10.08.2013 Views

III. Gm-C Filtering - Epublications - Université de Limoges

III. Gm-C Filtering - Epublications - Université de Limoges

III. Gm-C Filtering - Epublications - Université de Limoges

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FIGURE 111. LINEARIZATION OF THE TRANSCONDUCTANCE BY CURRENT INCREASE...............................................................- 97 -<br />

FIGURE 112. SOURCE DEGENERATION.........................................................................................................................- 97 -<br />

FIGURE 113. SCHEMATIC OF THE DYNAMIC SOURCE DEGENERATION TECHNIQUE .................................................................- 98 -<br />

FIGURE 114. TRANSCONDUCTANCE LINEARIZATION BY DYNAMIC SOURCE DEGENERATION .....................................................- 98 -<br />

FIGURE 115. UNBALANCED CMOS DIFFERENTIAL PAIRS.................................................................................................- 99 -<br />

FIGURE 116. LINEARIZATION OF THE TRANSCONDUCTANCE BY UNBALANCED DIFFERENTIAL PAIRS ...........................................- 99 -<br />

FIGURE 117. FDA // PDA GM-CELL DESIGN..............................................................................................................- 100 -<br />

FIGURE 118. TRANSCONDUCTANCE LINEARIZATION BY MGTR ......................................................................................- 101 -<br />

FIGURE 119. TRANSCONDUCTANCE LINEARIZATION BY MGTR ......................................................................................- 102 -<br />

FIGURE 120. GM-CELL TEST BENCH ..........................................................................................................................- 102 -<br />

FIGURE 121. PROPOSED DIFFERENTIAL GM-C FILTER ..................................................................................................- 104 -<br />

FIGURE 122. CAPACITOR BANKS DESIGN....................................................................................................................- 104 -<br />

FIGURE 123. MODEL FOR THE SWITCHES...................................................................................................................- 105 -<br />

FIGURE 124. CURRENT SOURCE GENERATION.............................................................................................................- 105 -<br />

FIGURE 125. GM-CELL DESIGN ................................................................................................................................- 106 -<br />

FIGURE 126. GM-CELL DC GAIN AND TRANSCONDUCTANCE..........................................................................................- 107 -<br />

FIGURE 127. FILTER GAIN AND Q-FACTOR FOR VARIOUS CENTRAL FREQUENCIES ...............................................................- 108 -<br />

FIGURE 128. FILTER RF PERFORMANCES VERSUS CENTRAL FREQUENCY............................................................................- 108 -<br />

FIGURE 129. GM-CELL DESIGN ................................................................................................................................- 109 -<br />

FIGURE 130. GM-CELL DC GAIN AND TRANSCONDUCTANCE..........................................................................................- 110 -<br />

FIGURE 131. GM-CELL LINEARITY VERSUS PDA BIAS....................................................................................................- 110 -<br />

FIGURE 132. MONTE-CARLO SIMULATIONS OF THE GM-CELL IIP3 FOR 100 RUNS ............................................................- 111 -<br />

FIGURE 133. FILTER GAIN AND Q-FACTOR FOR VARIOUS CENTRAL FREQUENCIES ...............................................................- 111 -<br />

FIGURE 134. CENTRAL FREQUENCY VARIATION VERSUS CAPACITANCE VALUES...................................................................- 112 -<br />

FIGURE 135. FILTER RF PERFORMANCES VERSUS CENTRAL FREQUENCY............................................................................- 112 -<br />

FIGURE 136. FILTER IN-BAND IIP3 VERSUS CENTRAL FREQUENCY ...................................................................................- 113 -<br />

FIGURE 137. IIP3 VERSUS PDA BIAS VARIATION AT 135MHZ.......................................................................................- 114 -<br />

FIGURE 138. PRINCIPLE OF AN OA BASED FILTER ........................................................................................................- 119 -<br />

FIGURE 139. SALLEN-KEY BANDPASS FILTER SCHEMATIC...............................................................................................- 120 -<br />

FIGURE 140. NEGATIVE FEEDBACK RAUCH BANDPASS FILTER SCHEMATIC.........................................................................- 121 -<br />

FIGURE 141. Q-FACTOR OF THE NEGATIVE FEEDBACK RAUCH FILTER VERSUS GAIN K ..........................................................- 122 -<br />

FIGURE 142. POSITIVE FEEDBACK RAUCH BANDPASS FILTER SCHEMATIC...........................................................................- 123 -<br />

FIGURE 143. Q-FACTOR VERSUS FILTER GAIN FOR RAUCH AND SALLEN-KEY FILTERS...........................................................- 126 -<br />

FIGURE 144. HARMONICS AND ADJACENT CHANNELS REJECTIONS FOR Q=3 .....................................................................- 128 -<br />

FIGURE 145. CAPACITORS BANKS DESIGN ..................................................................................................................- 129 -<br />

FIGURE 146. CENTRAL FREQUENCY OF THE FILTER VERSUS DTUNE..................................................................................- 130 -<br />

FIGURE 147. FREQUENCY EVOLUTION OF THE OPEN-LOOP GAIN K ..................................................................................- 131 -<br />

FIGURE 148. PROPOSED NON-INVERTING AMPLIFIER IMPLEMENTATION OF GAIN K............................................................- 131 -<br />

FIGURE 149. FILTER PEAKING GAIN...........................................................................................................................- 132 -<br />

FIGURE 150. PEAK FREQUENCY VERSUS OA GBW ......................................................................................................- 132 -<br />

FIGURE 151. OPEN-LOOP STUDY TEST-BENCH ...........................................................................................................- 133 -<br />

FIGURE 152. SCHEMATIC OF THE OA IN CMOS .........................................................................................................- 136 -<br />

FIGURE 153. OA VOLTAGE GAIN VERSUS FREQUENCY IN CMOS ....................................................................................- 137 -<br />

FIGURE 154. INITIAL SCHEMATIC OF THE OA IN BICMOS.............................................................................................- 138 -<br />

FIGURE 155. LINEARITY OF THE FILTER VERSUS FOLLOWER CURRENT I F ............................................................................- 139 -<br />

FIGURE 156. FEEDBACK LOOP ON THE FOLLOWER TO INCREASE LINEARITY........................................................................- 140 -<br />

FIGURE 157. ENHANCEMENT OF THE LINEARITY OF THE FILTER BY A FEEDBACK LOOP ON THE FOLLOWER STAGE .......................- 140 -<br />

FIGURE 158. LOCATION OF THE POLES AND ZEROS OF THE RAUCH FILTER TRANSFER FUNCTION WHEN C STAB1 VARIES .................- 141 -<br />

FIGURE 159. FINAL OPERATIONAL AMPLIFIER SCHEMATIC .............................................................................................- 142 -<br />

FIGURE 160. OA GAIN AND PHASE VERSUS FREQUENCY WHEN IMPLEMENTING CSTAB2 .....................................................- 143 -<br />

FIGURE 161. OA GAIN VERSUS FREQUENCY ...............................................................................................................- 144 -<br />

FIGURE 162. ON-CHIP IMPLEMENTED DIFFERENTIAL FILTER...........................................................................................- 145 -<br />

FIGURE 163. MAIN TEST BENCH ..............................................................................................................................- 146 -<br />

FIGURE 164. LAYOUT OF ONE CAPACITOR BANK..........................................................................................................- 146 -<br />

FIGURE 165. LAYOUT OF ONE OA CELL .....................................................................................................................- 147 -<br />

FIGURE 166. LAYOUT OF THE ENTIRE RAUCH DIFFERENTIAL FILTER..................................................................................- 147 -<br />

FIGURE 167. RAUCH FILTER CHIP PHOTOGRAPH..........................................................................................................- 148 -<br />

- 226 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!