Vanya Belyaev: Radiative decays @ LHCb - Beauty 2009

Vanya Belyaev: Radiative decays @ LHCb - Beauty 2009 Vanya Belyaev: Radiative decays @ LHCb - Beauty 2009

beauty2009.physi.uni.heidelberg.de
from beauty2009.physi.uni.heidelberg.de More from this publisher

<strong>Radiative</strong> Decays @ <strong>LHCb</strong><br />

<strong>Vanya</strong> BELYAEV (NIKHEF/Amsterdam & ITEP/Moscow)<br />

On behalf of <strong>LHCb</strong> Collaboration


Outline<br />

• <strong>Radiative</strong> penguins & photon polarization in<br />

b→ s g transitions<br />

• Event Selection<br />

• Probing for the photon polarization in Bs →fg fg<br />

• Early data<br />

• Summary<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 2


Loops and Penguins<br />

•Rare Rare ( (≡“loop “loop--induced” induced” ) and especially<br />

penguin penguin--mediated mediated <strong>decays</strong> are essential part<br />

of LHC(b) physics program:<br />

• Electroweak penguin B0 →K *0<br />

• talk by Will Will Reece Reece<br />

• Gluonic penguin Bs→ ff<br />

*0 m + m -<br />

• Talk by Olivier Leroy , also charmless BB-<strong>decays</strong>,<br />

<strong>decays</strong>, talk by Lorence Carson<br />

• Hunting for “ “SUSY/Higgs<br />

SUSY/Higgs penguin”: Bs →m + m- • talk by Diego Diego Martinez Martinez Santos Santos<br />

And the radiative penguins are here …<br />

10.9.2k+9<br />

LHC(b) penguinarium<br />

penguinarium<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 3


<strong>Radiative</strong> penguins<br />

• <strong>Radiative</strong> penguin <strong>decays</strong> of B + &B &B0 mesons have<br />

been discovered by CLEO and both inclusive b→sg<br />

and exclusive <strong>decays</strong> have been intensively<br />

studied by CLEO CLEO, , BaBaR and Belle<br />

• Br(b<br />

Br(b →sg) ) is one of the most efficient killer for<br />

New Physics Models<br />

• Belle has observed Bs →fg fg<br />

10.9.2k+9<br />

Belle Belle: : O(1 Bs→fg fg)/day )/day at Y(5S)<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 4


Why penguins are attractive?<br />

• The clear picture in SM:<br />

• One diagram dominance<br />

• One Wilson coefficient C7 eff (m)<br />

• Reliable theoretical description at (N)NLO allows the<br />

numerically precise predictions<br />

• Loops<br />

• New Physics contribution can be comparable and even<br />

dominating to (small) SM amplitudes<br />

• NP appears not only in modifications of Br Br, , but also in<br />

asymmetries and the angular effects<br />

• “Sensitive Sensitive also also to to spin spin structure structure of of NP” NP<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 5


• Not so rare <strong>decays</strong><br />

Br(B→K *0 g ) = (4.3±0.4)x10 -5<br />

Br(B s→fg ) = (3.8±0.5)x10 -5<br />

• 1-amplitude dominance<br />

• strong phase appears at<br />

order of a s or 1/m b<br />

Exclusive radiative penguins<br />

→“Direct” asymmetries are<br />

small (


• B→ f CP<br />

Mixing asymmetries are<br />

vanished, but …<br />

CP g is not CP CP eigenstate eigenstate! ! gR/gL ≈ms/m • Take it into account:<br />

• SM:<br />

• C = 0 direct CP CP-violation violation<br />

• S = sin2 sin2y y sin sinf<br />

• AD = sin2 sin2y y cos cosf<br />

10.9.2k+9<br />

/m b<br />

not suppressed!<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 7


B 0 → K S p 0 g<br />

s(sin2 (sin2y ) ~ 0.4<br />

BaBar Belle<br />

8


• C is practically zero<br />

• 1 diagram dominance<br />

DG s/G s≠ 0<br />

• S is a product of CP-eigenstate<br />

CP eigenstate fraction and and (small) phase<br />

difference of Bs oscillation and b→sg penguin<br />

• double double smallness smallness is is SM<br />

• AD is just a fraction of CP-eigenstate<br />

CP eigenstate<br />

• ≡ Fraction of wrongly polarized photons<br />

• No No “other” “other” suppression suppression factors, factors, only only DG DGs/Gs Essentially we study CP-violation<br />

CP violation in Bs→fg fg as an an instrument<br />

instrument to probe<br />

Lorentz structure of b→sg transitions<br />

F.Muheim, Y.Xie & R.Zwicky R.Zwicky, , Phys.Lett.B664:174<br />

Phys.Lett.B664:174-179,2008 179,2008<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 9


Expected performance for B s→fg at <strong>LHCb</strong><br />

• What we “ “know” know” now:<br />

• The yield is 11k per 2 fb fb-1 (and 70k of<br />

• Background is<br />


Trigger<br />

• Hardware L0 trigger for photons with high E<br />

•<br />

T<br />

Next trigger levels (software) :<br />

• Photon confirmation (& suppression of merged merged p0 )<br />

and single (or pair) detached track reconstruction<br />

• e ~ 70%<br />

• Full reconstruction of Bs →fg fg candidate<br />

• Reconstruction of f-candidate candidate<br />

• “inclusive inclusive ff” ” trigger<br />

Large overlap,<br />

high redundancy &<br />

robustness: e ~ 95%<br />

More details in dedicated talk by by Leandro Leandro de de Paula Paula<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 11


Event selection<br />

• B-decay products do not point to<br />

reconstructed primary vertices<br />

• Exclusively reconstructed B-candidate does<br />

point to primary vertex<br />

• B-candidate is<br />

associated with the<br />

primary vertex with<br />

minimal impact<br />

parameter (significance)<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 12


Signal proper time resolution<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 13


Sensitivity to sin2y<br />

• To evaluate our sensitivity to sin2 sin2y<br />

• toy Monte Carlo (10 (104 experiments)<br />

experiments)<br />

• Unbinned maximum likelihood fit m(B m(Bs) ) = 5.367 GeV GeV/c<br />

• Proper lifetime & error<br />

• Reconstructed mass<br />

• Per Per-event event proper time errors<br />

• Resolutions & Efficiencies from full MC<br />

• Parameterize the background from mass mass-sidebands sidebands<br />

• Important ingredient – proper time acceptance function<br />

L.Shchutska et al al, , CERN CERN-<strong>LHCb</strong> <strong>LHCb</strong>-2007 2007-147 147<br />

2<br />

t(B (Bs) ) = 1.43 ps<br />

DG DGs = 0.084 ps ps-1 Dms = 17.77 ps ps-1 10.9.2k+9<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 14


a = 0.74 ps ps-1 c = 1.86<br />

10.9.2k+9<br />

Proper time acceptance<br />

dN/ dN/dt dt es(t) (t)<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 15


Proper time acceptance<br />

• It is a vital to know it with very high precision<br />

• 5% bias in “ “a” ” -> > bias in sin2 sin2y ~ 0.2<br />

• We are planning to calibrate it using three techniques:<br />

• B0→ K *0 g<br />

• Bs→ f J/ J/y y<br />

• “per per--event event--acceptance<br />

acceptance” ” (“swimming” method)<br />

• The acceptance could be extracted from data for all<br />

cases<br />

• E.g. with ~ ~OO(1%) (1%) precision for B0→ K *0 g<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 16


Background parameterization<br />

• Fit separately left and<br />

right sidebands<br />

10.9.2k+9<br />

Left Right<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 17


10.9.2k+9<br />

Results: s(A (AD ,C,S)<br />

s(A (AD )=0.22<br />

2fb 2fb-1 s(S)= )=s(C)=0.11 )=0.11<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 18


The first 13 minutes @<br />

nominal luminosity<br />

“early measurements”<br />

B→ K *0 g<br />

• Already with “early”<br />

data the<br />

measurements of<br />

direct CP CP-asymmetry<br />

asymmetry<br />

in B→ K *0 g<br />

• Double ratio:<br />

• Measurement of<br />

B→fKg<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 19


• <strong>LHCb</strong><br />

Conclusions<br />

<strong>LHCb</strong> has good potential for measurement of<br />

photon polarization in Bs→fg fg decay<br />

• For 2 fb fb-1 :<br />

s(A (AD )=0.22, s(S)= )=s(C)=0.11 )=0.11<br />

• The The determination determination of of proper proper time time acceptance<br />

acceptance<br />

function function from from data data in in under under the the study: study:<br />

• Three Three methods methods<br />

• The result has moderate moderate dependency on B/S B/S<br />

Stay tuned and wait for more news<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 20


Backup slides<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 21


Example of models<br />

• Anomalous right right-handend handend top couplings J.P.Lee’03 J.P.Lee’03<br />

lg = -cos cos 2y<br />

10.9.2k+9<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 22


B: proper-time in sidebands<br />

• Fit separately left and right sidebands<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 23


Signal proper time resolution as function of cos cosQ<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 24


Signal proper time resolution as function of cos cosQ<br />

10.9.2k+9<br />

-1.0 1.0 : -0.5 0.5 -0.5 0.5 : -0.15 0.15<br />

-0.15 0.15 : 0.3 0.3: 1.0<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 25


The shape of background<br />

• Vary the “short/long”<br />

“short/long”-lived lived components<br />

Relative change<br />

10.9.2k+9<br />

Absolute change<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 26


Stability tests: B/S<br />

• There is some dependency on B/S B/S level:<br />

10.9.2k+9<br />

Conservative UL @ 90% CL<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 27


10.9.2k+9<br />

Results: pulls<br />

S<br />

A D<br />

<strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 28<br />

C


Resolution and DG DGs/Gs • Vary the proper time resolution<br />

• Use simple model with two Gaussians and vary the<br />

proportion<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 29


Acceptance function<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 30


Background parameterization<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 31


Likelihood<br />

10.9.2k+9 <strong>Vanya</strong> <strong>Belyaev</strong>: <strong>Radiative</strong> <strong>decays</strong> @ <strong>LHCb</strong> 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!