11.08.2013 Views

full presentation - RWTH Aachen University

full presentation - RWTH Aachen University

full presentation - RWTH Aachen University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mitglied der Helmholtz-Gemeinschaft<br />

Investigations of Degradation Phenomena in High Temperature<br />

Discharge Lamps using Thermo chemical Modelling<br />

Torsten Markus and Sarah Fischer<br />

Institute for Energy Research (IEF-2)<br />

Forschungszentrum Jülich GmbH<br />

52425 Jülich<br />

T.Markus@fz-juelich.de<br />

T. Markus <strong>RWTH</strong>-<strong>Aachen</strong> Jan 07<br />

1


Content<br />

• Insight into Modern Light Sources<br />

• Corrosion and Chemical Transport<br />

• Calculation Design<br />

• Results<br />

• Conclusion<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 2


PCA-Lamps<br />

Lamp-burner<br />

(PCA)<br />

PCA = Poly Crystalline Alumina<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 3


Aplications for High Intensity Discharge Lamps<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 4


16. Juni 2010 Institute of Energy Research (IEF-2) 5


DyI 3<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 6


Schematic of a High Pressure Discharge Lamp<br />

Wall Material Al 2O 3<br />

Tungsten Electrode<br />

Wall Corrosion<br />

Alumina<br />

Deposition<br />

1380K<br />

1340K 1340K<br />

1300K<br />

5000K<br />

1310K<br />

Metal Halide Melt<br />

e.g. NaI / TlI / DyI 3<br />

Interior with Gaseous Species<br />

e.g. Na, I, Hg, Tl, Dy, Ar, Xe, ...<br />

6000K<br />

3800K 3000K<br />

1300K<br />

Tungsten<br />

Deposition<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 7


Chemical Transport in Ceramic Discharge Metalhalide<br />

Lamps (CDM)<br />

Cross Section of a Corroded Discharge Vessel<br />

in Horizontal Burning Position (after 9000 h of operation)<br />

Source<br />

Sink<br />

500µm 500µm<br />

PCA deposition<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 8


Explaination of Transport Phenomena<br />

AlI 3(g)+Al 2O 3(s)= 3AlOI(g)<br />

hot<br />

Al O (s)<br />

2 3 Al O (s)<br />

2 3<br />

Al<br />

Al<br />

O<br />

AlO<br />

Al2O<br />

AlOI<br />

AlI 3<br />

Salt salt Melt melt<br />

3 DyI 3(l) + 4 Al 2O 3(s) = Dy 3Al 5O 12(s) + 3 AlI 3(g)<br />

DyI 3(g) + Al 2O 3(s) = DyAlO 3(s) + AlI 3(g)<br />

3AlOI(g)= AlI 3(g)+Al 2O 3(s)<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 9<br />

Al<br />

O


From data assessment to an application<br />

calculation<br />

Augmented by<br />

Estimation techniques<br />

a) experimental trends<br />

b) ab initio calculations<br />

Experimental raw data<br />

(thermodynamic properties and phase equilibria)<br />

Assessment<br />

Programs<br />

Gibbs Energy Database<br />

Application<br />

Programs<br />

Calculations of:<br />

Thermodynamic Data<br />

Phase Equilibria<br />

Process Simulation<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 10


Computation<br />

T, V = const<br />

Source<br />

(Condensed Phase)<br />

„Cooperative Transport Model“<br />

R. Gruehn, H.J. Schweitzer, Angew. Chem. 95, 80 (1983)<br />

Thermochemical Database<br />

c p = A + B·T + C·T -1 + D·T -2<br />

ΔH<br />

f<br />

S<br />

T<br />

0<br />

f<br />

ΔH 0 T c (T)dT<br />

p<br />

0<br />

T<br />

T c ( T)<br />

0<br />

p<br />

S 0 dT<br />

T<br />

T T<br />

T 0<br />

p<br />

Z,<br />

gas<br />

ni Z,<br />

solid<br />

n<br />

i<br />

Komponents i = 1,...N<br />

Iterations Z= 1,...n<br />

T<br />

Computation<br />

T, p = const<br />

Sink<br />

(Condensed Phase)<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 11


SimuSage Modelling<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 12


Equilibrium reactors<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 13


Scheme of the transport program<br />

Frist Step:<br />

Input of the salt melt<br />

Phase splitter<br />

Iteration<br />

Cycle<br />

Sink Source<br />

Phase splitter<br />

First Step:<br />

Input of Al 2O 3<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 14


Example: NaI – CeI 3 – Mixture<br />

T Sink = 1200°C<br />

T Source = 1400°C<br />

V = 0,0285 dm³<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 15


Comparison between experiments and simulations<br />

NaI – CaI 2 - Mixture<br />

Composition NaI, CaI 2<br />

75% NaI, 25% CaI 2 50% NaI, 50% CaI 2 25% NaI, 75% CaI 2<br />

Simulation [mol Al 2O 3]: 1,22 · 10 -9 < 2,55 · 10 -9 < 7,16 · 10 -9<br />

Experimental certification:<br />

→ Agreement for NaI – CaI 2 – Mixture<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 16


Comparison between experiments and simulations<br />

CaI 2 – CeI 3 - Mixture<br />

Composition CaI 2, CeI 3<br />

90,48%, 9,52% 87,1%, 12,9%<br />

Simulation [mol Al 2O 3]: 5,08 · 10 -8 < 5,58 · 10 -8<br />

Experimental certification: ≈<br />

What causes this difference?<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 17


SEM – Analysis with 90,48% CaI 2 and 9,52% CeI 3<br />

1200 °C 1400 °C<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 18


Formation of secondary phases<br />

Calculated<br />

Activity<br />

Al 2O 3_ca(s) 1.0000E+00<br />

CaI 2_l(liq) 9.4561E-01<br />

Al 2O 3_cc(s2) 4.9718E-01<br />

CaI 2_ci(s) 2.4571E-01<br />

CeOI_ci(s) 1.1649E-01<br />

CeI 3_l(liq) 5.4007E-02<br />

Al 2O 3_l(liq) 3.5536E-02<br />

CeAlO 3_ci(s) 2.0447E-02<br />

CeAl 11O 18_ci(s) 1.3446E-02<br />

CeI 3_ci(s) 1.1285E-02<br />

CeAlO 3_l(liq) 5.4999E-03<br />

Ce 2Al 2O 6_ci(s) 4.1199E-03<br />

CeAl 11O 18_l(liq) 3.4167E-03<br />

CaAl 4O 7_ci(s) 3.0990E-03<br />

CaAl 2O 4_ci(s) 7.1260E-04<br />

Al_l(liq) 6.7438E-04<br />

Al_ci(s) 4.0705E-04<br />

CaO_ci(s) 1.4573E-05<br />

AlI 3_l(liq) 2.7872E-06<br />

CeO 2_ci(s) 1.6025E-06<br />

Al 9.3713E-07<br />

Ce 2O 3_ci(s) 6.0181E-07<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 19


Example: NaI – CaI 2 – CeI 3 – Mixture<br />

T Sink = 1200°C<br />

T Source = 1400°C<br />

V = 0,0285 dm³<br />

n(CaI 2)=0,0008mol<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 20


Experimental Determination of<br />

Thermodynamic Data<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 21


Differential Thermal Analysis (DTA)<br />

Simultaneous DTA with<br />

Thermogravimetry (TG)<br />

STA 429, Netzsch<br />

Principle of DTA<br />

Measuring of Phase<br />

Transition<br />

Temperatures<br />

Determination of the<br />

Quantity of Heat<br />

Studies in different<br />

Atmospheres<br />

Thermal Analysis from<br />

RT to 2800 K<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 22<br />

P T<br />

T<br />

T


Principle of Knudsen Effusion Mass<br />

Spectrometry (KEMS)<br />

Vaporisation studies up to 2800 K<br />

Identification of gaseous species<br />

Determination of partial pressures<br />

(10 -8 ... 10 Pa)<br />

Evaluation of thermodynamic data of<br />

gaseous species<br />

condensed phases<br />

Elucidation of corrosion processes<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 23


Mass Spectrometer Knudsen Cell System (CH 5)<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 24


Potential of<br />

Knudsen Effusion Mass Spectrometry<br />

Experiment<br />

Appearance-Potential<br />

<br />

<br />

r T<br />

G<br />

2 nd law<br />

<br />

<br />

<br />

r T<br />

H<br />

<br />

r 298<br />

H<br />

<br />

Identifiction of<br />

Gaseous Gpecies P i – partial<br />

pressure<br />

<br />

S<br />

r T<br />

<br />

r 298<br />

S<br />

<br />

k ° p –<br />

Equilibrium Constant<br />

II<br />

r 298<br />

H<br />

<br />

3 rd law<br />

r 298<br />

S<br />

<br />

<br />

a i –<br />

Thermod. Activities<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 25<br />

II<br />

<br />

<br />

m ix 298<br />

H<br />

G<br />

E<br />

m<br />

<br />

i


Temperature and Composition dependency<br />

of activity for the NaI – CeI 3 system<br />

a<br />

a<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

550 °C 0,8 600 °C<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

625 °C<br />

0,0 0,2 0,4<br />

XNaI 0,6 0,8 1,0<br />

1,0<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

650 °C<br />

0,0 0,2 0,4<br />

XNaI 0,6 0,8 1,0<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 26


Phase Diagram of the System NaI–CeI 3 (DTA)<br />

Binary Excess Polynomial:<br />

G m E =(xNaI i )(xCeI3 j )(A + B*T + C*T*ln(T) + D*T 2 + E*T 3 + F*T -1 )<br />

(calculated)<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 27


Overview of the data to be optimized in the<br />

NaI-CeI 3 system<br />

Various experimental data on the binary NaI-CeI 3 system have been measured:<br />

– phase diagram data (liquidus points, eutectic points)<br />

– liquid-liquid enthalpy of mixing<br />

– activity of NaI(liq) at different temperatures<br />

OptiSage will be used to optimize the parameters for the liquid Gibbs energy model<br />

(XS terms). All other data (G° of the pure stoichiometric solids, as well as the pure<br />

liquid components) will be taken from the FACT database (i.e. remain fixed).<br />

A polynomial model for the Gibbs energy of the liquid will be used:<br />

G = (X 1 G° 1 + X 2 G° 2) + RT(X 1 ln X 1 + X 2 ln X 2) + G E<br />

where G E = H – TS E<br />

Using the binary excess terms:<br />

H = X 1X 2 (A 1) + X 1 2 X2 (B 1)<br />

S E = X 1X 2 (A 3) + X 1 2 X2 (B 3)<br />

Hence:<br />

G E = X 1X 2 (A 1 - A 3T) + X 1 2 X2 (B 1 - B 3T)<br />

Where A 1, A 3, B 1 and B 3 are the 4<br />

parameters to be optimized.<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 28<br />

G<br />

G° 1<br />

NaI<br />

x CeI3<br />

CeI 3<br />

G° 2


Summary<br />

Corrosion- and rearrangement – effects of the<br />

wall material limit the life time of High-Energy-<br />

Discharge-Lamps<br />

Cooperative Transport Model was programmed<br />

with SimuSage<br />

Simulations of the corrosion speed of lamp<br />

relevant salt mixtures<br />

Comparison of the experiments and simulations<br />

show remarcable agreement<br />

16. Juni 2010 Institute of Energy Research (IEF-2) 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!