11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Numerical Integration 37<br />

In the case of ultraspherical polynomials (− 1<br />

2<br />

refined as follows:<br />

(3.1.2) −1 < −cos<br />

(3.1.3) 0 ≤ cos<br />

k + α<br />

2<br />

− 1<br />

4<br />

n + α + 1<br />

2<br />

π ≤ ξ (n)<br />

k<br />

n − k + 1<br />

n + α + 1 π ≤ ξ<br />

2<br />

(n)<br />

k<br />

Of course, if n is odd we have ξ (n)<br />

(n+1)/2 = 0.<br />

≤ −cos<br />

1<br />

≤ α = β ≤ 2 ), the inequal<strong>it</strong>ies can be<br />

k<br />

n + α + 1<br />

2<br />

≤ cos n − k + α<br />

2<br />

n + α + 1<br />

2<br />

π ≤ 0, 1 ≤ k ≤ <br />

n<br />

2 ,<br />

+ 3<br />

4<br />

π < 1,<br />

n + 1 − <br />

n<br />

2 ≤ k ≤ n.<br />

Particularly interesting are the following cases, in which an exact expression of the<br />

zeroes is known:<br />

(3.1.4) ξ (n)<br />

k<br />

(3.1.5) ξ (n)<br />

k<br />

(3.1.6) ξ (n)<br />

k<br />

(3.1.7) ξ (n)<br />

k<br />

where 1 ≤ k ≤ n.<br />

2k − 1<br />

= −cos π if α = β = −1<br />

2n 2 ,<br />

k<br />

1<br />

= −cos π if α = β =<br />

n + 1 2 ,<br />

= −cos<br />

2k<br />

2n + 1<br />

1<br />

π if α = , β = −1<br />

2 2 ,<br />

2k − 1<br />

1<br />

= −cos π if α = −1 , β =<br />

2n + 1 2 2 ,<br />

Zeroes in the Legendre case - Estimates indicating the location of the zeroes are obtained<br />

by setting α = 0 in (3.1.2) and (3.1.3). Figure 3.1.1 shows their distribution in the<br />

interval I =] − 1,1[ for n = 7 and n = 10.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!