τ · R(τi) · S(τi) (35)<br />

i=1<br />

◮ standard maturity days for CDS according to ISDA (2003): March 20,<br />

June 20, September 20, and December 20<br />

◮ ∆τ is usually three months<br />

Chair for Banking and Finance Winter term 2009 Slide 25


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – Valuation<br />

◮ To determine V DL , we have to formalise the default payment (1 − Rec)<br />

and the accrued premium<br />

◮ To keep things simple, we assume that defaults occur in the middle <strong>of</strong> τi−1<br />

and τi, the accrual factor will be ∆τ<br />

: mid-point approximation<br />

2<br />

◮ Thus:<br />

V DP = (1 − Rec)<br />

V AP =<br />

mX<br />

i=1<br />

mX<br />

R(τi) · (S(τi−1) − S(τi)) (36)<br />

i=1<br />

c(τm) · ∆τ<br />

2 · R(τi) · (S(τi−1) − S(τi)) (37)<br />

Chair for Banking and Finance Winter term 2009 Slide 26


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – Valuation<br />

◮ We arrive at the formula for the valuation <strong>of</strong> a plain-vanilla CDS-contract:<br />

V CDS = V PL − V DL = V PL + V AP − V DP<br />

=<br />

mX<br />

c(τm) · ∆τ · R(τi) · S(τi)<br />

i=1<br />

+<br />

mX<br />

i=1<br />

−(1 − Rec)<br />

c(τm) · ∆τ<br />

2 · R(τi) · (S(τi−1) − S(τi))<br />

mX<br />

R(τi) · (S(τi−1) − S(τi)) (38)<br />

i=1<br />

Chair for Banking and Finance Winter term 2009 Slide 27


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

<strong>Credit</strong> Default Swaps – Valuation<br />

to be continued.<br />

Chair for Banking and Finance Winter term 2009 Slide 28


Investment Banking and Capital Markets – <strong>Universität</strong> <strong>Hohenheim</strong><br />

Investment Banking and Capital Markets<br />

Literature<br />

◮ Merton, R. (1974): On the Pricing <strong>of</strong> Corporate Debt: The <strong>Risk</strong> Structure<br />

<strong>of</strong> Interest Rates, The Journal <strong>of</strong> Finance, 29, pp. 449-470<br />

◮ Felsenheimer, J., and Gisdakis P., Zaiser, M. (2006) Active <strong>Credit</strong><br />

Portfolio Management, Wiley-VCH, Weinheim, ch 7, 10<br />

Chair for Banking and Finance Winter term 2009 Slide 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!