08.08.2013 Views

Composite Structures ? The First 100 Years - Department of ...

Composite Structures ? The First 100 Years - Department of ...

Composite Structures ? The First 100 Years - Department of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Composite</strong> <strong>Structures</strong> – <strong>The</strong> <strong>First</strong><br />

<strong>100</strong> <strong>Years</strong><br />

Billy Roeseler, Branko Sarh, and Max Kismarton<br />

Originally prepared for ICCM-16 Kyoto, Japan<br />

9 July 2007<br />

Added content from John Quinlivan, Joe Sutter, Damon Roberts,<br />

(Insensys,) GE, and Boeing 787 Program for <strong>Composite</strong> Design<br />

Tutorial, Stanford University 28 Sept 2009


<strong>Composite</strong>s <strong>The</strong>n and Now<br />

Two or more materials combined to<br />

perform some useful purpose<br />

Exhibits the best properties <strong>of</strong> the<br />

individual materials plus additional<br />

qualities that the individual materials do<br />

not exhibit alone<br />

Examples<br />

Mud and straw<br />

Steel-reinforced concrete<br />

Fibers embedded in a plastic resin matrix<br />

Oriented Strand Board (OSB)


1943 Popular Mechanics Prediction


<strong>Composite</strong>s Provide Higher<br />

Strength and Stiffness<br />

Specific<br />

Ultimate<br />

Tension,<br />

UTS1<br />

(KSI / pci)<br />

Vectran HS<br />

S-glass<br />

Quartz<br />

Kevlar 29<br />

E-glass<br />

Vectran M<br />

Titanium<br />

Aluminum<br />

Steel<br />

Zylon AS<br />

Dyneema<br />

T-800<br />

Zylon<br />

T-700G<br />

M30J<br />

Spectra 900 AS4D<br />

AS4<br />

T-400H<br />

Kevlar 149 T-300G<br />

Kevlar 49<br />

T300<br />

T-<strong>100</strong>0<br />

M30S<br />

M30<br />

Boron<br />

0 200 400 600 800 <strong>100</strong>0 1200 1400<br />

HM<br />

M35J<br />

M40J<br />

Specific Modulus, E1/ rho (MSI / pci)<br />

M46J<br />

Specific<br />

Fiber Properties Dry<br />

(no resin)<br />

Tension ONLY<br />

M50J<br />

M55J<br />

M5<br />

M60J<br />

Fig 2


Fiberglass Primary <strong>Structures</strong> -<br />

Rotor Blades (1964 flight test)


MASS Governor Volpe inspects<br />

Autocopter 1966


767 and Entry Door Spring 1978


Fiberglass Primary Structure in Service<br />

1984


Joe Sutter 1982


1982 Prediction<br />

Joe Sutter


Rational Growth <strong>of</strong> Aerospace Usage<br />

<strong>of</strong> <strong>Composite</strong> <strong>Structures</strong><br />

Percent <strong>of</strong> <strong>Composite</strong><br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Gripen<br />

Eur<strong>of</strong>ighter<br />

F-22<br />

7E7<br />

OV-22<br />

F-35<br />

AV-8B<br />

ATR72<br />

A400M<br />

707<br />

A380<br />

767 ATR42 F/A-18 E/F<br />

L1011 757 A340 A330-200<br />

DC-10<br />

A320<br />

777<br />

DC-9<br />

737-300 A310<br />

MD-11<br />

747-400<br />

0<br />

1940 1960 1980 2000 2020<br />

B-2<br />

AH-66<br />

LCA<br />

Boeing<br />

Non-Boeing


Damage Tolerant Design<br />

Design<br />

Load<br />

Level<br />

Ultimate<br />

1.5 Factor<br />

<strong>of</strong> Safety<br />

Limit<br />

Allowable<br />

Damage Limit<br />

(ADL)<br />

~ Maximum load<br />

per lifetime<br />

Critical Damage<br />

Threshold<br />

(CDT)<br />

Increasing Damage Severity<br />

Continued<br />

safe flight


LCPAS Compression Panel Test<br />

Summary<br />

Normalized Gross Failure Stress (Ksi)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

X<br />

3I-1<br />

1J-3<br />

3B-3<br />

X<br />

X<br />

X X<br />

X<br />

X X<br />

X<br />

X<br />

5 10 15 20 25 30 20 30 40 50 60<br />

11-5<br />

End load N x (Kip/in.) Shear Stiffness Ratio Gt/N x<br />

LCPAS 1982 (2220-3)<br />

Rhodes and Williams 1981 (5208)<br />

Aluminum (7150)<br />

Impact damage ½ in. –diameter metal impactor<br />

3J-1<br />

1B-1<br />

3B-3<br />

11-5<br />

27%<br />

Mass Reduction<br />

3B-3<br />

8%<br />

X<br />

3I-1<br />

3J-1


LCPAS Wing Sizing Based on Test<br />

Results<br />

Component<br />

Upper Surface<br />

Lower Surface<br />

Spars<br />

Total<br />

(Panels + Spars)<br />

<strong>The</strong>oretical<br />

Mass<br />

Reduction (%)<br />

24<br />

49<br />

40<br />

38


Boeing Structural Aluminum Alloy<br />

Improvements<br />

Fracture<br />

Toughness<br />

K aap,Ksi √ in<br />

200<br />

150<br />

<strong>100</strong><br />

50<br />

0<br />

2024-T3<br />

• 777 Fuselage<br />

2024-T351<br />

2XXX-T3<br />

Old<br />

Technology<br />

Lower Wing<br />

• 767<br />

• 757<br />

• 737<br />

• 747-400<br />

• 777<br />

2324-T39<br />

2224<br />

7075-T651<br />

7178-T651<br />

Upper Wing<br />

• 767<br />

• 757<br />

• 737-300<br />

-400, -500<br />

• 747-400<br />

40 60 80 <strong>100</strong><br />

7150<br />

Typical Yield Strength, Ksi<br />

7150<br />

Goodness<br />

Upper Wing<br />

• 737-700,-800<br />

• 777<br />

7055<br />

• 777 Body Stringers


Specific Strength Of Wing Bending<br />

Materials<br />

Specific Strength<br />

Stress / Density<br />

(Ksi / pci)<br />

900<br />

850<br />

800<br />

750<br />

700<br />

650<br />

600<br />

550<br />

500<br />

Spruce<br />

Goose<br />

DC-3<br />

B-47<br />

DC-7<br />

B-52<br />

Comet<br />

Helicopters<br />

737<br />

747<br />

Military<br />

7075<br />

2024<br />

7150<br />

757<br />

767<br />

1930 1950 1970 1990 2010 2030 2050<br />

Year<br />

Wind Energy<br />

IACC<br />

7055<br />

2324<br />

2224<br />

Commercial<br />

Tails<br />

777-wing<br />

Commercial<br />

Wings<br />

UAVs<br />

Metallics<br />

<strong>Composite</strong>s


Setting New Levels <strong>of</strong> Leadership<br />

Less fuel used<br />

Lower emissions<br />

Quieter for communities,<br />

crews, and passengers<br />

Fewer hazardous materials<br />

Less waste in production


Opening a New Era in Fuel Efficiency<br />

Fuel consumption per seat<br />

20%<br />

Better<br />

787<br />

225 SEATS 275 SEATS<br />

200 SEATS 250 SEATS 300 SEATS<br />

Current<br />

Twins<br />

Current<br />

Quads<br />

Fuel consumption per trip<br />

350 SEATS 400 SEATS<br />

450 SEATS<br />

500 SEATS<br />

550 SEATS


Addressing the Market’s Needs<br />

(2006-2025)<br />

Regional jets<br />

Single-aisle<br />

Twin-aisle<br />

747 and larger<br />

23%<br />

3%<br />

13%<br />

61%<br />

27,200<br />

airplanes<br />

4%<br />

10%<br />

45%<br />

2.6 trillion<br />

delivery dollars*<br />

*In year 2005 dollars<br />

41%


<strong>Composite</strong> Solutions Applied<br />

Throughout the 787<br />

Carbon laminate<br />

Carbon sandwich<br />

Other composites<br />

Aluminum<br />

Titanium<br />

Titanium/steel/aluminum<br />

Titanium<br />

15%<br />

Steel<br />

10%<br />

Aluminum<br />

20%<br />

Other<br />

5%<br />

<strong>Composite</strong>s<br />

50%


Partners Across <strong>The</strong> Globe Are Bringing<br />

<strong>The</strong> 787 Together (2007 data)


787 Final Assembly Flow<br />

Everett, Wash.


Increased Use <strong>of</strong> <strong>Composite</strong>s<br />

Over Time<br />

747<br />

1%<br />

757/767<br />

3%<br />

787<br />

777 11%<br />

50%<br />

Materials<br />

<strong>Composite</strong><br />

Steel<br />

Titanium<br />

Aluminum<br />

Miscellaneous


Validation Process Ensures Safety,<br />

Reliability<br />

Material<br />

Specimens<br />

Proven Certification process, validated by<br />

positive service experience<br />

Boeing design objectives typically exceed<br />

minimum regulatory requirements<br />

Elements<br />

Assemblies<br />

Components<br />

Increasing Levels <strong>of</strong> Complexity<br />

Airplanes<br />

Static Test<br />

Fatigue Test<br />

Ground & Flight Tests


Static Test Airframe Moves To<br />

Testing Rig 25 April 2008


787 Airframe Static Test


<strong>Composite</strong>s Also On Jet Engines


<strong>Composite</strong>s at Work with Wind Turbines<br />

(Vestas V90)


BOR 90, Newest Carbon Fiber Flying<br />

Machine, Anacortes, WA 2008<br />

www.GGYC.COM


<strong>Composite</strong>s at Sea with the Maltese<br />

Falcon


Damon Roberts Insensys, Ltd


Maltese Falcon Rig Engineering and Build<br />

Structural Overview<br />

Bending moment at deck 17,000,000 Nm<br />

Torque at deck 1,200 kNm<br />

Height 58m<br />

Sail area on each spar 800 sqm<br />

Elliptical spar 1.8m by 1.1m max, tapering to 0.6 by 0.4m<br />

at top and reducing to 1.1m diam at deck<br />

Open slot down compression face


Maltese Falcon main spar, note slot for furling sails<br />

Masts


Maltese Falcon Rig Cured in 4 pieces,<br />

secondary bonded together


Maltese Falcon Rig Stepping


Real Time Display in Wheel House,<br />

Maltese Falcon


Improvements in Specific Strength<br />

During the <strong>First</strong> <strong>100</strong> <strong>Years</strong> <strong>of</strong> <strong>Composite</strong>s<br />

Specific Strength,<br />

Log (ksi/pci)<br />

DC-3<br />

B-47<br />

DC-7<br />

AL ladders<br />

Autocopter<br />

B-52<br />

Comet<br />

Corvette<br />

Chop Fiber<br />

AL Ti Steel Wood Plastic Glass CFRP<br />

AL-7050<br />

4130<br />

747<br />

Spectra lines GR fiber, dry<br />

Uni, Rod<br />

Uni, Spring<br />

767<br />

Year<br />

777<br />

High Pressure Tanks<br />

Wind Energy<br />

AL-7150<br />

787<br />

Zylon, dry<br />

Vectran, dry<br />

Oil Drilling<br />

Nano<br />

Fibers<br />

Metals<br />

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040


Diverse Modes <strong>of</strong> Transportation<br />

Travel Time (Hours)<br />

12.0<br />

11.0<br />

10.0<br />

9.0<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

+ +<br />

() () () ()<br />

Automobile<br />

() () () () Commercial AC Using Hub<br />

<br />

Commercial AC<br />

<br />

Advanced Flying Automobile<br />

AFA Driving Mode<br />

<br />

<br />

+<br />

<br />

<br />

Automobile<br />

() () () ()<br />

+<br />

<br />

<br />

<br />

<br />

+<br />

<br />

<br />

<br />

<br />

+<br />

<br />

<br />

<br />

<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

() () () ()<br />

<br />

<br />

AFA Flight Mode<br />

() () () ()<br />

() () () () () () () ()<br />

<strong>100</strong> 200 300 400 500 600 700 800<br />

Flight Destination (Miles)<br />

<br />

<br />

<br />

<br />

+<br />

() () () ()<br />

<br />

<br />

+<br />

Commercial w Hub<br />

<br />

<br />

<br />

<br />

Commercial AC


On the Land, In the Sky, On the Sea:<br />

<strong>The</strong> Best Is Yet to Come

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!