11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

226 Polynomial Approximation of Differential Equations<br />

After integration w<strong>it</strong>h respect to the variable t, we have<br />

(10.2.15) pn(·,t) 2 t 1<br />

w,n + 2ζ<br />

0 −1<br />

≤ pn(·,0) 2 w,n +<br />

t<br />

0<br />

∂pn<br />

∂x<br />

∂(pnw)<br />

∂x<br />

<br />

dx ds<br />

<br />

pn(·,s) 2 w,n + Ĩw,nf(·,s) 2 <br />

w,n ds, ∀t ∈]0,T].<br />

The norm ·w,n is defined in (3.8.2) and the interpolation operator Ĩw,n is defined in<br />

section 3.3. Finally, recalling lemma 8.2.1, we can eliminate the integral on the left-hand<br />

side of (10.2.15), since <strong>it</strong> turns out to be pos<strong>it</strong>ive. Therefore, theorem 10.1.1 yields<br />

(10.2.16) pn(·,t) 2 w,n ≤ e t<br />

<br />

pn(·,0) 2 w,n +<br />

t<br />

0<br />

Ĩw,nf(·,s) 2 w,n e −s <br />

ds ,<br />

∀t ∈]0,T].<br />

Taking into account (10.2.9), one shows that the right-hand side in the above expression<br />

is bounded by a constant which does not depend on n. Thus, (10.2.16) shows that the<br />

norm pn(·,t)w (which is equivalent to the norm pn(·,t)w,n by theorem 3.8.2) is<br />

also bounded independently of n. This is interpreted as a stabil<strong>it</strong>y cond<strong>it</strong>ion (compare<br />

w<strong>it</strong>h (9.4.3)). Moreover, using again lemma 8.2.1, we can also give a uniform bound<br />

t ∂pn<br />

to the quant<strong>it</strong>y 0 ∂x (·,s)2wds, ∀t ∈]0,T], by estimating the right-hand side of<br />

(10.2.15) w<strong>it</strong>h the help of (10.2.16).<br />

The analysis of convergence is similar. For any t ∈]0,T], we define χn(t) :=<br />

ˆΠ 1 0,w,nV (·,t) (see (6.4.13) and (9.4.5)). Thus, by (10.2.12) we can wr<strong>it</strong>e<br />

(10.2.17)<br />

+<br />

1<br />

−1<br />

1<br />

∂V<br />

∂χn ∂(φw)<br />

φw dx = −ζ<br />

∂t −1 ∂x ∂x<br />

n<br />

(fφ)(η (n)<br />

j=0<br />

j ,t) ˜w (n)<br />

dx<br />

j , ∀φ ∈ P 0 n, ∀t ∈]0,T].<br />

The sum on the right-hand side of (10.2.17) replaces the integral 1<br />

fφwdx, after<br />

−1<br />

noting that f(·,t) ∈ P1, ∀t ∈]0,T]. Subtracting equation (10.2.13) from equation<br />

(10.2.17) and taking φ := χn − pn, we obtain by lemma 8.2.1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!