11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

290 Polynomial Approximation of Differential Equations<br />

n pn(0,0)<br />

2 1.570796326<br />

4 1.856395658<br />

6 1.851713702<br />

8 1.851563407<br />

10 1.851562860<br />

12 1.851563065<br />

Table 13.3.1 - Approximations of U(0,0).<br />

13.4 The incompressible Navier-Stokes equations<br />

The Navier-Stokes equations describe, w<strong>it</strong>h a good degree of accuracy, the motion of a<br />

viscous incompressible fluid in a region Ω (see for instance batchelor(1967)). They<br />

find applications in aeronautics, meteorology, plasma physics, and in other sciences.<br />

In two dimensions Ω is an open set of R 2 . The unknowns, depending on the space<br />

variables (x,y) ∈ ¯ Ω and the time variable t ∈ [0,T], T > 0, are the two components<br />

of the veloc<strong>it</strong>y vector field V ≡ (V1,V2), Vi : Ω × [0,T] → R, 1 ≤ i ≤ 2, and the<br />

pressure P : Ω×]0,T] → R. Assuming that the dens<strong>it</strong>y of the fluid is constant, after<br />

dimensional scaling the equations become<br />

(13.4.1)<br />

(13.4.2)<br />

(13.4.3)<br />

∂V1<br />

∂t<br />

∂V2<br />

∂t<br />

∂V1<br />

+ V1<br />

∂x<br />

∂V2<br />

+ V1<br />

∂x<br />

∂V1<br />

∂x<br />

+ ∂V2<br />

∂y<br />

∂V1<br />

+ V2<br />

∂y − ν ∆V1 = − ∂P<br />

∂x<br />

∂V2<br />

+ V2<br />

∂y − ν ∆V2 = − ∂P<br />

∂y<br />

= 0 in Ω×]0,T],<br />

in Ω×]0,T],<br />

in Ω×]0,T],

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!