11.08.2013 Views

CaF 2 - RWTH Aachen University

CaF 2 - RWTH Aachen University

CaF 2 - RWTH Aachen University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GTT-Technologies<br />

Inclusion of <strong>CaF</strong> 2 and P 2O 5<br />

in the GTT Oxide database<br />

GTT-Technologies, Herzogenrath<br />

Forschungszentrum Jülich<br />

Klaus Hack, Tatjana Jantzen, Elena Yazhenskikh


GTT-Technologies<br />

Contents of presentation<br />

• Introduction<br />

• Addition of <strong>CaF</strong>2<br />

• Addition of P 2O 5<br />

• Conclusions<br />

• Future developments


GTT-Technologies<br />

Al 2O 3-K 2O-Na 2O-SiO 2<br />

Elephant’s wedding<br />

Al 2O 3-CaO-CrO x-FeO-Fe 2O 3-<br />

MgO-SiO 2


GTT-Technologies<br />

<strong>CaF</strong> 2<br />

The addition of <strong>CaF</strong> 2<br />

(Fluorspar) to the flux<br />

decreases melting point.<br />

Fluorspar decreases the<br />

viscosity of the slags.<br />

Fluorspar improves the<br />

fluidity of molten slags.<br />

Introduction<br />

P 2O 5<br />

The dephosphorization is<br />

important in the iron and<br />

steel industry.<br />

The phospates are of<br />

interest in connection with<br />

soil-fertilizer relationships.


GTT-Technologies<br />

Addition of <strong>CaF</strong> 2<br />

• The Al 2O 3-<strong>CaF</strong> 2 binary system<br />

• The <strong>CaF</strong> 2-CaO binary system<br />

• The <strong>CaF</strong> 2-FeO-Fe system<br />

• The <strong>CaF</strong> 2-Fe 2O 3-O 2 system<br />

• The <strong>CaF</strong> 2-MgO binary system<br />

• The <strong>CaF</strong> 2-SiO 2 binary system<br />

• The Al 2O 3-<strong>CaF</strong> 2-CaO ternary system<br />

• Liquidus surface in Al 2O 3-<strong>CaF</strong> 2-MgO system<br />

• Miscibility gaps in Al 2O 3-<strong>CaF</strong> 2-SiO 2 system<br />

• Liquidus surface in <strong>CaF</strong> 2-CaO-MgO system<br />

• The <strong>CaF</strong> 2-CaO-SiO 2 ternary system


Ternary stoichiometric phases modelled by GTT<br />

GTT-Technologies<br />

Name Phase System Description<br />

C3A3F 3CaO 3Al2O3<br />

<strong>CaF</strong>2<br />

C11A7F 11CaO 7Al2O3<br />

C3S2F<br />

Cuspidine<br />

<strong>CaF</strong>2<br />

Al2O3-CaO-<strong>CaF</strong>2 Ca4Al6F2O12<br />

3CaO 2SiO2 <strong>CaF</strong>2 <strong>CaF</strong>2-CaO-SiO2<br />

Heat of formation<br />

[Fukuyama,<br />

Tabata,2003] is<br />

Al2O3-CaO-<strong>CaF</strong>2 Ca12Al14F2O32<br />

used<br />

Ca4Si2F2O7<br />

C4S2F 4CaO 2SiO2 <strong>CaF</strong>2 <strong>CaF</strong>2-CaO-SiO2 Ca5Si2F2O8<br />

C9S3F 9CaO 3SiO2 <strong>CaF</strong>2 <strong>CaF</strong>2-CaO-SiO2 Ca10Si3F2O15


GTT-Technologies<br />

Binary Al 2O 3-<strong>CaF</strong> 2 phase diagram<br />

A.K. Chatterjee, G.I. Zhmoidin, J. Mater. Sci., 7 [1],<br />

(1972), pp. 93-97.<br />

T(C)<br />

2100<br />

1920<br />

1740<br />

1560<br />

1380<br />

Slag<br />

Slag + Al 2O3<br />

<strong>CaF</strong> 2 - Al 2 O 3<br />

<strong>CaF</strong> 2 + Al2O3<br />

[Zhmoidin, Chatterje, 1986]<br />

[Zhmoidin, 1969]<br />

[Davies, Wright, 1970]<br />

[Ries, Schwerdtfeger, 1980]<br />

1200<br />

0 0.2 0.4 0.6 0.8 1<br />

mole <strong>CaF</strong> 2/(<strong>CaF</strong>2+Al2O3)<br />

A,I, Zaitsev, N.V. Korolyov, B.M. Mogutnov,<br />

Journ. Mater. Scien., 26 (1991), pp.1588-1600.


GTT-Technologies<br />

Binary <strong>CaF</strong> 2-CaO phase diagram<br />

A.K. Chatterjee, G.I. Zhmoidin, J. Mater. Sci., 7 [1],<br />

(1972), pp. 93-97.<br />

R. Ries, K. Schwerdtfeger, Arch. Eisenhuettenwes., 51<br />

[4], (1980), pp. 123-129.<br />

T(C)<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

Slag + <strong>CaF</strong> 2<br />

Slag<br />

<strong>CaF</strong> 2 - CaO<br />

Slag + MeO<br />

<strong>CaF</strong> 2 + MeO<br />

[Kojima, Mason,1969]<br />

[Chatterjee, Zhmoidin,1972]<br />

[Zaitsev, Korolyov, Mogutnov,1989]<br />

1200<br />

0 20 40 60 80 100<br />

wt% CaO/(<strong>CaF</strong> 2+CaO)


<strong>CaF</strong> 2-FeO phase diagram for equilibrium with Fe<br />

GTT-Technologies<br />

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.<br />

F. Koerber, W. Oelsen, Stahl Eisen, 60[42], (1940), pp.921-929.<br />

T(C)<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

Slag + Liquid(Fe)<br />

Slag + BCC_A2<br />

<strong>CaF</strong> 2 - FeO<br />

Slag + Slag#2 + Liquid(Fe)<br />

Slag + Slag#2 + BCC_A2<br />

Slag + <strong>CaF</strong>2 + BCC_A2<br />

Slag + <strong>CaF</strong>2 + FCC_A1<br />

HALITE + <strong>CaF</strong>2 + FCC_A1<br />

mass <strong>CaF</strong> 2/(<strong>CaF</strong>2+FeO)<br />

Slag + Liquid(Fe)<br />

Slag + BCC_A2<br />

1100<br />

0 0.2 0.4 0.6 0.8 1


GTT-Technologies<br />

Predicted <strong>CaF</strong> 2-Fe 2O 3 phase diagram in air<br />

No experimental data are available for this system.<br />

T(C)<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

Slag + <strong>CaF</strong> 2<br />

Slag<br />

Fe 2 O 3 - <strong>CaF</strong> 2 - O 2<br />

p(O 2 ) = 0.21 bar<br />

<strong>CaF</strong> 2 + Fe2O3<br />

Fe 2O 3/(Fe 2O 3+<strong>CaF</strong> 2) (g/g)<br />

Slag + Fe 2O3<br />

Slag + SPINEL<br />

800<br />

0 0.2 0.4 0.6 0.8 1


GTT-Technologies<br />

Binary <strong>CaF</strong> 2-MgO phase diagram<br />

P.P. Budnikov, S.G. Tresvyatskii, Ukr. Khim. Zh.<br />

(Russ. Ed.), 19 [5], (1953), pp.552-555..<br />

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.<br />

T(C)<br />

1600<br />

1540<br />

1480<br />

1420<br />

1360<br />

Slag<br />

Slag + <strong>CaF</strong> 2<br />

<strong>CaF</strong> 2 - MgO<br />

HALITE + <strong>CaF</strong> 2<br />

Slag + HALITE<br />

mass MgO/(<strong>CaF</strong> 2+MgO)<br />

[E. Schlegel, 1967]<br />

1300<br />

0 0.2 0.4 0.6 0.8 1


GTT-Technologies<br />

Binary <strong>CaF</strong> 2-SiO 2 phase diagram<br />

L. Hillert, Acta Chem. Scand., 18 [10], (1964), pp. 2411-2411.<br />

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.<br />

T(C)<br />

1900<br />

1760<br />

1620<br />

1480<br />

1340<br />

Slag + Cristobalite<br />

Slag<br />

Slag + Tridymite<br />

SiO 2 - <strong>CaF</strong> 2<br />

Tridymite + <strong>CaF</strong> 2<br />

Slag + Slag#2<br />

mass <strong>CaF</strong> 2/(SiO2+<strong>CaF</strong>2)<br />

[Hillert 1970]<br />

<strong>CaF</strong>2-SiO2-TiO2<br />

<strong>CaF</strong>2-Na2O-SiO2<br />

[Hillert 1964]<br />

<strong>CaF</strong>2-SiO2, Slag Atlas<br />

Al2O3-<strong>CaF</strong>2-SiO2<br />

Slag + <strong>CaF</strong> 2<br />

1200<br />

0 0.2 0.4 0.6 0.8 1


Isothermal section at 1100 o C in Al 2O 3-<strong>CaF</strong> 2-CaO<br />

GTT-Technologies<br />

C. Brisi, P. Rolando, Ann. Chim. (Rome), 57 [11], (1967), pp.1304-1315.<br />

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.<br />

C11A7F<br />

<strong>CaF</strong> 2 - Al 2O 3 - CaO<br />

<strong>CaF</strong> 2<br />

Ca 4Al6F2O12<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

Ca12Al14F2O32 + <strong>CaF</strong>2 + HALITE<br />

Ca 12Al14F2O32<br />

1100 o<br />

C<br />

C3A3F<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8 Ca3Al2O6 0.7Ca12Al14O33<br />

0.6 CaAl2O4 0.5<br />

0.4 CaAl4O70.3 0.2 CaAl12O19 0.1<br />

CaO Al2O3 mole fraction


Isothermal section at 1600 o C in Al 2O 3-<strong>CaF</strong> 2-CaO<br />

GTT-Technologies<br />

R. Ries, K. Schwerdtfeger, Arch. Eisenhüttenwes.,<br />

51, (1980), pp.123-129.<br />

Slag + MeO<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

<strong>CaF</strong> 2 - Al 2 O 3 - CaO<br />

1600 o<br />

C, 1 atm<br />

<strong>CaF</strong> 2<br />

Slag + Slag#2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

CaO Al 2 O 3<br />

mole fraction<br />

Slag + CaAl 4 O 7<br />

Slag + Al 2O 3<br />

CaAl 12 O 19<br />

[Zhmoidin, Chatterjee, 1986]<br />

[Ries, Schwerdtfeger, 1980]:<br />

phase boundary<br />

two liquids<br />

one liquid


Isothermal section at 1800 o C in Al 2O 3-<strong>CaF</strong> 2-CaO<br />

GTT-Technologies<br />

Slag + MeO<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

<strong>CaF</strong> 2 - Al 2 O 3 - CaO<br />

1800 o<br />

C, 1 atm<br />

<strong>CaF</strong> 2<br />

Slag + Slag#2<br />

Slag<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

CaO Al 2 O 3<br />

mole fraction<br />

Slag + CaAl 12 O 19<br />

Slag + Al 2 O 3<br />

[Zhmoidin, Chatterjee, 1986]


GTT-Technologies<br />

Isopleth section C11A7F– C3A3F<br />

A.K. Chatterjee, G.I. Zhmoidin, Izv. Akad. Nauk SSSR,<br />

Neorg. Mater., 8 [5], (1972), pp.886-892.<br />

T(C)<br />

1600<br />

1580<br />

1560<br />

1540<br />

1520<br />

1500<br />

1480<br />

1460<br />

1440<br />

1420<br />

Ca 12Al 14O 32F 2 - Ca 2Al 3O 6F<br />

Slag + Ca 12 Al 14 F 2 O 32<br />

1 atm<br />

Ca 12 Al 14 F 2 O 32 + Ca 4 Al 6 F 2 O 12<br />

wt % Ca 2Al 3O 6F/(Ca 12Al 14O 32F 2+Ca 2Al 3O 6F)<br />

Slag<br />

Slag + Ca 4 Al 6 F 2 O 12<br />

1400<br />

0 20 40 60 80 100


GTT-Technologies<br />

Isopleth section CaAl 2O 4 –<strong>CaF</strong> 2<br />

A.K. Chatterjee, G.I. Zhmoidin, Izv. Akad. Nauk SSSR,<br />

Neorg. Mater., 8 [5], (1972), pp.886-892.<br />

A,I, Zaitsev, N.V. Korolyov, B.M. Mogutnov,<br />

Journ. Mater. Scien., 26 (1991), pp.1588-1600.<br />

T(C)<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

Slag + CaAl 2 O 4<br />

Ca 4 Al 6 F 2 O 12 + CaAl 2 O 4<br />

Slag<br />

Ca 4 Al 6 F 2 O 12<br />

CaAl 2O 4 - <strong>CaF</strong> 2<br />

Slag + Slag#2<br />

Slag + Slag#2 + Ca Al F O 4 6 2 12<br />

Slag#2 + Ca Al F O 4 6 2 12<br />

<strong>CaF</strong> 2 + Ca 4 Al 6 F 2 O 12<br />

[Gut et.al.,1970]<br />

Liquid<br />

Liquid + Solid<br />

Solid<br />

1100<br />

0 20 40 60 80 100<br />

wt % <strong>CaF</strong>2/(CaAl2O4+<strong>CaF</strong>2)


GTT-Technologies<br />

Isopleth section C3A3F – CaAl 4O 7<br />

A.K. Chatterjee, G.I. Zhmoidin, Izv. Akad. Nauk SSSR,<br />

Neorg. Mater., 8 [5], (1972), pp.886-892.<br />

T(C)<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

Slag + Ca 4 Al 6 F 2 O 12<br />

1500<br />

Slag<br />

Ca 4 Al 6 O 12 F 2 - CaAl 4 O 7<br />

1 atm<br />

Ca 4 Al 6 F 2 O 12 + CaAl 4 O 7<br />

Slag + CaAl 4 O 7<br />

wt % CaAl 4O 7/(Ca 4Al 6O 12F 2+CaAl 4O 7)<br />

Slag + CaAl 12 O 19<br />

Slag + CaAl 4 O 7 + CaAl 12 O 19<br />

1450<br />

0 20 40 60 80 100


GTT-Technologies<br />

Liquidus surface in Al 2O 3-<strong>CaF</strong> 2-CaO<br />

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.<br />

10 20 30 40 50 60 70 80 90<br />

<strong>CaF</strong> 2 - Al 2O 3 - CaO<br />

Projection (Slag), 1 atm<br />

<strong>CaF</strong> 2<br />

1207<br />

1472<br />

<strong>CaF</strong> 2<br />

1392<br />

Ca 12Al 14F 2O 32<br />

1392<br />

1383<br />

Slag#2<br />

10 20 30 40 50 60 70 80 90<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

CaO Ca Al O 3 2 6 CaAl O 2 4<br />

Al2O3 1419<br />

1464<br />

percent by weight<br />

1464<br />

1450<br />

MeO Ca 4 Al 6 F 2 O 12<br />

1506<br />

1497<br />

CaAl 4 O 7<br />

CaAl 12 O 19<br />

Al 2 O 3


GTT-Technologies<br />

Liquidus surface in Al 2O 3-<strong>CaF</strong> 2-MgO<br />

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.<br />

<strong>CaF</strong> 2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

<strong>CaF</strong>2<br />

2 1343 o<br />

C<br />

1379<br />

1<br />

o<br />

C<br />

0.9<br />

0.8<br />

0.7<br />

MgO - Al 2 O 3 - <strong>CaF</strong> 2<br />

Projection (Slag)<br />

SPINEL<br />

0.6<br />

MgO<br />

HALITE<br />

0.5<br />

mass fraction<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.4<br />

0.3<br />

0.2<br />

Al 2O3<br />

0.1<br />

Al 2 O 3


GTT-Technologies<br />

Miscibility gaps in Al 2O 3-<strong>CaF</strong> 2-SiO 2<br />

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.<br />

<strong>CaF</strong> 2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8<br />

0.7<br />

Al 2 O 3 - SiO 2 - <strong>CaF</strong> 2<br />

0.6<br />

Al 2 O 3<br />

Slag + Slag#2<br />

0.5<br />

mass fraction<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

1380 o<br />

C<br />

0.4<br />

1460 o<br />

C<br />

0.3<br />

0.2<br />

0.1<br />

SiO 2


Isothermal section at 1425 o C in Al 2O 3-<strong>CaF</strong> 2-SiO 2<br />

GTT-Technologies<br />

<strong>CaF</strong> 2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8<br />

Al2O3 - SiO2 - <strong>CaF</strong>2 T = 1400 o<br />

C, 1425 o<br />

C and 1450 o<br />

C<br />

0.7<br />

0.6<br />

Al 2 O 3<br />

Slag + Slag#2<br />

0.5<br />

mass fraction<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.4<br />

0.3<br />

0.2<br />

[Ueda, Maeda, 1999]<br />

T = 1400 o<br />

C<br />

T = 1425 o<br />

C<br />

T = 1450 o<br />

C<br />

0.1<br />

SiO 2<br />

<strong>CaF</strong> 2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

Slag<br />

0.9<br />

Slag + Al2O3<br />

0.8<br />

0.7<br />

Al2O3 - SiO2 - <strong>CaF</strong>2 1425 o<br />

C<br />

0.6<br />

Al 2 O 3<br />

Slag + Mullite<br />

Slag + Slag#2<br />

0.5<br />

mass fraction<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.4<br />

0.3<br />

0.2<br />

[Ueda, Maeda, 1999]<br />

0.1<br />

Slag + Tridymite<br />

SiO 2


Predicted isothermal sections in Al 2O 3-<strong>CaF</strong> 2-SiO 2<br />

GTT-Technologies<br />

<strong>CaF</strong> 2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

Slag + Al2O3<br />

Slag<br />

0.8<br />

0.7<br />

Al2O3 - SiO2 - <strong>CaF</strong>2 1500 o<br />

C<br />

0.6<br />

Al 2 O 3<br />

Slag + Mullite<br />

Slag + Slag#2<br />

0.5<br />

mass fraction<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

<strong>CaF</strong> 2<br />

Slag + Cristobalite<br />

SiO 2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8<br />

Slag<br />

0.7<br />

Al2O3 - SiO2 - <strong>CaF</strong>2 1600 o<br />

C<br />

Slag + Al2O3<br />

0.6<br />

Al 2 O 3<br />

Slag + Mullite<br />

Slag + Slag#2<br />

0.5<br />

mass fraction<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Slag + Cristobalite<br />

SiO 2<br />

<strong>CaF</strong> 2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8<br />

0.7<br />

Al2O3 - SiO2 - <strong>CaF</strong>2 1700 o<br />

C<br />

Slag + Al2O3<br />

0.6<br />

Al 2 O 3<br />

0.5<br />

mass fraction<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

Slag + Mullite<br />

Slag<br />

Slag + Slag#2<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

SiO 2


GTT-Technologies<br />

Predicted liquidus surface in Al 2O 3-<strong>CaF</strong> 2-SiO 2<br />

Four-Phase Intersection Points with Slag<br />

1: Al2O3_alpha(s) / <strong>CaF</strong>2_s1(s) / MULLITE<br />

2: MULLITE / MULLITE / SiO2_cristobalite_be(s5)<br />

3: MULLITE / SiO2_cristobalite_be(s5) / Slag#2<br />

4: <strong>CaF</strong>2_s1(s) / MULLITE / SiO2_cristobalite_be(s5)<br />

1:<br />

2:<br />

3:<br />

4:<br />

A = Al2O3, B = <strong>CaF</strong>2, C = SiO2<br />

W(A) W(B) W(C) o C<br />

0.04896 0.89898 0.05207 1349.38<br />

0.04509 0.15403 0.80088 1334.48<br />

0.05441 0.77990 0.16569 1334.46<br />

0.04204 0.82168 0.13629 1315.41<br />

<strong>CaF</strong> 2<br />

10 20 30 40 50 60 70 80 90<br />

90<br />

80<br />

Cristobalite<br />

70<br />

Al 2O 3 - <strong>CaF</strong> 2 - SiO 2<br />

Projection (Slag)<br />

60<br />

Al 2 O 3<br />

Al 2 O 3 (s)<br />

MULLITE<br />

50<br />

percent by weight<br />

10 20 30 40 50 60 70 80 90<br />

1 3<br />

4<br />

2<br />

<strong>CaF</strong><br />

Two liquids<br />

2<br />

40<br />

T(min) = 1315.41 o<br />

C, T(max) = 2053.83 o<br />

C<br />

30<br />

20<br />

Cristobalite<br />

10<br />

SiO 2


GTT-Technologies<br />

Liquidus surface in <strong>CaF</strong> 2-CaO-MgO<br />

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.<br />

E. Schlegel, Z. Chem., 5 [8], (1965), pp.316.<br />

HALITE<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

<strong>CaF</strong> 2 - CaO - MgO<br />

Projection (Slag)<br />

<strong>CaF</strong> 2<br />

<strong>CaF</strong> 2<br />

1335 o<br />

C<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

CaO MgO<br />

mass fraction<br />

HALITE


Isothermal section at 1000 o C in <strong>CaF</strong> 2-CaO-SiO 2<br />

GTT-Technologies<br />

System <strong>CaF</strong>2-CaO-SiO2; compatibility triangles.<br />

C. Brisi, J. Am. Ceram. Soc., 40 [5] 174-178 (1957).<br />

Temperature missing<br />

<strong>CaF</strong> 2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8<br />

0.7<br />

<strong>CaF</strong>2 - CaO - SiO2 1060 o<br />

C<br />

<strong>CaF</strong> 2 + MeO + Ca 2SiO 4(s3)<br />

0.6<br />

CaO<br />

Ca 5 Si 2 F 2 O 8<br />

0.5<br />

mole fraction<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

Ca 10 Si 3 F 2 O 15<br />

Ca Si F O 4 2 2 7<br />

(Cuspidine)<br />

0.4<br />

Ca 2 SiO 4 (s3)<br />

0.3<br />

Ca 3 Si 2 O 7<br />

Cristobalite + <strong>CaF</strong> 2 + CaSiO 3 (s)<br />

CaSiO 3 (s)<br />

0.2<br />

0.1<br />

SiO 2<br />

Cuspidine - from the Greek cuspis, for a spear, the<br />

characteristic shape of the twinned crystals.


Isopleth section Cuspidine – <strong>CaF</strong> 2<br />

GTT-Technologies<br />

(B) pseudobinary phase diagram for cuspidine-<strong>CaF</strong>2<br />

system; Cuspidine = Ca4Si2O7F2<br />

H. Fukuyama, T. Watanabe, M. Susa, and K. Nagata,<br />

"Pseudo-binary Phase Diagram of the Cuspidine -<br />

<strong>CaF</strong>2 System - Relating to Mold Flux for Continuous<br />

Casting of Steel -"; pp. 61-75 in EPD Congr. 1999,<br />

Proc. Sess. Symp., TMS Annual Meeting, San Diego,<br />

California, February 28-March 4, 1999. Edited by B.<br />

Mishra, Minerals, Metals & Materials Society,<br />

Warrendale, Pennsylvania, 1999.<br />

T(C)<br />

1600<br />

1480<br />

1360<br />

1240<br />

1120<br />

Slag + Ca 4Si2F2O7<br />

Ca 4Si 2F 2O 7 - <strong>CaF</strong> 2<br />

Slag<br />

<strong>CaF</strong> 2 + Ca4Si2F2O7<br />

[Watanabe, Fukuyama]:<br />

Liquidus temperature<br />

Eutectic temperature<br />

Slag + <strong>CaF</strong> 2<br />

1000<br />

0 0.2 0.4 0.6 0.8 1<br />

mass <strong>CaF</strong>2/(Ca4Si2F2O7+<strong>CaF</strong>2)


GTT-Technologies<br />

Isopleth section CaSiO 3 –<strong>CaF</strong> 2<br />

T. Baak and A. Oelander, Acta Chem. Scand., 9 [8] 1350-1354 (1955).<br />

Dashed lines after Karandeef.<br />

B. Karandeeff, Z. Anorg. Chem., 68 [3] 188-197 (1910)<br />

T(C)<br />

1600<br />

1480<br />

1360<br />

1240<br />

1120<br />

Slag + CaSiO 3(s2)<br />

CaSiO 3 - <strong>CaF</strong> 2<br />

<strong>CaF</strong> 2 + CaSiO3(s)<br />

mass <strong>CaF</strong> 2/(CaSiO 3+<strong>CaF</strong> 2)<br />

Slag<br />

Slag + <strong>CaF</strong> 2<br />

1000<br />

0 0.2 0.4 0.6 0.8 1


GTT-Technologies<br />

W. H. Gutt and G. J. Osborne, Trans. Br.<br />

Ceram. Soc., 65 [9] 521-534 (1966).<br />

Isopleth section Ca 2SiO 4 –<strong>CaF</strong> 2<br />

T(C)<br />

2300<br />

1840<br />

1380<br />

920<br />

460<br />

Slag + Ca 2SiO4(s2)<br />

Ca 2SiO4(s3) + Ca5Si2F2O8<br />

Ca 5Si2F2O8 + Ca2SiO4(s)<br />

Slag + Ca 2SiO4(s3)<br />

Ca 5Si2F2O8<br />

Ca 2SiO 4 - <strong>CaF</strong> 2<br />

Slag<br />

<strong>CaF</strong> 2 + Ca2SiO4(s3)<br />

<strong>CaF</strong> 2 + Ca5Si2F2O8<br />

mass <strong>CaF</strong> 2/(Ca 2SiO 4+<strong>CaF</strong> 2)<br />

Slag + <strong>CaF</strong> 2<br />

0<br />

0 0.2 0.4 0.6 0.8 1


GTT-Technologies<br />

Isopleth section Ca 3SiO 5 –<strong>CaF</strong> 2<br />

W. H. Gutt and G. J. Osborne, Trans. Br. Ceram. Soc., 69 [3] 125-129 (1970).<br />

T(C)<br />

2300<br />

Slag + HALITE<br />

1840<br />

1380<br />

920<br />

460<br />

0<br />

Ca 2SiO4 + Ca5Si2F2O8 + HALITE<br />

Slag + Ca 3SiO5<br />

Slag + HALITE + Ca3SiO5 Slag + Ca2SiO4(s3) + HALITE<br />

Ca10Si3F2O15 Ca 5Si2F2O8<br />

Ca 3SiO 5 - <strong>CaF</strong> 2<br />

Slag<br />

<strong>CaF</strong> 2 + Ca2SiO4(s3) + HALITE<br />

<strong>CaF</strong> 2 + Ca5Si2F2O8 + HALITE<br />

mass <strong>CaF</strong> 2/(Ca 3SiO 5+<strong>CaF</strong> 2)<br />

[Gutt and Osborne, 1970]<br />

Slag + <strong>CaF</strong> 2<br />

0 0.2 0.4 0.6 0.8 1


GTT-Technologies<br />

Liquidus surface in <strong>CaF</strong> 2-CaO-SiO 2<br />

W. H. Gutt and G. J. Osborne, Trans. Br. Ceram. Soc., 69 [3] 125-129 (1970).<br />

Ca 3 Si 2 O 7 (s)<br />

Ca 2 SiO 4 (s2)<br />

Ca 3SiO5(s)<br />

CaO<br />

10 20 30 40 50 60 70 80 90<br />

<strong>CaF</strong> 2 - CaO - SiO 2<br />

Projection (Slag), 1 atm<br />

CaSiO 3 (s2)<br />

SiO 2<br />

Cristobalite<br />

Ca 4 Si 2 F 2 O 7<br />

Ca 2 SiO 4 (s3)<br />

10 20 30 40 50 60 70 80 90<br />

Slag#2<br />

Ca 10 Si 3 F 2 O 15<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

CaO <strong>CaF</strong>2 percent by weight<br />

CaSiO 3 (s)<br />

<strong>CaF</strong> 2 (s)<br />

1<br />

4300<br />

4100<br />

3600<br />

3100<br />

2600<br />

2100<br />

1600<br />

13 1100<br />

T o C


GTT-Technologies<br />

• The Fe-P binary system<br />

• The Al 2O 3-P 2O 5 system<br />

• The CaO-P 2O 5 system<br />

Addition of P 2O 5<br />

• The Cr 2O 3-P 2O 5 phase diagram in air<br />

• The Fe 2O 3-P 2O 5 phase diagram in air<br />

• The FeO–P 2O 5 phase diagram in equilibrium with Fe<br />

• The MgO-P 2O 5 system<br />

• The ternary FeO-Fe 2O 3-P 2O 5 system


GTT-Technologies<br />

Addition of P 2O 5<br />

The associate species containing P were added in order to<br />

describe the liquid phase in the Al 2O 3-CaO-Cr 2O 3-FeO-<br />

Fe 2O 3-MgO system containing P 2O 5.<br />

System Associate species Description<br />

MeOx : P2O5 Al2O3‐P2O5 AlPO4(SGPS)‐ Berlinite<br />

Cr 2O 3 –P 2O 5<br />

Fe 2O 3 –P 2O 5<br />

CaO ‐ P 2O 5<br />

FeO ‐ P 2O 5<br />

MgO ‐ P 2O 5<br />

CrPO 4<br />

FePO 4(SGPS)<br />

Ca 3P 2O 8, Ca 2P 2O 7, CaP 2O 8 [Serena 2011]<br />

Fe 3P 2O 8, Fe 2P 2O 7, FeP 2O 6,<br />

Mg 3P 2O 8 (SGPS), Mg 2P 2O 7, MgP 2O 8<br />

1:1<br />

3:1, 2:1, 1:1


GTT-Technologies<br />

Modelling of binary P-containing phases<br />

System Phase Description Used data<br />

Fe-P fcc-A1<br />

bcc-A2<br />

FeP<br />

Fe2P<br />

Fe3P<br />

Al 2O 3-P 2O 5<br />

CaO-P 2O 5<br />

3Al 2O 3 . P2O 5<br />

AlPO 4(s3) Berlinite<br />

AlPO 4(s2)<br />

AlPO 4(s1)<br />

Al 2O 3 . 3P2O 5<br />

CaO . 2P 2O 5<br />

2CaO . 3P 2O 5<br />

CaO . P 2O 5<br />

2CaO . P 2O 5(s1,s2,s3)<br />

3CaO . P 2O 5(s1,s2,s3)<br />

4CaO . P 2O 5<br />

(Fe, O, P) 1 (Va) 1<br />

(Fe, O, P) 1 (Va) 3<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

[99Lee]<br />

[99Lee]<br />

[99Lee]<br />

[99Lee]<br />

[99Lee]<br />

-<br />

SGPS<br />

SGPS<br />

SGPS<br />

-<br />

[Serena 2011]<br />

[Serena 2011]<br />

[Serena 2011]<br />

[Serena 2011] revised (T tr)<br />

[Serena 2011] revised (T tr)<br />

[Serena 2011]


Modelling of binary P-containing phases<br />

GTT-Technologies<br />

System Phase Description Used data<br />

Cr 2O 3-P 2O 5<br />

FeO-P 2O 5<br />

Fe 2O 3-P 2O 5<br />

MgO-P 2O 5<br />

CrPO4 5Cr .<br />

2O3 P2O5 3Cr .<br />

2O3 P2O5 FeO . P2O5 2FeO . P2O5 3FeO . P2O5 Fe .<br />

2O3 3P2O5 2Fe .<br />

2O3 3P2O5 Fe .<br />

2O3 P2O5 3Fe .<br />

2O3 P2O5 MgO . P 2O 5<br />

2MgO . P 2O 5<br />

3MgO . P 2O 5<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

stoichiometric<br />

-<br />

-<br />

-<br />

-<br />

-<br />

SGPS changed<br />

-<br />

-<br />

S f, H fus [Oetting, 1963]<br />

SGPS changed


Modelling of ternary P-containing phases<br />

GTT-Technologies<br />

System Phase Description Used data<br />

FeO-Fe 2O 3-P 2O 5<br />

Fe 7P 6O 24<br />

Fe 18P 2O 24<br />

Fe 10P 6O 26<br />

Fe 4P 2O 10<br />

3FeO . 2Fe 2O 3 . 3P2O 5 (stoichiometric)<br />

16FeO . Fe 2O 3 . P2O 5 (stoichiometric)<br />

8FeO . Fe 2O 3 . 3P2O 5 (stoichiometric)<br />

2FeO . Fe 2O 3 . P2O 5 (stoichiometric)<br />

-<br />

-<br />

-<br />

-


GTT-Technologies<br />

T(C)<br />

1500<br />

1300<br />

FCC_A1<br />

1100<br />

900 BCC_A2<br />

700<br />

500<br />

300<br />

100<br />

Binary Fe-P phase diagram [99Lee]<br />

Fe 3 P(s2)<br />

Fe 2 P(s)<br />

Fe - P<br />

1 atm<br />

FeP(s)<br />

P/(Fe+P) (mol/mol)<br />

Slag<br />

FeP(s) + P(s2)<br />

Slag + P(s2)<br />

0 0.2 0.4 0.6 0.8 1


GTT-Technologies<br />

T(C)<br />

Binary Al 2O 3-P 2O 5 phase diagram<br />

Berlinite (AlPO 4) - It was first described in 1868 for<br />

an occurrence in the Västana iron mine, Scania,<br />

Sweden and named for Nils Johan Berlin (1812–1891)<br />

of Lund <strong>University</strong>.<br />

2600<br />

2100<br />

1600<br />

1100<br />

600<br />

100<br />

Al2O3(s) + P2Al6O14(s)<br />

Slag<br />

P2Al6O14(s)<br />

Al 2 O 3 - P 2 O 5<br />

AlO4P(s2)<br />

AlO4P(s)<br />

P 2O 5/(Al 2O 3+P 2O 5) (g/g)<br />

[Stone, Egan, 1956]<br />

[Tananaev, Maksimchuk, 1978]<br />

AlO4P(s3) P6Al2O18(s)<br />

P6Al2O18(s) + P2O5(s2)<br />

0 0.2 0.4 0.6 0.8 1<br />

P.E. Stone, E.P. Egan, J.R. Lehr, J. Am,<br />

Ceram. Soc., 39 [3], (1956), pp.89-98.<br />

I.V. Tananaev, E.V. Maksimchuk,Y. G.<br />

Bushuev, S.A. Shestov, Izv. Akad. Nauk SSSR,<br />

Neorg. Mater., 14 [4], (1978), pp.719-722.


GTT-Technologies<br />

T(C)<br />

2600<br />

2100<br />

1600<br />

1100<br />

600<br />

100<br />

CaP4O11(s)<br />

O5P2(s2) + CaP4O11(s)<br />

CaO-P 2O 5 phase diagram<br />

Ca2P6O17(s)<br />

Slag<br />

Ca(PO3)2(s)<br />

CaO - P 2 O 5<br />

Ca2O7P2(s3)<br />

Ca2O7P2(s2)<br />

Ca2P2O7(s)<br />

1 atm<br />

Ca3(PO4)2(s)<br />

[Hill, 1944]<br />

Ca3(PO4)2(s3)<br />

Ca3(PO4)2(s2)<br />

CaO/(CaO+P 2O 5) (g/g)<br />

[Trömmel, 1961, DTA]<br />

[Trömmel, 1961, hot stage microscope]<br />

Ca4(PO4)2O(s)<br />

MeO + Slag<br />

MeO + Ca4(PO4)2O(s)<br />

0 0.2 0.4 0.6 0.8 1


GTT-Technologies<br />

T(C)<br />

2500<br />

2300<br />

CORUNDUM + Slag<br />

2100<br />

1900<br />

1700<br />

1500<br />

1300<br />

1100<br />

900<br />

700<br />

500<br />

300<br />

Cr10P2O20(s)<br />

Cr 2O 3-P 2O 5 phase diagram in air<br />

Cr6P2O14(s)<br />

Cr 2 O 3 - P 2 O 5 - O 2<br />

p(O 2 ) = 0.21 atm, 1 atm<br />

Slag<br />

CrPO4(s)<br />

P 2O 5/(Cr 2O 3+P 2O 5) (mol/mol)<br />

[J.V. Tananaev, E.V. Maksumchuk, 1978]<br />

CrPO4(s) + P2O5(s2)<br />

Slag + P2O5(s2)<br />

0 0.2 0.4 0.6 0.8 1<br />

I.V. Tananaev, E.V. Maksimchuk,Y. G.<br />

Bushuev, S.A. Shestov, Izv. Akad. Nauk<br />

SSSR, Neorg. Mater., 14 [4], (1978),<br />

pp.719-722.


FeO-P 2O 5 phase diagram in equilibrium with Fe<br />

GTT-Technologies<br />

T(C)<br />

1500<br />

1300<br />

MeO + Slag + Fe(s2)<br />

1100<br />

900<br />

700<br />

500<br />

300<br />

100<br />

Fe 18 P 2 O 24<br />

SPINEL + Fe(s) + Fe 3 P 2 O 8<br />

Fe 3 P 2 O 8<br />

Fe 2 P 2 O 7<br />

FeO - P 2O 5 - Fe<br />

Fe/(FeO+P 2 O 5 ) (mol/mol) = 0.0001, 1 atm<br />

Slag + Fe(s)<br />

Slag + Slag#2<br />

FeP 2 O 6<br />

P 2O 5/(FeO+P 2O 5) (mol/mol)<br />

Slag + Fe(s2)<br />

Slag + Fe(s) + FeP 2 O 6<br />

[L.Chang, 2010]<br />

Slag + Fe(s)<br />

O 5 P 2 (s2) + Fe(s) + FeP 2 O 6<br />

0 0.2 0.4 0.6 0.8 1


GTT-Technologies<br />

T(C)<br />

1700<br />

1500<br />

1300<br />

1100<br />

900<br />

700<br />

500<br />

300<br />

100<br />

P 2 O 5 (s2) + Fe 2 P 6 O 18<br />

Fe 2O 3–P 2O 5 phase diagram in air<br />

Fe 2 P 6 O 18<br />

Slag<br />

Fe 2O 3 - P 2O 5 - O 2<br />

p(O 2 ) = 0.21 bar<br />

Fe 4 P 6 O 21<br />

FePO 4<br />

Fe 2O 3/(Fe 2O 3+P 2O 5) (mol/mol)<br />

[L.Zhang,M.Schlesinger,R.Brow,2011]<br />

Slag + Fe 2 O 3<br />

Fe 6 P 2 O 14<br />

Slag + SPINEL<br />

0 0.2 0.4 0.6 0.8 1<br />

L. Zhang, M. E. Schlesinger, R. K.<br />

Brow, (J. Am. Ceram. Society,<br />

Vol.94, Issue 5, (2011), pp.1605-<br />

1610.<br />

Slag Atlas, 2nd Ed., Verlag Stahl-<br />

Eisen, Düsseldorf, 1995., p.68.


GTT-Technologies<br />

T(C)<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

MeO + Slag<br />

MeO + Mg3O8P2(s)<br />

MgO-P 2O 5 phase diagram<br />

Slag<br />

MgO - P 2 O 5<br />

Mg3O8P2(s)<br />

P 2O 5/(MgO+P 2O 5) (g/g)<br />

[J. Berak, 1958]<br />

P2Mg2O7(s) P2MgO6(s)<br />

Slag + P2MgO6(s)<br />

P2MgO6(s) + P2O5(s2)<br />

0 0.2 0.4 0.6 0.8 1<br />

J. Berak, Rocz. Chem., 32 [1],<br />

(1958), pp.17-22.


Isothermal section in FeO-Fe 2O 3-P 2O 5 at 900 o C<br />

GTT-Technologies<br />

Fe 2 P 2 O 7<br />

FeP 2 O 6<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

P 2 O 5<br />

Slag<br />

Fe3P2O8 Fe4P2O Fe 10<br />

10P6O26 Fe 18 P 2 O 24<br />

Fe 2 O 3 - P 2 O 5 - FeO<br />

900 o<br />

C<br />

Fe 7 P 6 O 24<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

FeO Fe 2 O 3<br />

mole fraction<br />

Fe 2 P 6 O 18<br />

Fe 4 P 6 O 21<br />

FeO 4 P<br />

Fe 6 P 2 O 14<br />

SPINEL + Fe 2 O 3 + Fe 6 P 2 O 14<br />

Slag Atlas, 2nd Ed., Verlag Stahl-<br />

Eisen, Düsseldorf, 1995., p.68.<br />

A. Modaressi, J.C. Kaell,<br />

B.Malaman, R. Gerardi, C. Gleitze,<br />

Mat. Res. Bull. 18 (1983), No. 1,<br />

pp.101-109.


GTT-Technologies<br />

Conclusions<br />

• All systems were assessed using experimental phase diagram information.<br />

Other experimental information, eg. enthalpies and activities, is scarce.<br />

• The liquid phase in all subsystems was evaluated using associate species<br />

model (two cations per species).<br />

• <strong>CaF</strong> 2 has so far been integrated into the reduced core system CaO-MgO-<br />

Al 2O 3-FeO-Fe 2O 3-SiO 2. All binary and 5 ternary systems were described.<br />

• The stoichiometric phases 3CaO . 3Al 2O 3 . <strong>CaF</strong>2, 11CaO . 7Al 2O 3 . <strong>CaF</strong>2,<br />

4CaO . 2SiO 2 . <strong>CaF</strong>2, 3CaO . 2SiO 2 . <strong>CaF</strong>2(Cuspidine), and 9CaO . 3SiO 2 . <strong>CaF</strong>2 were<br />

incorporated.<br />

• The Al 2O 3-<strong>CaF</strong> 2-CaO system is critically evaluated according to the<br />

experimentally determined miscibility gap in the liquid phase.<br />

• In the thermodynamic assessments of the binary systems Al 2O 3-P 2O 5, CaO-<br />

P 2O 5, Cr 2O 3-P 2O 5, FeO-P 2O 5, Fe 2O 3-P 2O 5, MgO-P 2O 5 as well as the ternary<br />

FeO-Fe 2O 3-P 2O 5 system 28 stoichiometric solid phases containing P were<br />

incorporated.


GTT-Technologies<br />

Fe 2O 3<br />

FeO<br />

Future developments<br />

Cr 2O 3<br />

SiO 2<br />

Al 2O 3<br />

P 2O 5<br />

K 2O<br />

CaO<br />

Na 2O<br />

MgO<br />

+ ternaries


GTT-Technologies<br />

Fe 2O 3<br />

FeO<br />

Future developments<br />

Cr 2O 3<br />

SiO 2<br />

Al 2O 3<br />

<strong>CaF</strong> 2<br />

K 2O<br />

CaO<br />

Na 2O<br />

MgO<br />

+ ternaries?


GTT-Technologies<br />

Happy Birthday, Gunnar!<br />

Best wishes!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!