10.08.2013 Views

III. Gm-C Filtering - Epublications - Université de Limoges

III. Gm-C Filtering - Epublications - Université de Limoges

III. Gm-C Filtering - Epublications - Université de Limoges

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Idiff (A)<br />

levels reached with this technique are still poor, as it may be observed in Table 8, and very<br />

high currents are nee<strong>de</strong>d to reach high gm values.<br />

0,0015<br />

0,001<br />

0,0005<br />

0<br />

-0,0005<br />

-0,001<br />

-0,0015<br />

-0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5<br />

Vin (V)<br />

0,5mA<br />

1mA<br />

1,5mA<br />

gm_diff (A/V)<br />

- 97 -<br />

0,004<br />

0,003<br />

0,002<br />

0,001<br />

0<br />

0,5mA<br />

1mA<br />

1,5mA<br />

-0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5<br />

Vin (V)<br />

Figure 111. Linearization of the transconductance by current increase<br />

<strong>III</strong>.2.c Active and Passive Source Degeneration Technique<br />

The principle of active and passive source <strong>de</strong>generation (or emitter when <strong>de</strong>aling with<br />

BiCMOS technologies) is to use an active or a passive <strong>de</strong>vice, connected to the source of the<br />

MOS transistor to linearize the transconductance gain. In this configuration, illustrated in<br />

Figure 112, the impedance Z<strong>de</strong>g acts as a local feedback.<br />

Vin<br />

Iout<br />

gm<br />

Z<strong>de</strong>g<br />

Figure 112. Source <strong>de</strong>generation<br />

Using feedback theory, the equivalent transconductance of this stage can be computed.<br />

It gives:<br />

g m<br />

g m _ <strong>de</strong>g = . (<strong>III</strong>.33)<br />

1+ g Z<br />

m<br />

<strong>de</strong>g<br />

Hence, for gm.Z<strong>de</strong>g>>1, it can be approximated to<br />

1<br />

g m _ <strong>de</strong>g ≈<br />

Z<br />

, (<strong>III</strong>.34)<br />

<strong>de</strong>g<br />

which is very interesting since the transconductance can then be set by a single impedance.<br />

Resistors are usually used but they increase noise (as <strong>de</strong>monstrated in APPENDIX D). In<strong>de</strong>ed,<br />

the noise power is proportional to Z<strong>de</strong>g. That is why inductances are preferred. Feedbacks<br />

making use of transistors are used as well.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!