11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Derivative Matrices 143<br />

This is equivalent to<br />

(7.4.17) −p ′′ + µp − γ[p ′ (η (n)<br />

0 ) − σ1] ˜ l (n)<br />

0 + γ[p′ (η (n)<br />

n ) − σ2] ˜ l (n)<br />

n = q.<br />

This approach was introduced in funaro(1986) for Legendre nodes, and in funaro<br />

(1988) for Chebyshev nodes. For n = 3, we present the relative linear system<br />

(7.4.18)<br />

⎡<br />

⎢<br />

⎣<br />

− ˜ d (2)<br />

00 − γ ˜ d (1)<br />

00 + µ − ˜ d (2)<br />

01 − γ ˜ d (1)<br />

01<br />

− ˜ d (2)<br />

10<br />

− ˜ d (2)<br />

20<br />

− ˜ d (2)<br />

30 + γ ˜ d (1)<br />

30<br />

⎡<br />

p(η<br />

⎢<br />

× ⎢<br />

⎣<br />

(n)<br />

0 )<br />

p(η (n)<br />

1 )<br />

p(η (n)<br />

⎤<br />

⎥<br />

2 ) ⎥<br />

⎦<br />

− ˜ d (2)<br />

02 − γ ˜ d (1)<br />

02<br />

− ˜ d (2)<br />

11 + µ − ˜ d (2)<br />

12<br />

− ˜ d (2)<br />

21<br />

− ˜ d (2)<br />

31 + γ ˜ d (1)<br />

31<br />

p(η (n)<br />

3 )<br />

=<br />

⎡<br />

⎢<br />

⎣<br />

− ˜ d (2)<br />

03 − γ ˜ d (1)<br />

03<br />

− ˜ d (2)<br />

13<br />

− ˜ d (2)<br />

22 + µ − ˜ d (2)<br />

23<br />

− ˜ d (2)<br />

32 + γ ˜ d (1)<br />

32 − ˜ d (2)<br />

33 + γ ˜ d (1)<br />

33<br />

q(η (n)<br />

0 ) − γσ1<br />

q(η (n)<br />

1 )<br />

q(η (n)<br />

2 )<br />

q(η (n)<br />

3 ) + γσ2<br />

⎤<br />

⎥<br />

⎥.<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

+ µ ⎦<br />

The reason for using these type of boundary cond<strong>it</strong>ions will be explained in section 9.4.<br />

Alternative techniques are presented in canuto(1986).<br />

We now investigate fourth-order problems. A classical example is to find p ∈ Pn+2,<br />

n ≥ 2, such that<br />

(7.4.19)<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

p IV (η (n)<br />

i ) = q(η (n)<br />

i ) 1 ≤ i ≤ n − 1,<br />

p(η (n)<br />

0 ) = σ1, p(η (n)<br />

n ) = σ2,<br />

p ′ (η (n)<br />

0 ) = σ3, p ′ (η (n)<br />

n ) = σ4,<br />

where q ∈ Pn−2 and σk ∈ R, 1 ≤ k ≤ 4. For the purpose of wr<strong>it</strong>ing the associated<br />

linear system, we construct the unique polynomial s ∈ P3 that satisfies the same<br />

boundary cond<strong>it</strong>ions as p:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!