11.08.2013 Views

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

Untitled - Cdm.unimo.it

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Results in Approximation Theory 109<br />

Theorem 6.4.2 - Let −1 < α < 1, −1 < β < 1 and k ≥ 1, then we can find a<br />

constant C > 0 such that, for any f ∈ H k w(I), one has<br />

(6.4.6) f − Π 1 w,nf H 1 w (I) ≤ C<br />

k−1 <br />

1 <br />

(1 − x<br />

n<br />

2 ) (k−1)/2 dkf dxk <br />

<br />

<br />

Proof - We first consider f ∈ C ∞ ( Ī). Let x0 ∈ I and set<br />

(6.4.7) qn(x) :=<br />

From (6.4.4) we can wr<strong>it</strong>e<br />

<br />

f(x0) +<br />

x<br />

x0<br />

(Πw,n−1f ′ <br />

)(t) dt<br />

(6.4.8) f − Π 1 w,nf H 1 w (I) ≤ f − qn H 1 w (I)<br />

=<br />

L 2 w (I)<br />

<br />

f − qn 2 L2 w (I) + f ′ − Πw,n−1f ′ 2 L2 w (I)<br />

1<br />

2<br />

.<br />

On the other hand, we have by the Schwarz inequal<strong>it</strong>y<br />

(6.4.9) f − qn 2 L2 w (I) =<br />

<br />

≤<br />

I<br />

<br />

=<br />

<br />

I<br />

x<br />

x0<br />

<br />

I<br />

<br />

f(x) − f(x0) −<br />

x<br />

(f ′ − Πw,n−1f ′ )(t) w(t)<br />

x<br />

(f ′ − Πw,n−1f ′ ) 2 (t) w(t) dt<br />

x0<br />

≤ f ′ − Πw,n−1f ′ 2 L 2 w (I)<br />

<br />

I<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

·<br />

<br />

<br />

<br />

<br />

x<br />

x0<br />

x0<br />

x<br />

x0<br />

∈ Pn, n ≥ 1.<br />

, ∀n > k.<br />

(Πw,n−1f ′ 2 )(t)dt w(x)dx<br />

2 dt<br />

w(x) dx<br />

w(t)<br />

w −1 <br />

<br />

(t) dt<br />

w(x) dx<br />

w −1 <br />

<br />

(t)dt<br />

w(x) dx.<br />

We note that the last integral in (6.4.9) is fin<strong>it</strong>e when −1 < α < 1 and −1 < β < 1.<br />

At this point we can conclude after subst<strong>it</strong>uting (6.4.9) in (6.4.8) and recalling theorem<br />

6.2.4.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!