10.08.2013 Views

Homogeneous groups of H-type

Homogeneous groups of H-type

Homogeneous groups of H-type

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong><br />

H-<strong>type</strong><br />

method <strong>of</strong> geometric mechanics<br />

Irina Markina<br />

University <strong>of</strong> Bergen<br />

Norway<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 1/4


Contents:<br />

• General definitions <strong>of</strong> homogeneous <strong>groups</strong><br />

<strong>of</strong> H-<strong>type</strong><br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 2/4


Contents:<br />

• General definitions <strong>of</strong> homogeneous <strong>groups</strong><br />

<strong>of</strong> H-<strong>type</strong><br />

• Construction <strong>of</strong> <strong>groups</strong> satisfying the J 2<br />

condition<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 2/4


Contents:<br />

• General definitions <strong>of</strong> homogeneous <strong>groups</strong><br />

<strong>of</strong> H-<strong>type</strong><br />

• Construction <strong>of</strong> <strong>groups</strong> satisfying the J 2<br />

condition<br />

• Example: quaternion group<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 2/4


Definitions<br />

Let<br />

• G be a real Lie algebra,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 3/4


Definitions<br />

Let<br />

• G be a real Lie algebra,<br />

• 〈·, ·〉 scalar product,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 3/4


Definitions<br />

Let<br />

• G be a real Lie algebra,<br />

• 〈·, ·〉 scalar product,<br />

• [·, ·] Lie brackets,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 3/4


Definitions<br />

Let<br />

• G be a real Lie algebra,<br />

• 〈·, ·〉 scalar product,<br />

• [·, ·] Lie brackets,<br />

• G = V1 ⊕ V2, orthogonal direct sum,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 3/4


Definitions<br />

Let<br />

• G be a real Lie algebra,<br />

• 〈·, ·〉 scalar product,<br />

• [·, ·] Lie brackets,<br />

• G = V1 ⊕ V2, orthogonal direct sum,<br />

• [V1, V1] ⊆ V2 and [V1, V2] = [V2, V2] = 0.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 3/4


Definitions<br />

If there is a linear map J : V2 → End(V1)<br />

• 〈JZX, X ′ 〉 = 〈Z, [X, X ′ ]〉,<br />

∀ X, X ′ ∈ V1, ∀ Z ∈ V2,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 4/4


Definitions<br />

If there is a linear map J : V2 → End(V1)<br />

• 〈JZX, X ′ 〉 = 〈Z, [X, X ′ ]〉,<br />

∀ X, X ′ ∈ V1, ∀ Z ∈ V2,<br />

• J T Z = −JZ, ∀ Z ∈ V2,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 4/4


Definitions<br />

If there is a linear map J : V2 → End(V1)<br />

• 〈JZX, X ′ 〉 = 〈Z, [X, X ′ ]〉,<br />

∀ X, X ′ ∈ V1, ∀ Z ∈ V2,<br />

• J T Z = −JZ, ∀ Z ∈ V2,<br />

• J 2 Z = −|Z|2 U, ∀ Z ∈ V2, U is the identity,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 4/4


Definitions<br />

If there is a linear map J : V2 → End(V1)<br />

• 〈JZX, X ′ 〉 = 〈Z, [X, X ′ ]〉,<br />

∀ X, X ′ ∈ V1, ∀ Z ∈ V2,<br />

• J T Z = −JZ, ∀ Z ∈ V2,<br />

• J 2 Z = −|Z|2 U, ∀ Z ∈ V2, U is the identity,<br />

• we say G is H-<strong>type</strong>.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 4/4


J 2 condition<br />

G satisfies the J 2 condition if, whenever<br />

X ∈ V1 and Z, Z ′ ∈ V2 with 〈Z, Z ′ 〉 = 0,<br />

there exists Z ′′ in V2, such that<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 5/4


J 2 condition<br />

G satisfies the J 2 condition if, whenever<br />

X ∈ V1 and Z, Z ′ ∈ V2 with 〈Z, Z ′ 〉 = 0,<br />

there exists Z ′′ in V2, such that<br />

JZJZ ′X = JZ ′′X.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 5/4


Classification<br />

• R n 0, k ∈ N, is Euclidean space<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 6/4


Classification<br />

• R n 0, k ∈ N, is Euclidean space<br />

• G n 1 , n = 2k, k ∈ N, is Heisenberg algebra<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 6/4


Classification<br />

• R n 0, k ∈ N, is Euclidean space<br />

• G n 1 , n = 2k, k ∈ N, is Heisenberg algebra<br />

• G n 3 , n = 4k, k ∈ N, is quaternion algebra<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 6/4


Classification<br />

• R n 0, k ∈ N, is Euclidean space<br />

• G n 1 , n = 2k, k ∈ N, is Heisenberg algebra<br />

• G n 3 , n = 4k, k ∈ N, is quaternion algebra<br />

• G 8 7 is octonion algebra.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 6/4


Classification<br />

• R n 0, k ∈ N, is Euclidean space<br />

• G n 1 , n = 2k, k ∈ N, is Heisenberg algebra<br />

• G n 3 , n = 4k, k ∈ N, is quaternion algebra<br />

• G 8 7 is octonion algebra.<br />

• Cowling M.; Dooley A. H.; Korányi A.; Ricci F. H-<strong>type</strong> <strong>groups</strong> and Iwasawa<br />

decompositions. Adv. Math. 87 (1991), no. 1, 1–41.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 6/4


Cayley-Dickson construction<br />

• What are real numbers R?<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 7/4


Cayley-Dickson construction<br />

• What are real numbers R?<br />

• What are complex numbers C?<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 7/4


Cayley-Dickson construction<br />

• What are real numbers R?<br />

• What are complex numbers C?<br />

• It is a pair (a, b) <strong>of</strong> real numbers a, b ∈ R,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 7/4


Cayley-Dickson construction<br />

• What are real numbers R?<br />

• What are complex numbers C?<br />

• It is a pair (a, b) <strong>of</strong> real numbers a, b ∈ R,<br />

• a ∗ = a conjugate to a real number,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 7/4


Cayley-Dickson construction<br />

• What are real numbers R?<br />

• What are complex numbers C?<br />

• It is a pair (a, b) <strong>of</strong> real numbers a, b ∈ R,<br />

• a ∗ = a conjugate to a real number,<br />

• (a, b) ∗ = (a ∗ , −b) is conjugate to a complex<br />

number,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 7/4


Cayley-Dickson construction<br />

• What are real numbers R?<br />

• What are complex numbers C?<br />

• It is a pair (a, b) <strong>of</strong> real numbers a, b ∈ R,<br />

• a ∗ = a conjugate to a real number,<br />

• (a, b) ∗ = (a ∗ , −b) is conjugate to a complex<br />

number,<br />

• multiplication (a, b)(c, d) = (ac − db ∗ , a ∗ d + cb).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 7/4


Quaternions H<br />

• It is a pair (a, b) <strong>of</strong> complex numbers a, b ∈ C,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 8/4


Quaternions H<br />

• It is a pair (a, b) <strong>of</strong> complex numbers a, b ∈ C,<br />

• (a, b) ∗ = (a ∗ , −b) is conjugate to a quaternion,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 8/4


Quaternions H<br />

• It is a pair (a, b) <strong>of</strong> complex numbers a, b ∈ C,<br />

• (a, b) ∗ = (a ∗ , −b) is conjugate to a quaternion,<br />

• with the multiplication<br />

(a, b)(c, d) = (ac − db ∗ , a ∗ d + cb).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 8/4


Octonions O<br />

• It is a pair (a, b) <strong>of</strong> quaternion numbers<br />

a, b ∈ H,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 9/4


Octonions O<br />

• It is a pair (a, b) <strong>of</strong> quaternion numbers<br />

a, b ∈ H,<br />

• (a, b) ∗ = (a ∗ , −b) is conjugate to an octonion,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 9/4


Octonions O<br />

• It is a pair (a, b) <strong>of</strong> quaternion numbers<br />

a, b ∈ H,<br />

• (a, b) ∗ = (a ∗ , −b) is conjugate to an octonion,<br />

• with the multiplication<br />

(a, b)(c, d) = (ac − db ∗ , a ∗ d + cb).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 9/4


Octonions O<br />

• It is a pair (a, b) <strong>of</strong> quaternion numbers<br />

a, b ∈ H,<br />

• (a, b) ∗ = (a ∗ , −b) is conjugate to an octonion,<br />

• with the multiplication<br />

• . . .<br />

(a, b)(c, d) = (ac − db ∗ , a ∗ d + cb).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 9/4


Properties we loose<br />

• R division algebra, associative, commutative,<br />

self conjugate,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 10/4


Properties we loose<br />

• R division algebra, associative, commutative,<br />

self conjugate,<br />

• C division algebra, associative, commutative,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 10/4


Properties we loose<br />

• R division algebra, associative, commutative,<br />

self conjugate,<br />

• C division algebra, associative, commutative,<br />

• H division algebra, associative,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 10/4


Properties we loose<br />

• R division algebra, associative, commutative,<br />

self conjugate,<br />

• C division algebra, associative, commutative,<br />

• H division algebra, associative,<br />

• O division algebra,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 10/4


Properties we loose<br />

• R division algebra, associative, commutative,<br />

self conjugate,<br />

• C division algebra, associative, commutative,<br />

• H division algebra, associative,<br />

• O division algebra,<br />

• if xy = 0, then x = 0 or y = 0.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 10/4


Unities<br />

• R has only one 1 = (1, 0), 1 2 = 1.<br />

Imaginary part has dimension 0.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 11/4


Unities<br />

• R has only one 1 = (1, 0), 1 2 = 1.<br />

Imaginary part has dimension 0.<br />

• C: 1 = (1, 0), 1 2 = 1 and i = (0, 1), i 2 = −1.<br />

Imaginary part has dimension 1.<br />

z = a + ib = Re z + i Im z, a, b ∈ R.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 11/4


Unities<br />

• H: 1 = (1, 0), 1 2 = 1 and<br />

i1 = (i, 0), i2 = (0, 1), i3 = (0, i),<br />

i 2 1 = i 2 2 = i 2 3 = −1.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 12/4


Unities<br />

• H: 1 = (1, 0), 1 2 = 1 and<br />

i1 = (i, 0), i2 = (0, 1), i3 = (0, i),<br />

i 2 1 = i 2 2 = i 2 3 = −1.<br />

• q = a + i1b + i2c + i3d =<br />

Re q + i1 Im1 q + i2 Im2 q + i3 Im3 q,<br />

a, b, c, d ∈ R.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 12/4


Unities<br />

O: 1 = (1, 0), 1 2 = 1 and<br />

with<br />

j1 = (i1, 0), j2 = (i2, 0), j3 = (i3, 0),<br />

j4 = (0, 1), j5 = (0, i1) j6 = (0, i2), j7 = (0, i3),<br />

j 2 1 = j 2 2 = j 2 3 = j 2 4 = j 2 5 = j 2 6 = j 2 7 = −1.<br />

Imaginary part has dimension 7.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 13/4


R n (R n 0)<br />

R n 0 = V1 ⊕ V2 with V1 = R n and V2 = ∅.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 14/4


Heisenberg group G n 1 (C n ×R)<br />

• z = (x, y) ∈ C, t ∈ R,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 15/4


Heisenberg group G n 1 (C n ×R)<br />

• z = (x, y) ∈ C, t ∈ R,<br />

• w = (a, b) ∈ C, s ∈ R<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 15/4


Heisenberg group G n 1 (C n ×R)<br />

• z = (x, y) ∈ C, t ∈ R,<br />

• w = (a, b) ∈ C, s ∈ R<br />

• (z, t) ◦ (w, s) = (z + w, t + s + Im zw ∗ ) =<br />

(z + w, t + s + iz · w) = (z + w, t + s + J z · w),<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 15/4


Heisenberg group G n 1 (C n ×R)<br />

• z = (x, y) ∈ C, t ∈ R,<br />

• w = (a, b) ∈ C, s ∈ R<br />

• (z, t) ◦ (w, s) = (z + w, t + s + Im zw ∗ ) =<br />

(z + w, t + s + iz · w) = (z + w, t + s + J z · w),<br />

where<br />

J<br />

<br />

0 −1<br />

<br />

= .<br />

1 0<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 15/4


Heisenberg group G n 1 (C n ×R)<br />

• z = (x, y) ∈ C, t ∈ R,<br />

• w = (a, b) ∈ C, s ∈ R<br />

• (z, t) ◦ (w, s) = (z + w, t + s + Im zw ∗ ) =<br />

(z + w, t + s + iz · w) = (z + w, t + s + J z · w),<br />

where<br />

J<br />

<br />

0 −1<br />

<br />

= .<br />

1 0<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 15/4


Quaternion H-<strong>type</strong> group G n 3<br />

(H n × R 3 )<br />

• q ∈ H, t1, t2, t3 ∈ R,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 16/4


Quaternion H-<strong>type</strong> group G n 3<br />

(H n × R 3 )<br />

• q ∈ H, t1, t2, t3 ∈ R,<br />

• h ∈ H, s1, s2, s3 ∈ R<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 16/4


Quaternion H-<strong>type</strong> group G n 3<br />

(H n × R 3 )<br />

• q ∈ H, t1, t2, t3 ∈ R,<br />

• h ∈ H, s1, s2, s3 ∈ R<br />

• (q, t1, t2, t3) ◦ (h, s1, s2, s3) = (q + h,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 16/4


Quaternion H-<strong>type</strong> group G n 3<br />

(H n × R 3 )<br />

• q ∈ H, t1, t2, t3 ∈ R,<br />

• h ∈ H, s1, s2, s3 ∈ R<br />

• (q, t1, t2, t3) ◦ (h, s1, s2, s3) = (q + h,<br />

• t1 + s1 + Im1 qh ∗ , t2 + s2 + Im2 qh ∗ , t3 + s3 +<br />

Im3 qh ∗ ) =<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 16/4


Quaternion H-<strong>type</strong> group G n 3<br />

(H n × R 3 )<br />

• q ∈ H, t1, t2, t3 ∈ R,<br />

• h ∈ H, s1, s2, s3 ∈ R<br />

• (q, t1, t2, t3) ◦ (h, s1, s2, s3) = (q + h,<br />

• t1 + s1 + Im1 qh ∗ , t2 + s2 + Im2 qh ∗ , t3 + s3 +<br />

Im3 qh ∗ ) =<br />

• (q + h, t1 + s1 + i1q · h, t2 + s2 + i2q · h, t3 + s3 +<br />

i3q · h) =<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 16/4


Quaternion H-<strong>type</strong> group G n 3<br />

(q + h, t1 + s1 + J1q · h, t2 + s2 + J2q · h, t3 + s3 + J3q · h),<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 17/4


Quaternion H-<strong>type</strong> group G n 3<br />

(q + h, t1 + s1 + J1q · h, t2 + s2 + J2q · h, t3 + s3 + J3q · h),<br />

J1 =<br />

⎡<br />

⎢<br />

⎣<br />

0 1 0 0<br />

−1 0 0 0<br />

0 0 0 1<br />

0 0 −1 0<br />

⎤<br />

⎡<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ , J2 = ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎦ ⎣<br />

0 0 0 −1<br />

0 0 −1 0<br />

0 1 0 0<br />

1 0 0 0<br />

⎤<br />

⎡<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ , J3 = ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎦ ⎣<br />

0 0 −1 0<br />

0 0 0 1<br />

1 0 0 0<br />

0 −1 0 0<br />

⎤<br />

⎥ .<br />

⎥<br />

⎦<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 17/4


Octonion H-<strong>type</strong> group G 1 7<br />

(O × R 7 )<br />

• p ∈ O, t = (t1, . . . , t7) ∈ R 7 ,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 18/4


Octonion H-<strong>type</strong> group G 1 7<br />

(O × R 7 )<br />

• p ∈ O, t = (t1, . . . , t7) ∈ R 7 ,<br />

• r ∈ O, s = (s1, . . . , s7) ∈ R 7 .<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 18/4


Octonion H-<strong>type</strong> group G 1 7<br />

(O × R 7 )<br />

• p ∈ O, t = (t1, . . . , t7) ∈ R 7 ,<br />

• r ∈ O, s = (s1, . . . , s7) ∈ R 7 .<br />

• (p, t) ◦ (r, s) = (p + r, t + s + Im pr ∗ ),<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 18/4


Octonion H-<strong>type</strong> group G 1 7<br />

(O × R 7 )<br />

• p ∈ O, t = (t1, . . . , t7) ∈ R 7 ,<br />

• r ∈ O, s = (s1, . . . , s7) ∈ R 7 .<br />

• (p, t) ◦ (r, s) = (p + r, t + s + Im pr ∗ ),<br />

• where Im pr ∗ = (Im1 pr ∗ , . . . , Im7 pr ∗ ).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 18/4


Octonion H-<strong>type</strong> group G 1 7<br />

(O × R 7 )<br />

• p ∈ O, t = (t1, . . . , t7) ∈ R 7 ,<br />

• r ∈ O, s = (s1, . . . , s7) ∈ R 7 .<br />

• (p, t) ◦ (r, s) = (p + r, t + s + Im pr ∗ ),<br />

• where Im pr ∗ = (Im1 pr ∗ , . . . , Im7 pr ∗ ).<br />

• (p, t) ◦ (r, s) = (p + r, t + s + Jp · r),<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 18/4


Octonion H-<strong>type</strong> group G 1 7<br />

(O × R 7 )<br />

• p ∈ O, t = (t1, . . . , t7) ∈ R 7 ,<br />

• r ∈ O, s = (s1, . . . , s7) ∈ R 7 .<br />

• (p, t) ◦ (r, s) = (p + r, t + s + Im pr ∗ ),<br />

• where Im pr ∗ = (Im1 pr ∗ , . . . , Im7 pr ∗ ).<br />

• (p, t) ◦ (r, s) = (p + r, t + s + Jp · r),<br />

• where J = (j1, . . . , j7).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 18/4


H-<strong>type</strong> group<br />

• (0, 0) is the neutral element,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 19/4


H-<strong>type</strong> group<br />

• (0, 0) is the neutral element,<br />

• (x, t) ↣ (−x, −t) is the inverse element.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 19/4


H-<strong>type</strong> group<br />

• (0, 0) is the neutral element,<br />

• (x, t) ↣ (−x, −t) is the inverse element.<br />

• If p = (x, t) and r = (y, s), then<br />

is the left translation.<br />

Lp(r) = p ◦ r<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 19/4


H-<strong>type</strong> algebras<br />

The Lie algebra is associated with the left<br />

invariant vector fields<br />

X(p) = X(x, t) = Al(p)∂xl + Bm(p)∂tm:<br />

X(p) = (Lp)∗X(0).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 20/4


H-<strong>type</strong> algebras<br />

The Lie algebra is associated with the left<br />

invariant vector fields<br />

X(p) = X(x, t) = Al(p)∂xl + Bm(p)∂tm:<br />

X(p) = (Lp)∗X(0).<br />

X(p) = d<br />

f(p ◦ γ(s))|s=0,<br />

ds<br />

γ(0) = 0, d<br />

ds γ(s)|s=0 = X(0).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 20/4


Heisenberg algebra G n 1<br />

• Basis <strong>of</strong> G n 1<br />

X1 = ∂x1 − x2∂t, X2 = ∂x2<br />

T = ∂t<br />

+ x1∂t,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 21/4


Heisenberg algebra G n 1<br />

• Basis <strong>of</strong> G n 1<br />

X1 = ∂x1 − x2∂t, X2 = ∂x2<br />

T = ∂t<br />

• [X1, X2] = X1X2 − X2X1 = 2T<br />

+ x1∂t,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 21/4


Heisenberg algebra G n 1<br />

• Basis <strong>of</strong> G n 1<br />

X1 = ∂x1 − x2∂t, X2 = ∂x2<br />

T = ∂t<br />

• [X1, X2] = X1X2 − X2X1 = 2T<br />

• G n 1 = V1 ⊕ V2,<br />

+ x1∂t,<br />

V1 = span{X1, X2}, V2 = span{T }.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 21/4


Quaternions algebra G n 3<br />

• Basis <strong>of</strong> G n 3<br />

X1(x, t) =∂x1 + + x2∂t1<br />

X2(x, t) =∂x2 + − x1∂t1<br />

X3(x, t) =∂x3 + + x4∂t1<br />

X4(x, z) =∂x4 + − x3∂t1<br />

<br />

− x4∂t2 − x3∂t3 ,<br />

<br />

− x3∂t2 + x4∂t3 ,<br />

<br />

+ x2∂t2 + x1∂t3 ,<br />

<br />

+ x1∂t2 − x2∂t3 .<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 22/4


Quaternions algebra G n 3<br />

• Basis <strong>of</strong> G n 3<br />

X1(x, t) =∂x1 + + x2∂t1<br />

X2(x, t) =∂x2 + − x1∂t1<br />

X3(x, t) =∂x3 + + x4∂t1<br />

X4(x, z) =∂x4 + − x3∂t1<br />

• T1 = ∂t1 , T2 = ∂t2 , T3 = ∂t3 .<br />

<br />

− x4∂t2 − x3∂t3 ,<br />

<br />

− x3∂t2 + x4∂t3 ,<br />

<br />

+ x2∂t2 + x1∂t3 ,<br />

<br />

+ x1∂t2 − x2∂t3 .<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 22/4


Quaternions algebra G n 3<br />

•<br />

[X1, X2] = −2T1, [X1, X3] = 2T3, [X1, X4] = 2T2,<br />

[X2, X3] = 2T2, [X2, X4] = −2T3, [X3, X4] = −2T1<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 23/4


Quaternions algebra G n 3<br />

•<br />

[X1, X2] = −2T1, [X1, X3] = 2T3, [X1, X4] = 2T2,<br />

[X2, X3] = 2T2, [X2, X4] = −2T3, [X3, X4] = −2T1<br />

• G n 3 = V1 ⊕ V2,<br />

V1 = span{X1, X2, X3, X4},<br />

V2 = span{T1, T2, T3}.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 23/4


Horizontal curve<br />

• A curve c(s) = (x(s), t(s)) is called horizontal<br />

if ˙c(s) = 4<br />

l=1 α(s)Xl(c(s)).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 24/4


Horizontal curve<br />

• A curve c(s) = (x(s), t(s)) is called horizontal<br />

if ˙c(s) = 4<br />

l=1 α(s)Xl(c(s)).<br />

• A curve c(s) is horizontal if and only if<br />

˙t1 = + x2 ˙x1 − x1 ˙x2 + x4 ˙x3 − x3 ˙x4 = J1x · ˙x,<br />

˙t2 = − x4 ˙x1 − x3 ˙x2 + x2 ˙x3 + x1 ˙x4 = J2x · ˙x,<br />

˙t3 = − x3 ˙x1 + x4 ˙x2 + x1 ˙x3 − x2 ˙x4 = J3x · ˙x,<br />

where ˙x = ( ˙x1, . . . , ˙x4).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 24/4


Hamiltonian formalism<br />

∆h =<br />

4<br />

l=1<br />

X 2 l = ∆x + |x| 2 ∆t +<br />

3<br />

m=1<br />

<br />

Jmx · ∇x ∂tm<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 25/4


Hamiltonian formalism<br />

∆h =<br />

4<br />

l=1<br />

X 2 l = ∆x + |x| 2 ∆t +<br />

3<br />

m=1<br />

Hamilton’s function is H(ξ, θ, x, t) =<br />

= |ξ| 2 + |x| 2 |θ| 2 + Mx · ξ,<br />

ξl = ∂xl , θm = ∂tm , and M = 3<br />

m=1 θmJm.<br />

<br />

Jmx · ∇x ∂tm<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 25/4


Hamiltonian system<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

˙x = ∂H<br />

∂ξ<br />

= 2ξ + Mx<br />

˙tm = ∂H<br />

∂θm = 2|x|2 θm + Jmx · ξ, m = 1, 2, 3<br />

˙ξ = − ∂H<br />

∂x = −2|θ|2 x + Mξ<br />

˙θ = − ∂H<br />

∂t<br />

= 0.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 26/4


Geodesics<br />

Let P (x0, t0), Q(x1, t1) ∈ Gn 3. A geodesic between<br />

P y Q is the projection <strong>of</strong> the solution <strong>of</strong> the<br />

Hamiltonian system onto (x, t)-space, satisfying<br />

<br />

x(0), t(0) = (x0, t0), x(1), t(1) = (x, t).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 27/4


Geodesics<br />

Let P (x0, t0), Q(x1, t1) ∈ Gn 3. A geodesic between<br />

P y Q is the projection <strong>of</strong> the solution <strong>of</strong> the<br />

Hamiltonian system onto (x, t)-space, satisfying<br />

<br />

x(0), t(0) = (x0, t0), x(1), t(1) = (x, t).<br />

Lemma. Any geodesic is a horizontal curve, but not all<br />

horizontal curves are geodesics.<br />

c(s) = ( s2<br />

2<br />

, s, s2<br />

2<br />

, s, s3<br />

6 , c1, c2)<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 27/4


General solutions<br />

x(s) =<br />

1 − cos(2s|θ|)<br />

2|θ| 2<br />

t(s) =<br />

¨x = 2M ˙x.<br />

sin(2s|θ|)<br />

M ˙x(0) + U ˙x(0),<br />

2|θ|<br />

θ| ˙x(0)|2<br />

4|θ| 2 (s − sin(2s|θ|)<br />

).<br />

2|θ|<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 28/4


Geodesics (0, 0) ⇒ (x, 0)<br />

A smooth curve c(s) is horizontal with constant<br />

coordinates t if and only if<br />

c(s) = (a1s, . . . , a4s, t1, t2, t3),<br />

where a1, . . . , a4 ∈ R y a 2 1 + . . . + a 2 4 = 0.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 29/4


Geodesics (0, 0) ⇒ (x, t)<br />

Given a point Q(x, t) there is a finite number <strong>of</strong><br />

geodesics connecting O(0, 0) with Q. Let |θ| be a<br />

solution <strong>of</strong> the equation<br />

4|t|<br />

|θ|<br />

= µ(|θ|) =<br />

|x| 2 sin2 |θ|<br />

− cot |θ|.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 30/4


Geodesics (0, 0) ⇒ (x, t)<br />

xm(s) =<br />

<br />

<br />

4 sin(2|θ|m) sin2 (s|θ|m) − sin(2s|θ|m) sin2 <br />

|θ|m<br />

|x1 | 22|θ|m − sin(2|θ|m) T .<br />

+ cot |θ|m sin(s|θ|m) cos(s|θ|m) + sin 2 (s|θ|m) U<br />

tm(s) = t 2s|θ|m − sin(2s|θ|m) <br />

2|θ|m − sin(2|θ|m)<br />

<br />

x 1 ,<br />

m = 1, . . . , N.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 31/4


Finding |θ|<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

2.5 5 7.5 10 12.5 15 17.5<br />

Figure 1: Solution <strong>of</strong> the equation 4|t|<br />

|x| 2 = µ(|θ|)<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 32/4


Graphics <strong>of</strong> geodesics<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 33/4


Length <strong>of</strong> geodesics<br />

l 2 = ν(|θ|)(|x| 2 + 4|t|),<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 34/4


Length <strong>of</strong> geodesics<br />

l 2 = ν(|θ|)(|x| 2 + 4|t|),<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

2.5 5 7.5 10 12.5 15 17.5<br />

Figure 3: The graph <strong>of</strong> ν(|θ|) =<br />

|θ| 2<br />

sin |θ|(sin |θ|−cos |θ|)+|θ|<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 34/4


geodesics (0, 0) ⇒ (0, t)<br />

There is an infinite number <strong>of</strong> geodesics joining<br />

O(0, 0) with Q(0, t) satisfying the equations<br />

xm(s) =<br />

1 − cos(2πms)<br />

2πm|z 1 |<br />

<br />

tm(s) = t s − sin(2πms)<br />

T =<br />

⎡<br />

⎢<br />

⎣<br />

T ˙x(0) + sin(2πms)<br />

2πm<br />

2πm<br />

0 t1 −t3 −t2<br />

−t1 0 −t2 t3<br />

t3 t2 0 t1<br />

t2 −t3 −t1 0<br />

<br />

, m ∈ N.<br />

⎤<br />

⎥<br />

⎦ ,<br />

U ˙x(0),<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 35/4


Graphs <strong>of</strong> geodesics<br />

Figure 4: l 2 m = 4πm|t|, m ∈ N<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 36/4


Carnot-Carathéodory metric<br />

• dC−C(P, Q) = inf{l(c) : l(c) is the length <strong>of</strong><br />

horizontal curve c joining P and Q}.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 37/4


Carnot-Carathéodory metric<br />

• dC−C(P, Q) = inf{l(c) : l(c) is the length <strong>of</strong><br />

horizontal curve c joining P and Q}.<br />

• Let M be two step group, then<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 37/4


Carnot-Carathéodory metric<br />

• dC−C(P, Q) = inf{l(c) : l(c) is the length <strong>of</strong><br />

horizontal curve c joining P and Q}.<br />

• Let M be two step group, then<br />

• if (M, dC−C) is complete, then it is possible to<br />

join any two points by geodesics,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 37/4


Carnot-Carathéodory metric<br />

• dC−C(P, Q) = inf{l(c) : l(c) is the length <strong>of</strong><br />

horizontal curve c joining P and Q}.<br />

• Let M be two step group, then<br />

• if (M, dC−C) is complete, then it is possible to<br />

join any two points by geodesics,<br />

• if there is a point P such that any geodesic<br />

starting from P can be continued infinitely,<br />

then (M, dC−C) is complete,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 37/4


Carnot-Carathéodory metric<br />

• any nonconstant geodesic locally coincides<br />

with the shortest curve,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 38/4


Carnot-Carathéodory metric<br />

• any nonconstant geodesic locally coincides<br />

with the shortest curve,<br />

• any shortest curve is a geodesic.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 38/4


Carnot-Carathéodory metric<br />

• any nonconstant geodesic locally coincides<br />

with the shortest curve,<br />

• any shortest curve is a geodesic.<br />

• Corollary. The metric space (G n 3, dC−C) is complete<br />

and the shortest curve is geodesic.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 38/4


C-C metric and geodesics<br />

dC−C(O, Q) = {l(c) : c<br />

is the shortest geodesic joining O and Q}.<br />

d 2 C−C (O, Q) = ν(|θ|1)(|x| 2 + 4|t|), where |θ|1<br />

is the smallest solution <strong>of</strong> the equation<br />

4|t|<br />

|x| 2 = µ(|θ|).<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 39/4


Some nice properties<br />

Let c(s) be a geodesic. Then for any q ∈ G n 3<br />

• ˜c(s) = q ◦ c(c) is also a geodesic,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 40/4


Some nice properties<br />

Let c(s) be a geodesic. Then for any q ∈ G n 3<br />

• ˜c(s) = q ◦ c(c) is also a geodesic,<br />

• the geodesics c(s) and ˜c(s) have the same<br />

length,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 40/4


Some nice properties<br />

Let c(s) be a geodesic. Then for any q ∈ G n 3<br />

• ˜c(s) = q ◦ c(c) is also a geodesic,<br />

• the geodesics c(s) and ˜c(s) have the same<br />

length,<br />

• the vectors ˙c(s) and ¨c(s) are orthogonal,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 40/4


Some nice properties<br />

Let c(s) be a geodesic. Then for any q ∈ G n 3<br />

• ˜c(s) = q ◦ c(c) is also a geodesic,<br />

• the geodesics c(s) and ˜c(s) have the same<br />

length,<br />

• the vectors ˙c(s) and ¨c(s) are orthogonal,<br />

• the lengths <strong>of</strong> ˙c(s) and ¨c(s) are constant along<br />

the geodesic,<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 40/4


Some nice properties<br />

Let c(s) be a geodesic. Then for any q ∈ G n 3<br />

• ˜c(s) = q ◦ c(c) is also a geodesic,<br />

• the geodesics c(s) and ˜c(s) have the same<br />

length,<br />

• the vectors ˙c(s) and ¨c(s) are orthogonal,<br />

• the lengths <strong>of</strong> ˙c(s) and ¨c(s) are constant along<br />

the geodesic,<br />

• the curvature <strong>of</strong> geodesics is constant and<br />

κ(s) = <br />

d ˙c <br />

ds | ˙c| = 2|θ|<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 40/4


Bibliography<br />

1.Beals R., Gaveau B., and Greiner P. C. Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians, I, II, III. Bull. Sci. Math., 21 (1997), no.<br />

1–3, 1–36, 97–149, 195–259.<br />

2. Beals R., Gaveau B., and Greiner P. C. Hamilton-Jacobi theory and the heat kernel on Heisenberg <strong>groups</strong>. J. Math. Pures Appl. 79 (2000), no. 7,<br />

633–689.<br />

3. Calin O., Chang D. C., and Greiner P. C. On a step 2(k + 1) sub-Riemannian manifold. J. Geom. Anal., 14 (2004), no. 1, 1–18<br />

4. Calin O., Chang D. C., and Greiner P. C. Real and complex Hamiltonian mechanics on some subRiemannian manifolds. Asian J. Math., 18, no. 1 (2004),<br />

137–160.<br />

5. Chang D. C., and I. Markina Geometric analysis on quaternion H-<strong>type</strong> <strong>groups</strong>. J. Geom. Anal., 16, no. 2 (2006), 265–294.<br />

6. Chang D. C., and I. Markina Anisotropic quaternion Carnot <strong>groups</strong>: geometric analysis and Green’s function. (submit)<br />

7. Chow W. L. Wei-Liang Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117 (1939), 98–105.<br />

8. Folland G. B. and Stein E. M. Estimates for the ¯ ∂b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522.<br />

9. Gaveau B. Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), no. 1-2,<br />

95–153.<br />

10. Hörmander L. Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171.<br />

11. Kaplan A. Fundamental solutions for a class <strong>of</strong> hypoelliptic PDE generated by composition <strong>of</strong> quadratics forms. Trans. Amer. Math. Soc. 258 (1980), no. 1,<br />

147–153.<br />

12. Kaplan A. On the geometry <strong>of</strong> <strong>groups</strong> <strong>of</strong> Heisenberg <strong>type</strong>. Bull. London Math. Soc. 15 (1983), no. 1, 35–42.<br />

13. Korányi A. Geometric properties <strong>of</strong> Heisenberg-<strong>type</strong> <strong>groups</strong>. Adv. in Math. 56 (1985), no. 1, 28–38.<br />

14. Mostow G. D. Strong rigidity <strong>of</strong> locally symmetric spaces. Annals <strong>of</strong> Mathematics Studies, No. 78. Princeton University Press, Princeton, N.J.,<br />

University <strong>of</strong> Tokyo Press, Tokyo, 1973.<br />

15. Pansu P. Croissance des boules et des géodésiques fermées dans les nilvariétés.(French) Ergodic Theory Dynam. Systems 3 (1983), no.<br />

3, 415–445.<br />

16. Reimann H. M. Rigidity <strong>of</strong> H-<strong>type</strong> <strong>groups</strong>. Math. Z. 237 (2001), no. 4, 697–725.<br />

17. Ricci F. Commutative algebras <strong>of</strong> invariant functions on <strong>groups</strong> <strong>of</strong> Heisenberg <strong>type</strong>. J. London Math. Soc. 32 (1985), no. 2, 256–271.<br />

18. Strichartz R. S. Sub-Riemannian geometry. J. Differential Geom. 24 (1986), no. 2, 221–263; Correction, ibid. 30 (1989), 595-596.<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 41/4


The end<br />

<strong>Homogeneous</strong> <strong>groups</strong> <strong>of</strong> H-<strong>type</strong> – p. 42/4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!