11.08.2013 Views

II. FINITE DIFFERENCE METHOD 1 Difference formulae

II. FINITE DIFFERENCE METHOD 1 Difference formulae

II. FINITE DIFFERENCE METHOD 1 Difference formulae

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Inserting such approximation in the equation (1) for i = 1, 2, . . . , n ¡ 1 and<br />

replacing y(xi) by ¯yi, we obtain the following linear equations<br />

or<br />

¡ ¯yi+1 ¡ 2¯yi + ¯yi−1<br />

h 2 + q(xi)¯yi = f(xi), i = 1, 2, . . . , n ¡ 1<br />

¡¯yi+1 + ¯yi(2 + h 2 qi) ¡ ¯yi−1 = h 2 fi, i = 1, 2, . . . , n ¡ 1 (3)<br />

where qi = q(xi), fi = f(xi). In particular, for i = 1 ad i = n ¡ 1, taking<br />

into account the boundary conditions, we have the equations<br />

for i = 1, (2 + h 2 q1)¯y1 ¡ ¯y2 = α + h 2 f1 (4)<br />

for i = n ¡ 1, (2 + h 2 qn−1)¯yn−1 ¡ ¯yn−2 = β + h 2 fn−1 (5)<br />

Thm. <strong>II</strong>.2.1 (Existence and uniqueness of the numerical solution)The difference<br />

method applied to the problem (1) leads to a discrete problem which<br />

is the linear system of n ¡ 1 equations<br />

where<br />

and<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

A¯y = b (6)<br />

¯y = (¯y1, . . . , ¯yn−2, ¯yn−1) T ,<br />

(2 + h 2 q1) ¡1 0<br />

¡1 (2 + h 2 q2) ¡1<br />

.<br />

.<br />

.<br />

¡1 (2 + h 2 qn−2) ¡1<br />

0 ¡1 (2 + h 2 qn−1)<br />

b = (h 2 f1 + α, h 2 f2, ..., h 2 fn−2, h 2 fn−1 + β) T .<br />

Under the hypothesis q(x) ¸ 0 such a system admits a unique solution.<br />

PROOF<br />

Equations (3), (4), (5) can be written in vector form as stated. Now from<br />

linear algebra<br />

A is non-singular () z T Az 6= 0, 8z 6= (0, ..., 0).<br />

6<br />

.<br />

.<br />

⎞<br />

⎟<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!