10.08.2013 Views

UNIFOB - Uni Computing

UNIFOB - Uni Computing

UNIFOB - Uni Computing

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

BCCS<br />

TECHNICAL REPORT SERIES<br />

Numerical studies of internal solitary wave<br />

trains generated at edges in the topography.<br />

Berntsen, J., Mathisen, J.-P. and Furnes, G.<br />

REPORT No. 21 April 13, 2007<br />

Report on Contract C06127 between NDP (Norwegian Deepwater<br />

Programme) and Fugro OCEANOR AS.<br />

(Subcontract to BCCS)<br />

<strong>UNIFOB</strong><br />

the <strong>Uni</strong>versity of Bergen research company<br />

BERGEN, NORWAY


BCCS Technical Report Series is available at http://www.bccs.no/publications/<br />

Requests for paper copies of this report can be sent to:<br />

Bergen Center for Computational Science, Høyteknologisenteret,<br />

Thormøhlensgate 55, N-5008 Bergen, Norway


1 Executive summary<br />

In this report some results from numerical studies of internal wave trains are given. The<br />

parameters of the experiments are chosen to be relevant for the Ormen Lange area. Many of<br />

the characteristics of the measured wave events are reproduced. However, the wave periods<br />

are still too short. In the model results the periods between consecutive waves in a wave<br />

train are typically 20 min whereas they are 45 min in the measurements we have focused<br />

on. A theoretical explanation for this discrepancy is given. Basically the periods between<br />

consecutive waves in a wave train depend on the distance from the generation point, and<br />

it would require more computer resources to follow the waves far enough to reproduce the<br />

45 min periods in numerical experiments. The amplitudes of the waves are reduced with<br />

distance frome the shelf edge. This means that closer to the generation point, the wave<br />

amplitudes and corresponding velocities may be significantly larger than those measured.


2 Description of the numerical experiments<br />

The σ-coordinate ocean model applied in the present studies is a two dimensional, (x,z),<br />

version of the model described in [Berntsen(2000)] where x and z are the horizontal and vertical<br />

Cartesian coordinates respectively. The model is available from www.math.uib.no/BOM/.<br />

The variables are discretized on a C-grid. In the vertical, the standard σ-transformation,<br />

σ = z−η<br />

H+η , where η is the surface elevation, and H the bottom depth, is applied. For advection<br />

of momentum and density a Total Variance Diminishing (TVD)-scheme with a<br />

superbee limiter described in [Yang and Przekwas(1992)] is applied in the present studies.<br />

The standard second order Princeton Ocean Model (POM) method is applied to estimate<br />

the internal pressure gradients ([Blumberg and Mellor(1987), Mellor(1996)]). The model<br />

is mode split with a method similar to the splitting described in<br />

[Berntsen et al.(1981)Berntsen, Kowalik, Sælid, and Sørli] and [Kowalik and Murty(1993)].<br />

Even if the model is two dimensional, flow in the across domain direction is allowed. However,<br />

there will be no across domain variability in this flow. The effects of the earths rotation<br />

are taken into account in the present studies and the Coriolis parameter is set to f =<br />

1.2 × 10−4 s−1 .<br />

It is known that internal waves may be formed behind topographic features in a stratified<br />

ocean, see for instance [Gill(1982), Baines(1995), Kundu and Cohen(2004), Thorpe(2005)].<br />

This is also studied recently in [Roth(2000)] and [Lamb(2007)]. In these papers it is shown<br />

that dispersive wave trains may be generated at a shelf edge in tidally forced systems. Inspired<br />

by the findings in [Roth(2000)] and [Lamb(2007)], a two-dimensional cross shelf<br />

model system has been set up with parameters of topography, forcing, and stratification<br />

that are relevant for the Ormen Lange area. The model area is 18000 m long. At x = 0 m a<br />

flow is forced into the system with a periodic forcing u = U0 sin(ω f t) where u is the velocity<br />

component in x direction, U0 the amplitude of the forced velocity. Generally the tidal<br />

signal is weak near the shelf edge in the Ormen Lange area. The wave trains were observed<br />

during periods with relatively strong winds. The wave trains are therefore assumed to be<br />

driven by inertial oscillations. The inertial frequency ω f is approximately 0.00013s−1 at<br />

our latitude, giving a period of 13.42 hours.<br />

In one set of experiments the focus is on solitary wave propagation outside the shelf,<br />

but generated at the shelf edge. In these experiments the depth profile H(x) in m, see Figure<br />

1, is specified according to<br />

<br />

−280 , x < 1000<br />

H(x) =<br />

120<br />

−400+<br />

, x > 1000.<br />

1+((x−1000)/W slope)∗∗4<br />

The slope width Wslope is taken to be 500 m in the present experiments. The studies of<br />

wave propagation off the shelf edge are performed with U0 equal to 0.3 m s −1 and 0.6 m s −1 .<br />

In another set of experiments the focus is on solitary wave propagation on the shelf.<br />

The depth profile in these studies H(x) in m, see Figure 11, is specified according to<br />

<br />

−280 , x > 1000<br />

H(x) =<br />

120<br />

−400+<br />

, x < 1000,<br />

1+((x−1000)/W slope)∗∗4<br />

where again the sill width is taken to be 500 m. The studies of wave propagation on the<br />

shelf are performed with U0 equal to 0.3 m s −1 and 0.4 m s −1 .<br />

Based on the measurements provided from this area an idealised initial stratification is<br />

assumed. The density at the surface is 1025.7 kg m 3 , the density at 50 m depth is 1027.3 kg m 3 ,<br />

and at 400 m depth the density is taken to be 1027.6 kg m 3 . Linear interpolation is used to<br />

compute the full density profile. With this density profile and theory about internal wave<br />

propagation the wave speed may be estimated to be in the range from 0.63 to 0.88 m s −1 .<br />

The model grid resolution is 25 m horizontally and 100 equidistant layers are used<br />

vertically. The model is run for two inertial periods. The results from the four experiments<br />

are summarised in the following sections.<br />

2


3 Solitary wave propagation off the shelf (U0 = 0.3 m s −1 )<br />

Below are some results for the case with solitary waves off the shelf, using a maximum<br />

inflow velocity of 0.3 m s −1 . A section of the density field after 11.74 hours and the depth<br />

profile is given in Figure 1. To get a better impression of the wave propagation, the density<br />

fields and two components of the velocity field at three consecutive times are given in<br />

Figures 2, 3, and 4. In these figures the focus is on the internal waves. At time equal to<br />

11.74 hours only one wave of suppression is seen in Figure 2. This wave is also seen after<br />

13.42 hours and 15.09 hours. However, at these later times a group of solitary waves is seen<br />

trailing the leading wave, In Figure 5 the u components at x = 5000 m and x = 15000 m are<br />

plotted as functions of time and depth, again with focus on the passing train of solitary<br />

waves.<br />

The speed of the front of the wave train in the period from 13.42 hours to 15.09 hours is<br />

approximately 0.56 m s −1 . The wave train changes form, and develops the typical solitary<br />

wave train characteristics as it propagates away from the edge. From Figure 5 the period<br />

between consecutive waves in the group may be estimated to be 24 minutes. It is also<br />

clearly seen that the first wave in the train is strongest, and the amplitudes of the waves<br />

behind are gradually reduced.<br />

depth [m]<br />

0<br />

−50<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

−350<br />

25.8 25.9 25.8 25.9 26 25.8 25.9 26<br />

26<br />

26.1 26.1 26.1<br />

27.5<br />

26.7<br />

27.2<br />

26.2<br />

26.3<br />

26.5<br />

26.8<br />

26.6<br />

27.3<br />

27.4<br />

26.9<br />

26.5 26.3 26.2<br />

26.726.6<br />

26.9 26.8 27<br />

27.1 27.2 27.1<br />

27.3<br />

27.1<br />

26.4<br />

RHO (ci=0.1 )<br />

27<br />

27.5<br />

−400<br />

0 2000 4000 6000 8000 10000 12000 14000 16000 18000<br />

26.4<br />

distance [m]<br />

(a)<br />

26.3 26.2<br />

26.726.6<br />

26.5<br />

27.227.3<br />

27.427.4<br />

Figure 1: Topography and density field after 11.74 hours (7/8 of an inertial periods).<br />

3<br />

27.5<br />

26.8<br />

26.9<br />

26.4<br />

27


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

27.2<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

26.8<br />

26.9<br />

RHO (ci=0.1 )<br />

−100<br />

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

−30<br />

−20<br />

U (ci=10 cm/s )<br />

−30<br />

distance [m]<br />

(a)<br />

−20<br />

−100<br />

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

0<br />

0<br />

W (ci=1 cm/s )<br />

distance [m]<br />

(b)<br />

2<br />

−100<br />

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000<br />

distance [m]<br />

(c)<br />

Figure 2: The train of solitary waves after 11.74 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

4<br />

0<br />

01<br />

−1<br />

0<br />

−20<br />

−1<br />

−1<br />

−30<br />

−20<br />

0


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

26.6<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

26.9<br />

25.8<br />

25.9<br />

26<br />

RHO (ci=0.1 )<br />

26.5<br />

26.7<br />

26.326.4<br />

27.3<br />

−100<br />

2000 3000 4000 5000 6000 7000 8000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

−10<br />

0<br />

0<br />

−10<br />

0<br />

0<br />

U (ci=10 cm/s )<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

distance [m]<br />

(a)<br />

0<br />

0<br />

0<br />

26.8<br />

27 27.1<br />

−100<br />

2000 3000 4000 5000 6000 7000 8000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−10<br />

0<br />

0<br />

0 −1<br />

−1<br />

0 −1<br />

0<br />

1<br />

0<br />

2 1<br />

0<br />

W (ci=1 cm/s )<br />

0<br />

−1<br />

0<br />

0<br />

−1<br />

0<br />

0<br />

−2 −1<br />

−1<br />

0<br />

2<br />

−1<br />

−2<br />

−2<br />

0<br />

−1<br />

0<br />

0<br />

1<br />

−2<br />

0<br />

−1−1<br />

0<br />

−10<br />

distance [m]<br />

(b)<br />

00<br />

2<br />

−1<br />

−2<br />

0<br />

−2<br />

−1<br />

−2<br />

−100<br />

2000 3000 4000 5000 6000 7000 8000<br />

0<br />

0<br />

distance [m]<br />

(c)<br />

Figure 3: The train of solitary waves after 13.42 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

5<br />

−1<br />

−10<br />

0<br />

0<br />

0<br />

−20<br />

0<br />

0<br />

0<br />

27.2<br />

−10<br />

26.1<br />

26.2<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−1<br />

−1<br />

26.6<br />

−10<br />

−1


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

26.8<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

RHO (ci=0.1 )<br />

25.9<br />

26<br />

26.3 26.4<br />

−100<br />

5000 6000 7000 8000 9000 10000 11000 12000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

10<br />

10<br />

20<br />

U (ci=10 cm/s )<br />

26.1<br />

26.2<br />

distance [m]<br />

(a)<br />

25.8<br />

26.526.6 26.7<br />

27 27.1<br />

20<br />

20<br />

−100<br />

5000 6000 7000 8000 9000 10000 11000 12000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

0<br />

0 0<br />

0<br />

0<br />

0 0<br />

0<br />

1<br />

0 0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

27.2<br />

distance [m]<br />

(b)<br />

0<br />

0<br />

0<br />

−100<br />

5000 6000 7000 8000 9000 10000 11000 12000<br />

0<br />

−1<br />

−1<br />

0 00 0<br />

0<br />

−1<br />

0<br />

−1<br />

−1<br />

−1<br />

W (ci=1 cm/s )<br />

0 00 0<br />

−1<br />

0<br />

−1<br />

0<br />

0<br />

−1<br />

0<br />

−1<br />

2<br />

0<br />

0<br />

−1<br />

−2<br />

0<br />

−2<br />

−1<br />

0<br />

−1<br />

1<br />

0<br />

2<br />

0<br />

−2<br />

−1−1<br />

0<br />

00<br />

−2<br />

−1<br />

0<br />

distance [m]<br />

(c)<br />

Figure 4: The train of solitary waves after 15.09 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

6<br />

−1<br />

−1<br />

−1<br />

0<br />

0<br />

26.9<br />

10<br />

26.8<br />

27.3<br />

1<br />

20<br />

0<br />

0<br />

0<br />

−1<br />

−1<br />

10<br />

−1<br />

0<br />

0


Depth [m]<br />

Depth [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

−100<br />

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

−20<br />

−30<br />

−20<br />

U (ci=10 cm/s )<br />

20<br />

30<br />

U (ci=10 cm/s )<br />

−10−10<br />

−10<br />

−20<br />

20<br />

20<br />

−10<br />

0<br />

Time<br />

(a)<br />

40<br />

30<br />

−100<br />

16 16.5 17 17.5 18 18.5 19 19.5 20<br />

Time<br />

(b)<br />

Figure 5: Time development of the vertical profile of along section velocities at x = 5000 m<br />

(top) and x = 15000 m with focus on the waves. (The time is in hours.)<br />

7<br />

30<br />

30<br />

0<br />

0<br />

30<br />

10<br />

10<br />

20<br />

20<br />

20<br />

20<br />

20<br />

30<br />

10


4 Solitary wave propagation off the shelf (U0 = 0.6 m s −1 )<br />

Below are some results for the case with solitary waves off the shelf, using a maximum<br />

inflow velocity of 0.6 m s −1 . A section of the density field after 13.42 hours and the depth<br />

profile is given in Figure 6. The solitary wave trains generally become much stronger when<br />

the inflow velocity is increased. The density fields and two components of the velocity field<br />

at three consecutive times are given in Figures 7, 8, and 9. In these figures the focus is on<br />

the solitary wave train. In Figure 10 the u components at x = 5000 m and x = 15000 m are<br />

plotted.<br />

The speed of the front of the wave train in the period from 13.42 hour to 15.09 hours is<br />

approximately 0.57 m s −1 and in the period from 15.09 hours to 16.78 hours approximately<br />

1.09 m s −1 . The wave group also changes form, and develops the typical solitary wave train<br />

characteristics as it propagates away from the edge. From Figure 10 the period between<br />

consecutive waves in the group may be estimated to be 15 minutes. It is also clearly seen<br />

that the first wave in the group is strongest, and the amplitudes of the waves behind are<br />

gradually reduced. The speed in the firts wave exceeds 1.00 m s −1 .<br />

depth [m]<br />

0<br />

−50<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

−350<br />

26<br />

26.7<br />

27<br />

25.8<br />

26.5<br />

25.9<br />

26.1<br />

27.1<br />

27.2<br />

26.6<br />

26.2 26.4<br />

26.3<br />

26.8<br />

26.9<br />

27.3<br />

26.8 26.7<br />

26.9<br />

27<br />

27.4<br />

25.8<br />

−400<br />

0 2000 4000 6000 8000 10000 12000 14000 16000 18000<br />

distance [m]<br />

(a)<br />

25.8<br />

27.3<br />

26<br />

25.9<br />

26 25.9<br />

26.6<br />

26.3<br />

27.3<br />

26.3<br />

27.2<br />

27.1<br />

26.1 26.1<br />

26.2<br />

26.4 26.4<br />

26.526.5<br />

27.5<br />

RHO (ci=0.1 )<br />

27.5<br />

27.4<br />

26.8 26.7<br />

26.9 27<br />

27.1<br />

27.2<br />

27.5<br />

26.6<br />

26.2<br />

26.7<br />

26.8<br />

26.9<br />

26.5<br />

25.8<br />

26.126.2<br />

26.6<br />

26<br />

26.4<br />

2727<br />

Figure 6: Topography and density field after 13.42 hours (one inertial period).<br />

8<br />

27.4<br />

27.5<br />

27.1<br />

27.2<br />

27.3<br />

27.5<br />

27.4<br />

26.3<br />

26.9<br />

26.8<br />

27.1<br />

27.2<br />

27.3<br />

27.5


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

26.7<br />

26.8<br />

26.9<br />

27.1<br />

27<br />

27.2<br />

27.3<br />

RHO (ci=0.1 )<br />

27.4<br />

26.5<br />

26.6<br />

26.1 26.2<br />

26<br />

25.8<br />

26.326.4<br />

26.8 26.7<br />

−200<br />

0 500 1000 1500 2000 2500 3000<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

U (ci=10 cm/s )<br />

10<br />

20<br />

0<br />

0<br />

0<br />

10<br />

0<br />

26.9<br />

27<br />

distance [m]<br />

(a)<br />

0<br />

30<br />

20<br />

0<br />

−200<br />

0 500 1000 1500 2000 2500 3000<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

5<br />

−10<br />

0 0<br />

0<br />

−5<br />

−20<br />

0<br />

−5<br />

0<br />

5<br />

−10<br />

−10 −10<br />

10<br />

5<br />

W (ci=5 cm/s )<br />

0<br />

0<br />

−20<br />

0<br />

0<br />

0<br />

−10<br />

−5<br />

−30<br />

−20<br />

−40<br />

0<br />

−10<br />

0<br />

5<br />

10<br />

−10<br />

−20<br />

−30<br />

−10<br />

0<br />

−30<br />

−40<br />

−20<br />

0<br />

distance [m]<br />

(b)<br />

0<br />

27.1<br />

−60<br />

−50<br />

27.2<br />

−10<br />

0<br />

27.3<br />

0<br />

−40<br />

−30<br />

−20<br />

−200<br />

0 500 1000 1500 2000 2500 3000<br />

−5<br />

−15<br />

−10<br />

−5<br />

0<br />

0<br />

5<br />

15<br />

10<br />

25<br />

20<br />

0<br />

−5<br />

0<br />

−5<br />

−20<br />

−30<br />

−25<br />

−15<br />

−10<br />

−15<br />

−5<br />

distance [m]<br />

(c)<br />

Figure 7: The train of solitary waves after 13.42 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

−20<br />

9<br />

−15<br />

−25<br />

−10−10<br />

−5<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0 0<br />

0<br />

0<br />

26.6<br />

−50


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

26.4<br />

25.8<br />

26.9<br />

26.1<br />

26.3<br />

26.2<br />

26.5<br />

26.6<br />

26.8<br />

−200<br />

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

40<br />

−120<br />

−140<br />

−160<br />

−180<br />

30<br />

27<br />

RHO (ci=0.1 )<br />

27.4<br />

26.7<br />

27.3<br />

27.1<br />

26.9<br />

27.2<br />

distance [m]<br />

(a)<br />

−200<br />

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

0<br />

0<br />

0<br />

30<br />

0<br />

0<br />

50<br />

U (ci=10 cm/s )<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

W (ci=5 cm/s )<br />

00<br />

0<br />

0<br />

50<br />

0<br />

00<br />

0<br />

−5<br />

60<br />

20<br />

0<br />

0<br />

5<br />

−5<br />

−5<br />

−5<br />

−10<br />

30<br />

40<br />

60<br />

20<br />

50<br />

distance [m]<br />

(b)<br />

−200<br />

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000<br />

0<br />

0<br />

0<br />

0<br />

5<br />

0<br />

0<br />

20<br />

10<br />

40<br />

−10<br />

0<br />

5<br />

0<br />

27<br />

30<br />

40<br />

30<br />

10<br />

26.4<br />

50<br />

70<br />

60<br />

20<br />

distance [m]<br />

(c)<br />

10<br />

20<br />

10<br />

0<br />

0<br />

30<br />

−10<br />

0<br />

25<br />

−15−5<br />

−10 −15<br />

Figure 8: The train of solitary waves after 15.09 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

0<br />

−5<br />

−5<br />

−10<br />

−10<br />

10<br />

−20<br />

−15<br />

−5<br />

−15<br />

−10<br />

0<br />

−5<br />

0<br />

15<br />

0<br />

−10<br />

−20<br />

−25<br />

0<br />

−5<br />

−15<br />

−20<br />

25.9<br />

26<br />

26.3<br />

−20<br />

10<br />

20<br />

0<br />

−5<br />

−5<br />

10<br />

0 0<br />

10<br />

5<br />

5<br />

8070<br />

60<br />

40<br />

25.8<br />

26.2<br />

26.5<br />

27.1<br />

26.7<br />

26.1<br />

26.6<br />

26.8<br />

10<br />

0<br />

20<br />

20<br />

0<br />

30<br />

27.3<br />

20<br />

50<br />

0<br />

−25<br />

0<br />

20<br />

15<br />

25<br />

−5<br />

5<br />

−5<br />

−30<br />

−15<br />

−20<br />

−5<br />

−35<br />

−10<br />

30<br />

40<br />

−10<br />

0<br />

−20<br />

−25<br />

−10<br />

−15<br />

−10<br />

−5<br />

0<br />

0<br />

27.2<br />

27.4<br />

0<br />

26.9<br />

−10<br />

0<br />

0<br />

0<br />

0<br />

0<br />

27<br />

0<br />

0


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

25.8<br />

26<br />

26.1<br />

26.5<br />

26.2<br />

26.3<br />

26.4<br />

26.8<br />

26.6<br />

26.7<br />

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3<br />

x 10 4<br />

−200<br />

distance [m]<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

27.4<br />

RHO (ci=0.1 )<br />

26.9<br />

27.1<br />

27<br />

27.2<br />

27.3<br />

(a)<br />

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3<br />

x 10 4<br />

−200<br />

distance [m]<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

40<br />

0<br />

40<br />

0<br />

0<br />

40<br />

0<br />

0<br />

−5<br />

40<br />

70<br />

50<br />

U (ci=10 cm/s )<br />

0<br />

0<br />

5<br />

0<br />

0<br />

W (ci=5 cm/s )<br />

−5<br />

60<br />

40<br />

−5<br />

0<br />

0<br />

0<br />

70<br />

60<br />

10<br />

30<br />

80<br />

0<br />

5<br />

0<br />

5<br />

−5<br />

−10<br />

0<br />

50<br />

−5<br />

40<br />

−10<br />

−5<br />

40<br />

(b)<br />

0<br />

0<br />

0<br />

70<br />

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3<br />

x 10 4<br />

−200<br />

distance [m]<br />

(c)<br />

Figure 9: The train of solitary waves after 16.78 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

5<br />

60<br />

10<br />

11<br />

100<br />

30<br />

90<br />

0<br />

80<br />

50<br />

−5<br />

0<br />

5<br />

−10<br />

0<br />

−5<br />

40<br />

−15<br />

−10<br />

0<br />

0<br />

−5<br />

0<br />

50<br />

10<br />

70<br />

40<br />

100<br />

30<br />

80<br />

26.1<br />

26.9 27<br />

27.1<br />

90<br />

0<br />

0<br />

5<br />

5<br />

−5<br />

−15<br />

0<br />

60<br />

−5<br />

−10<br />

−10<br />

25.9<br />

26.5<br />

−5<br />

−5<br />

0<br />

26<br />

27.2<br />

27.3<br />

40<br />

0<br />

5<br />

26.2<br />

50<br />

26.4<br />

26.8<br />

40<br />

26.3<br />

26.6<br />

26.7<br />

15<br />

27.4<br />

100<br />

80<br />

30<br />

110<br />

70<br />

90<br />

0<br />

10<br />

0<br />

5<br />

−5<br />

−10<br />

−5<br />

−15<br />

60<br />

−10<br />

−5<br />

−5<br />

25.8


Depth [m]<br />

Depth [m]<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

20<br />

10<br />

−200<br />

14 14.2 14.4 14.6 14.8 15 15.2 15.4 15.6 15.8 16<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

40<br />

−20<br />

−10<br />

U (ci=10 cm/s )<br />

50<br />

−30<br />

80<br />

100<br />

40<br />

30<br />

−40<br />

70<br />

110<br />

90<br />

60<br />

40<br />

80<br />

0<br />

30<br />

70<br />

100<br />

90<br />

U (ci=10 cm/s )<br />

60<br />

50<br />

70<br />

90<br />

80<br />

60<br />

30<br />

−30<br />

−20<br />

30<br />

70<br />

80<br />

60<br />

−10<br />

90<br />

−10<br />

30<br />

0<br />

Time<br />

(a)<br />

50<br />

30<br />

20<br />

30<br />

70<br />

40 40<br />

10<br />

20<br />

10<br />

0<br />

20<br />

50<br />

60<br />

30<br />

0<br />

40<br />

40<br />

−200<br />

17 17.5 18 18.5 19 19.5 20<br />

20<br />

Time<br />

(b)<br />

Figure 10: Time development of the vertical profile of along section velocities at x = 5000 m<br />

(top) and x = 15000 m with focus on the waves.<br />

12<br />

50<br />

70<br />

80<br />

20<br />

60<br />

60<br />

80<br />

50<br />

30<br />

40<br />

7060<br />

10<br />

20 20<br />

30<br />

20<br />

40<br />

20<br />

40<br />

80<br />

50<br />

7060<br />

10<br />

50<br />

20<br />

40<br />

30<br />

50<br />

60<br />

70<br />

30<br />

40<br />

50<br />

70<br />

30<br />

0<br />

0


5 Solitary wave propagation on the shelf (U0 = 0.3 m s −1 )<br />

Below are some results for the case with solitary waves on the shelf, using a maximum<br />

inflow velocity of 0.3 m s −1 . A section of the density field after 11.74 hours and the depth<br />

profile is given in Figure 11. The density fields and two components of the velocity field at<br />

three consecutive times are given in Figures 12, 13, and 14. In Figure 15 the u components<br />

at x = 10000 m and x = 15000 m are plotted.<br />

The speed of the front of the wave train in the period from 11.74 hour to 13.42 hours is<br />

approximately 0.53 m s −1 and in the period from 13.42 hours to 15.09 hours approximately<br />

0.68 m s −1 . The wave group also changes form, and develops the typical solitary wave train<br />

characteristics as it propagates away from the edge. From Figure 15 the period between<br />

consecutive waves in the group may be estimated to be 24 minutes.<br />

depth [m]<br />

0<br />

−50<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

−350<br />

27.2<br />

27.3<br />

27.4<br />

26.2<br />

26.3<br />

26<br />

25.9<br />

26.5 26.7<br />

27.127.1<br />

26<br />

25.8 25.9 25.8 25.9 25.8<br />

26.3 26.1<br />

26.5<br />

26.7<br />

26.7<br />

26.9<br />

26.8<br />

27.1 26.9<br />

26.9<br />

27.227.2<br />

27.3<br />

26.126.1<br />

26.6<br />

27.5<br />

26.4<br />

26.8<br />

27.4<br />

27.3<br />

27<br />

RHO (ci=0.1 )<br />

27.5<br />

26.2<br />

26.3<br />

26.5<br />

26.6<br />

−400<br />

0 2000 4000 6000 8000 10000 12000 14000 16000 18000<br />

distance [m]<br />

(a)<br />

26.2<br />

26<br />

26.6<br />

26.4 26.4<br />

Figure 11: Topography and density field after 11.74 hours (7/8 of an inertial periods).<br />

13<br />

27.4<br />

26.8 27<br />

27.3<br />

27.5<br />

27.4<br />

27


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

RHO (ci=0.1 )<br />

27<br />

27.1<br />

−100<br />

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 8000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

−10<br />

distance [m]<br />

(a)<br />

−100<br />

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 8000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

−30<br />

0<br />

0<br />

0<br />

−20<br />

U (ci=10 cm/s )<br />

0<br />

0<br />

0<br />

00<br />

U (ci=2 cm/s )<br />

−10<br />

0<br />

0<br />

0<br />

−30<br />

−20<br />

0<br />

0<br />

−10<br />

distance [m]<br />

(b)<br />

2<br />

0<br />

−100<br />

6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 8000<br />

0<br />

distance [m]<br />

(c)<br />

Figure 12: The train of solitary waves after 11.74 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

0<br />

14<br />

0<br />

−2<br />

0<br />

−2<br />

−30<br />

26.3<br />

−2<br />

25.9<br />

−30<br />

0<br />

27.2<br />

26.5<br />

0<br />

26.4<br />

0


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

26.8<br />

26.1<br />

26.2<br />

RHO (ci=0.1 )<br />

26.6<br />

26.7<br />

25.825.9<br />

27.2<br />

−100<br />

8000 8500 9000 9500 10000 10500 11000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

0<br />

U (ci=10 cm/s )<br />

distance [m]<br />

(a)<br />

0<br />

0<br />

26.5<br />

27.1<br />

26.927<br />

−100<br />

8000 8500 9000 9500 10000 10500 11000<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

0 0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

U (ci=2 cm/s )<br />

−2<br />

0<br />

0<br />

0<br />

distance [m]<br />

(b)<br />

0<br />

0<br />

0<br />

−2<br />

−100<br />

8000 8500 9000 9500 10000 10500 11000<br />

distance [m]<br />

(c)<br />

Figure 13: The train of solitary waves after 13.42 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

−2<br />

15<br />

−2<br />

0<br />

0<br />

2<br />

20<br />

4<br />

30<br />

0<br />

0<br />

0<br />

−4<br />

−2<br />

10<br />

−2<br />

−4<br />

−2<br />

0<br />

0<br />

0<br />

0<br />

0


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

25.8<br />

26.3 26.4<br />

27.1<br />

27<br />

26.6<br />

26.9<br />

RHO (ci=0.1 )<br />

26.5<br />

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7<br />

x 10 4<br />

−100<br />

distance [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

30<br />

−60<br />

−70<br />

−80<br />

−90<br />

(a)<br />

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7<br />

x 10 4<br />

−100<br />

distance [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

0<br />

0<br />

0<br />

50<br />

U (ci=10 cm/s )<br />

0<br />

0<br />

0<br />

00<br />

2<br />

U (ci=2 cm/s )<br />

0 0<br />

0<br />

−2<br />

50<br />

−2<br />

−2<br />

0<br />

0<br />

(b)<br />

0<br />

40<br />

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7<br />

x 10 4<br />

−100<br />

distance [m]<br />

(c)<br />

Figure 14: The train of solitary waves after 15.09 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

16<br />

30<br />

4<br />

26<br />

0 0<br />

60<br />

0<br />

2<br />

−2<br />

50<br />

−2<br />

−4<br />

−4<br />

−2<br />

0 0<br />

0<br />

26.1<br />

26.2<br />

0<br />

0<br />

0<br />

30<br />

0<br />

0<br />

27.3<br />

00<br />

25.9<br />

0<br />

30<br />

0<br />

0<br />

0<br />

00<br />

0


Depth [m]<br />

Depth [m]<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

0<br />

10<br />

30<br />

40<br />

0<br />

20<br />

−100<br />

13 13.2 13.4 13.6 13.8 14 14.2 14.4 14.6 14.8 15<br />

0<br />

−10<br />

−20<br />

−30<br />

−40<br />

−50<br />

−60<br />

−70<br />

−80<br />

−90<br />

0<br />

−10<br />

30<br />

U (ci=10 cm/s )<br />

U (ci=10 cm/s )<br />

0<br />

0<br />

40<br />

0<br />

50<br />

0<br />

70<br />

60<br />

Time<br />

(a)<br />

−100<br />

14.5 15 15.5 16 16.5<br />

Time<br />

(b)<br />

Figure 15: Time development of the vertical profile of along section velocities at x =<br />

10000 m (top) and x = 15000 m with focus on the waves.<br />

17<br />

30<br />

50<br />

40<br />

60<br />

40<br />

40<br />

50<br />

40<br />

40<br />

50


6 Solitary wave propagation on the shelf with stronger inflow<br />

(U0 = 0.4 m s −1 )<br />

Below are some results for the case with solitary waves on the shelf, using a stronger forcing.<br />

Generally the solitary waves develops earlier and are seen much more clearly, see<br />

below a section of the density field after 11.74 hours. The density fields and two components<br />

of the velocity field at three consecutive times are given in Figures 17, 18, and 19.<br />

In these figures the focus is on the solitary wave train. In Figure 20 the u components at<br />

x = 5000 m and x = 15000 m are plotted, again with focus on the passing group of solitary<br />

waves.<br />

The speed of the front of the wave train in the period from 11.74 hour to 13.42 hours is<br />

approximately 0.63 m s −1 and in the period from 13.42 hours to 15.09 hours approximately<br />

1.0 m s −1 . Thus as in the more weakly forced case in the previous section, the wave group<br />

gains speed away from the edge. From Figure 20 the period between consecutive waves in<br />

the group may be estimated to be 20 minutes. It is again clearly seen that the first wave in<br />

the group is strongest, and the amplitudes of the waves behind are gradually reduced.<br />

depth [m]<br />

0<br />

−50<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

−350<br />

27<br />

26.5<br />

26.7<br />

27.3<br />

27.4<br />

27.5<br />

25.9<br />

26<br />

25.8<br />

26.1 26.1<br />

26.3<br />

26.2<br />

26.4<br />

26.5<br />

26.6<br />

26.2<br />

26.3<br />

26<br />

26.6<br />

26.8 26.8<br />

26.9<br />

27.1<br />

27.2<br />

26.7<br />

27<br />

27.3<br />

27.2<br />

RHO (ci=0.1 )<br />

26.4<br />

25.9<br />

27.1 26.9<br />

27.4<br />

27.5<br />

27<br />

25.8<br />

26.7 26.7<br />

27.3<br />

26.1<br />

−400<br />

0 2000 4000 6000 8000 10000 12000 14000 16000 18000<br />

distance [m]<br />

(a)<br />

25.8<br />

25.9<br />

25.9 26.1<br />

27.1<br />

26<br />

26.2 26.2<br />

26.3<br />

26.3<br />

26.8<br />

26.5 26.5<br />

27.5<br />

26.8<br />

26.6<br />

26.9<br />

27.2 27.1<br />

26<br />

26.426.4<br />

Figure 16: Topography and density field after 11.74 hours (7/8 of an inertial periods).<br />

18<br />

27.4<br />

27.5<br />

27<br />

27.3<br />

26.6<br />

27.2<br />

26.9<br />

27.4


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

27.4<br />

−120<br />

−140<br />

−160<br />

−180<br />

26.7<br />

26.3<br />

26.4<br />

25.9<br />

26.1<br />

26<br />

26.2 26.2<br />

26.5<br />

26.6<br />

−200<br />

1000 1500 2000 2500 3000 3500 4000 4500 5000<br />

−20<br />

10<br />

0<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

−10<br />

0<br />

27.1<br />

RHO (ci=0.1 )<br />

26.9<br />

distance [m]<br />

(a)<br />

26.3<br />

26.7<br />

25.8<br />

26.1<br />

26.4<br />

26.8 26.8<br />

27.3<br />

0<br />

−200<br />

1000 1500 2000 2500 3000 3500 4000 4500 5000<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

−20<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−10<br />

−50<br />

0<br />

10<br />

0<br />

U (ci=10 cm/s )<br />

0 0<br />

0<br />

0<br />

0<br />

−30<br />

−40<br />

−50<br />

00<br />

0<br />

U (ci=5 cm/s )<br />

−5<br />

0<br />

0 0<br />

0<br />

−10<br />

−50<br />

0<br />

0<br />

0<br />

−20<br />

0<br />

0<br />

5<br />

20<br />

10<br />

0<br />

−50<br />

−10<br />

−40<br />

20<br />

0<br />

27<br />

10<br />

−10<br />

0<br />

−30<br />

−50 −50<br />

distance [m]<br />

(b)<br />

0<br />

10<br />

0<br />

−5<br />

−10<br />

−5<br />

0<br />

0<br />

0<br />

−200<br />

1000 1500 2000 2500 3000 3500 4000 4500 5000<br />

0<br />

−40<br />

distance [m]<br />

(c)<br />

Figure 17: The train of solitary waves after 11.74 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

19<br />

0<br />

10<br />

5<br />

−10<br />

−5<br />

0<br />

−5<br />

0<br />

0<br />

5<br />

20<br />

−20<br />

−50<br />

5<br />

15<br />

10<br />

30<br />

10<br />

−60<br />

27.2<br />

−10<br />

0<br />

0<br />

0<br />

0<br />

0<br />

−50<br />

−15<br />

−5<br />

−10<br />

−5<br />

−10<br />

0<br />

0<br />

−5<br />

0<br />

26.5<br />

27.1<br />

5<br />

0<br />

26.6<br />

5<br />

30 20<br />

10<br />

0<br />

−20<br />

−50<br />

10<br />

15<br />

25.9<br />

27.3<br />

−10<br />

−30<br />

−40<br />

−60<br />

0 0<br />

0<br />

−5<br />

−10<br />

−5<br />

−50<br />

−15 −20<br />

−10<br />

−5<br />

26<br />

00<br />

0<br />

−40


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

27.4<br />

−160<br />

−180<br />

25.8 25.9<br />

26.1<br />

26.5 26.4<br />

26.5<br />

26.9<br />

26.8<br />

26.6<br />

26.7<br />

26.2<br />

27.1 27.1<br />

27<br />

26.3<br />

−200<br />

3000 4000 5000 6000 7000 8000 9000<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

RHO (ci=0.1 )<br />

26<br />

27.2<br />

27.3<br />

distance [m]<br />

(a)<br />

−200<br />

3000 4000 5000 6000 7000 8000 9000<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

20<br />

20<br />

0<br />

30<br />

U (ci=10 cm/s )<br />

0<br />

30<br />

40 50<br />

−10<br />

−10<br />

10<br />

40<br />

30<br />

0<br />

50<br />

20<br />

−10<br />

−10<br />

40<br />

30<br />

20<br />

distance [m]<br />

(b)<br />

−200<br />

3000 4000 5000 6000 7000 8000 9000<br />

00<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

00<br />

0<br />

0<br />

0<br />

0 0<br />

0<br />

0<br />

0<br />

U (ci=5 cm/s )<br />

0<br />

−5<br />

0<br />

0<br />

0<br />

5<br />

−5 −5<br />

0<br />

5<br />

0<br />

0<br />

0<br />

0<br />

−5<br />

−10<br />

−5<br />

−10<br />

0<br />

−10<br />

distance [m]<br />

(c)<br />

Figure 18: The train of solitary waves after 13.42 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

0<br />

20<br />

0<br />

0<br />

10<br />

5<br />

−10<br />

−5<br />

0<br />

−5<br />

0<br />

0<br />

26.4<br />

26.9<br />

26.8<br />

40<br />

20<br />

60<br />

−10<br />

10<br />

27.4<br />

50<br />

30<br />

−10<br />

0<br />

0<br />

5<br />

0<br />

−5<br />

0<br />

−5<br />

−10<br />

−5<br />

0<br />

0<br />

5<br />

27<br />

40<br />

20<br />

−10<br />

−20<br />

26.7 26.6<br />

60<br />

10 15<br />

5<br />

50<br />

70<br />

30<br />

−20<br />

0<br />

−5<br />

0<br />

0<br />

10<br />

−10<br />

−15<br />

−10<br />

−5<br />

−10<br />

26.2<br />

26.3<br />

0<br />

−5<br />

0<br />

0<br />

0<br />

0<br />

00<br />

00<br />

0<br />

26.1<br />

0<br />

0<br />

25.9<br />

0 0<br />

0


depth [m]<br />

depth [m]<br />

depth [m]<br />

0<br />

26.3<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

26.4<br />

27.2<br />

27.1<br />

26.6<br />

26.7<br />

26.8<br />

27.3<br />

25.8<br />

27<br />

25.9<br />

26<br />

26.9<br />

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5<br />

x 10 4<br />

−200<br />

distance [m]<br />

0<br />

−20<br />

50<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

40<br />

40<br />

RHO (ci=0.1 )<br />

40<br />

30<br />

(a)<br />

26.5<br />

26.2<br />

27.1<br />

27.2<br />

27.4<br />

26.1<br />

26.3<br />

26.4<br />

40 40<br />

26.6<br />

26.8<br />

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5<br />

x 10 4<br />

−200<br />

distance [m]<br />

0<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

00<br />

0 0<br />

0<br />

50<br />

40<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

60<br />

U (ci=10 cm/s )<br />

0<br />

0<br />

−5<br />

U (ci=5 cm/s )<br />

0<br />

50<br />

0<br />

0<br />

0<br />

50<br />

60<br />

0<br />

0<br />

00<br />

70<br />

60<br />

50<br />

5<br />

(b)<br />

0<br />

−5<br />

0<br />

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5<br />

x 10 4<br />

−200<br />

distance [m]<br />

(c)<br />

Figure 19: The train of solitary waves after 15.09 hours. The density field is given in a), the<br />

u component of the velocity field is given in b), and the vertical velocities in c).<br />

21<br />

00<br />

80<br />

50<br />

30<br />

0<br />

70<br />

60<br />

0<br />

5<br />

0<br />

−5<br />

−5<br />

0 0<br />

0<br />

0<br />

0<br />

26.7<br />

90<br />

80<br />

30<br />

5<br />

70<br />

60<br />

30<br />

0<br />

0<br />

−5<br />

0<br />

−5<br />

−10<br />

27.3<br />

50<br />

40<br />

40<br />

0<br />

0<br />

0<br />

0<br />

60<br />

30<br />

100<br />

80<br />

27<br />

90<br />

00<br />

10<br />

70<br />

−5<br />

−15<br />

5<br />

5<br />

−10<br />

0<br />

−5<br />

50<br />

40<br />

−10<br />

00<br />

−5<br />

26.9<br />

40<br />

0<br />

27.4<br />

40<br />

00<br />

0<br />

26.5<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0


Depth [m]<br />

Depth [m]<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

200<br />

10<br />

10<br />

20<br />

20<br />

0<br />

10<br />

00<br />

−200<br />

12 12.5 13 13.5 14 14.5 15<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−140<br />

−160<br />

−180<br />

−30<br />

40 40<br />

−30<br />

60<br />

40<br />

30<br />

50<br />

U (ci=10 cm/s )<br />

50<br />

−20<br />

50<br />

60<br />

90<br />

80<br />

−10<br />

100<br />

40<br />

70<br />

0<br />

−30<br />

40<br />

−40<br />

−30 −30<br />

−20 −20<br />

50<br />

50<br />

50<br />

U (ci=10 cm/s )<br />

80<br />

90<br />

70<br />

60<br />

40<br />

50<br />

40<br />

30<br />

−30<br />

50<br />

0<br />

−10<br />

−20<br />

−20<br />

70<br />

80<br />

50<br />

−10<br />

60<br />

50<br />

40<br />

60<br />

−20<br />

50<br />

−10−10<br />

30<br />

−10<br />

0<br />

30<br />

Time<br />

(a)<br />

70<br />

80<br />

60<br />

−200<br />

15 15.5 16 16.5 17 17.5 18<br />

Time<br />

(b)<br />

Figure 20: Time development of the vertical profile of along section velocities at x = 5000 m<br />

(top) and x = 15000 m with focus on the waves.<br />

22<br />

40<br />

−10<br />

50<br />

60<br />

0<br />

70<br />

0<br />

60<br />

30<br />

40<br />

50<br />

0<br />

0<br />

50<br />

0<br />

10<br />

60<br />

50<br />

50<br />

40<br />

60<br />

10<br />

10<br />

20<br />

30<br />

30<br />

40<br />

60<br />

20<br />

40<br />

30<br />

30<br />

50<br />

40


7 Discussion<br />

Wave phenomena with periods of approximately 45 min are observed near the shelf edge in<br />

the Ormen Lange area. They are characterised by one leading wave with 4 to 5 gradually<br />

weaker waves behind it. The observed waves thus have the characteristics of internal solitary<br />

wave trains in stratified oceans. The tides are generally weak in this area. Therefore,<br />

wind and inertial oscillations are taken as forcing in the numerical experiments reported<br />

here. See the description of the general oceanography in this area<br />

[Mathisen et al.(2007)Mathisen, Berntsen, and Furnes].<br />

It is known that accelerating flow over an edge easily starts off a train of solitary waves<br />

in a stratified ocean. These waves may have wave lengths of approximately 500 to 1000 m<br />

and grid sizes of approximately 25 m are necessary to resolve them in numerical studies.<br />

This means that they are not captured in general studies of the circulation in this area,<br />

and the strong current events, with speeds that my exceed 1 m s −1 , associated with the<br />

waves are not captured. In the preliminary studies reported here current speeds that exceeds<br />

1.10 m s −1 are found without increasing the background inflow velocities towards<br />

the maximum values measured along the shelf edge. With stronger forcing, the wave trains<br />

develop earlier, and they get larger amplitudes. However, the periods between consecutive<br />

waves in a wave train seem to be reduced as the forcing is increased. With stronger forcing,<br />

the speed of the wave train also seems to increase with distance from the generation point.<br />

The waves gradually changes shape as they propagate. In the present studies they are<br />

still fairly strong 17 km away from the generation point, which is as far as they have been<br />

’followed’ using simulations that take approximately 15 hours each.<br />

Basically the waves produced in these numerical studies have many of the characteristics<br />

of the observed waves. The major discrepancy is the period, which is approximately<br />

20 min in the model results and 45 min in the observations. It may be noted that periods of<br />

20 min are also measured over the continental shelf off Oregon,<br />

see [Moum and Smyth(2006)].<br />

The periods between consecutive waves in a wave train generated by a strong pulse<br />

at for instance an edge in the topography may, however, change with travel time or with<br />

distance from the generation point, see [Dysthe(2004), Whitham(1974)].<br />

For surface wave trains generated by a strong initial water elevation, the surface elevations<br />

η(x,t) may be given by<br />

η(x,t) ∼ 1<br />

2Ct 1/3 Ai(x − √ gh<br />

Ct<br />

1/3 ),<br />

where x is the horizontal coordinate, t is time, g is the gravity, h is the water depth, Ai is the<br />

Airy function, and C = ( h2√ gh<br />

2 ) 1/3 , see [Dysthe(2004)]. For an internal solitary wave train,<br />

the speed √ gh must be replaced with √ g ′ h ′ where g ′ = g Δρ<br />

ρ0<br />

and Δρ is the density difference<br />

and ρ0 the background density. Furthermore, h must be replaced with h1h2<br />

h1+h2 where h1 is the<br />

depth of the surface layer and h2 the thickness of the bottom layer in a two layer system.<br />

The solution given above is for a more simple system than what we have in the Ormen<br />

Lange area, and for a more idealised initial state than what we have in the numerical<br />

simulations. However, the solution has many of the characteristics of both the observed<br />

waves and the modelled waves, with one strong leading wave and decaying trailing waves<br />

behind it. The factor t 1/3 in the denominator of the argument to the Airy function also<br />

indicate that the period between consecutive waves in a wave train may be doubled, if t is<br />

increased with a factor 8. Since the waves travel with almost constant speed, this indicate<br />

that if the period is 20 min 10 km from the generation point, or the shelf edge, the period<br />

will be 40 min 80 km from the generation point. Also the amplitudes of the waves will be<br />

reduced as they move. In essence this also means that if the observed periods of the waves<br />

are the same for all events, it is lightly that the waves come from the same generation point,<br />

or from generation points equally far from the observation point. The factor t 1/3 in the<br />

23


denominator of the amplitude of the Airy function means that closer to the shelf edge, the<br />

current velocities may be substantially larger.<br />

We would also like to point at the papers on Waves in Geophysical Fluids in<br />

[Grue and Trulsen(2006)] including [Grue(2006)], [Kharif and Pelinovsky(2006)], and<br />

[Morozov(2006)]. In [Kharif and Pelinovsky(2006)] dispersion enhancement of transient<br />

wave packets is discussed and an Airy function solution of the type given above is presented.<br />

In [Morozov(2006)] also internal waves in the Arctic region are described.<br />

A full explorations of these wave trains, including sensitivity to the parameters involved<br />

(forcing, period forcing, topography, stratification), investigations of possible maximum<br />

speeds, and studies where we follow the waves further is a full project in itself. The waves<br />

are followed 18 km in the present studies, and approximately 100 km is possible using more<br />

computer resources. It could also be mentioned that even if the focus in this report has been<br />

on solitary wave trains outside mid-Norway such waves are observed many places in the<br />

ocean, including elsewhere in Norwegian waters, see [Global Ocean Associates(2004)].<br />

Acknowledgement. Many thanks to Kristian B. Dysthe for pointing us the theory on<br />

wave fronts.<br />

24


References<br />

[Baines(1995)] P. Baines. Topographic Effects in Stratified Flows. Cambridge Monographs<br />

on Mechanics. Cambridge <strong>Uni</strong>versity Press, 1995.<br />

[Berntsen et al.(1981)Berntsen, Kowalik, Sælid, and Sørli] H. Berntsen, Z. Kowalik,<br />

S. Sælid, and K. Sørli. Efficient numerical simulation of ocean hydrodynamics by a<br />

splitting procedure. Modeling, Identification and Control, 2:181–199, 1981.<br />

[Berntsen(2000)] J. Berntsen. USERS GUIDE for a modesplit σ-coordinate numerical<br />

ocean model. Technical Report 135, Dept. of Applied Mathematics, <strong>Uni</strong>versity of<br />

Bergen, Johs. Bruns gt.12, N-5008 Bergen, Norway, 2000. 48p.<br />

[Blumberg and Mellor(1987)] A.F. Blumberg and G.L. Mellor. A description of a<br />

three-dimensional coastal ocean circulation model. In N.S. Heaps, editor, Three-<br />

Dimensional Coastal Ocean Models, volume 4 of Coastal and Estuarine Series, pages<br />

1–16. American Geophysical <strong>Uni</strong>on, 1987.<br />

[Dysthe(2004)] K. Dysthe. Lectures given at the summer school on:Water Waves and<br />

Ocean Currents. Nordflordeid 21-29 June 2004., 2004.<br />

[Gill(1982)] A.E. Gill. Atmosphere-Ocean Dynamics. Academic Press, 1982. ISBN-0-<br />

12-283520-4.<br />

[Global Ocean Associates(2004)] Global Ocean Associates. An Atlas of Oceanic Internal<br />

Solitary Waves, 2004.<br />

[Grue(2006)] J. Grue. Very large internal waves in the oceans - observations and nonlinear<br />

models. In J. Grue and K. Trulsen, editors, Waves in Geophysical Fluids: Tsunamis,<br />

Rogue Waves, Internal Waves and Internal Tides. SpringerWienNewYork, 2006.<br />

[Grue and Trulsen(2006)] J. Grue and K. Trulsen, editors. Waves in Geophysical Fluids:<br />

Tsunamis, Rogue Waves, Internal Waves and Internal Tides, 2006. SpringerWien-<br />

NewYork.<br />

[Kharif and Pelinovsky(2006)] C. Kharif and E. Pelinovsky. Freak waves phenomenon:<br />

Physical mechanisms and modelling. In J. Grue and K. Trulsen, editors, Waves<br />

in Geophysical Fluids Tsunamis, Rogue Waves, Internal Waves and Internal Tides,<br />

pages 107–172. SpringerWienNewYork, 2006.<br />

[Kowalik and Murty(1993)] Z. Kowalik and T.S. Murty. Numerical Modeling of Ocean<br />

Dynamics, volume 5 of Advanced Series on Ocean Engineering. World Scientific,<br />

1993.<br />

[Kundu and Cohen(2004)] P.K. Kundu and I.M. Cohen. Fluid Mechanics. Elsevier Academic<br />

Press, 2004.<br />

[Lamb(2007)] K.G. Lamb. Energy and Pseudoenergy Flux in the Internal Wave Field Generated<br />

by Tidal Flow over Topography, 2007. Accepted for publication in Continental<br />

Shelf Research.<br />

[Mathisen et al.(2007)Mathisen, Berntsen, and Furnes] J.P. Mathisen, J. Berntsen, and<br />

G. Furnes. Dynamics along the Norwegian continental slope. Technical Report Fugro<br />

OCEANOR report no C55076/4227, Fugro OCEANOR, 2007.<br />

[Mellor(1996)] G.L. Mellor. Users guide for a three-dimensional, primitive equation, numerical<br />

ocean model. Technical report, Princeton <strong>Uni</strong>versity, 1996.<br />

25


[Morozov(2006)] E. Morozov. Internal Tides, Global Field of Internal Tides and Mixing<br />

Caused by Internal Tides. In J. Grue and K. Trulsen, editors, Waves in Geophysical<br />

Fluids Tsunamis, Rogue Waves, Internal Waves and Internal Tides, pages 271–332.<br />

SpringerWienNewYork, 2006.<br />

[Moum and Smyth(2006)] J.N. Moum and W.D. Smyth. The pressure disturbance of a<br />

nonlinear internal wave train . Journal of Fluid Mechanics, 558:153–177, 2006.<br />

[Roth(2000)] J. Roth. Et studium av solitære indre bølger, 2000. Master degree thesis<br />

from the Geophysical Institute , <strong>Uni</strong>versity of Bergen, Norway.<br />

[Thorpe(2005)] S.A. Thorpe. The Turbulent Ocean. Cambridge <strong>Uni</strong>versity Press, 2005.<br />

[Whitham(1974)] G.B. Whitham. Linear and Nonlinear Waves. John Wiley, 1974.<br />

[Yang and Przekwas(1992)] H.Q. Yang and A.J. Przekwas. A comparative study of advanced<br />

shock-capturing schemes applied to Burgers equation. Journal of Computational<br />

Physics, 102:139–159, 1992.<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!