08.08.2013 Views

The Organizing Potential of Sphingolipids in Intracellular Membrane ...

The Organizing Potential of Sphingolipids in Intracellular Membrane ...

The Organizing Potential of Sphingolipids in Intracellular Membrane ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1718 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

and sph<strong>in</strong>gomyel<strong>in</strong> <strong>in</strong> cultured human fibroblasts. J Biol Chem 264:<br />

3786–3793, 1989.<br />

183. LANNERT H, BÜNNING C, JECKEL D, AND WIELAND FT. Lactosylceramide<br />

is synthesized <strong>in</strong> the lumen <strong>of</strong> the Golgi apparatus. FEBS Lett<br />

342: 91–96, 1994.<br />

184. LANNERT H, GORGAS K, MEIßNER I, WIELAND FT, AND JECKEL D. Functional<br />

organization <strong>of</strong> the Golgi apparatus <strong>in</strong> glycosph<strong>in</strong>golipid<br />

biosynthesis. Lactosylceramide and subsequent glycosph<strong>in</strong>golipids<br />

are formed <strong>in</strong> the lumen <strong>of</strong> the late Golgi. J Biol Chem 273:<br />

2939–2946, 1998.<br />

185. LANOIX J, OUWENDIJK J, LIN CC, STARK A, LOVE HD, OSTERMANN J, AND<br />

NILSSON T. GTP hydrolysis by Arf-1 mediates sort<strong>in</strong>g and concentration<br />

<strong>of</strong> Golgi resident enzymes <strong>in</strong>to functional COP I vesicles.<br />

EMBO J 18: 4935–4948, 1999.<br />

186. LANTERMAN MM AND SABA JD. Characterization <strong>of</strong> sph<strong>in</strong>gos<strong>in</strong>e k<strong>in</strong>ase<br />

(SK) activity <strong>in</strong> Saccharomyces cerevisiae and isolation <strong>of</strong><br />

SK-deficient mutants. Biochem J 332: 525–531, 1998.<br />

187. LE BIVIC A, QUARONI A, NICHOLS B, AND RODRIGUEZ-BOULAN E. Biogenetic<br />

pathways <strong>of</strong> plasma membrane prote<strong>in</strong>s <strong>in</strong> Caco-2, a human<br />

<strong>in</strong>test<strong>in</strong>al epithelial cell l<strong>in</strong>e. J Cell Biol 111: 1351–1361, 1990.<br />

188. LEDESMA MD, BRÜGGER B, BÜNNING C, WIELAND FT, AND DOTTI CG.<br />

Maturation <strong>of</strong> the axonal plasma membrane requires upregulation<br />

<strong>of</strong> sph<strong>in</strong>gomyel<strong>in</strong> synthesis and formation <strong>of</strong> prote<strong>in</strong>-lipid complexes.<br />

EMBO J 18: 1761–1771, 1999.<br />

189. LEDESMA MD, SIMONS K, AND DOTTI CG. Neuronal polarity: essential<br />

role <strong>of</strong> prote<strong>in</strong>-lipid complexes <strong>in</strong> axonal sort<strong>in</strong>g. Proc Natl Acad<br />

Sci USA 95: 3966–3971, 1998.<br />

190. LEE AG. How lipids <strong>in</strong>teract with an <strong>in</strong>tr<strong>in</strong>sic membrane prote<strong>in</strong>:<br />

the case <strong>of</strong> the calcium pump. Biochim Biophys Acta 1376: 381–<br />

390, 1998.<br />

191. LEE MJ, VAN BROCKLYN JR, THANGADA S, LIU CH, HAND AR, MEN-<br />

ZELEEV R, SPIEGEL S, AND HLA T. Sph<strong>in</strong>gos<strong>in</strong>e-1-phosphate as a ligand<br />

for the G prote<strong>in</strong> coupled receptor EDG-1. Science 279: 1552–1555,<br />

1998.<br />

192. LESTER RL AND DICKSON RC. <strong>Sph<strong>in</strong>golipids</strong> with <strong>in</strong>ositolphosphateconta<strong>in</strong><strong>in</strong>g<br />

head groups. Adv Lipid Res 26: 253–274, 1993.<br />

193. LESTER RL, WELLS GB, OXFORD G, AND DICKSON RC. Mutant stra<strong>in</strong>s <strong>of</strong><br />

Saccharomyces cerevisiae lack<strong>in</strong>g sph<strong>in</strong>golipids synthesize novel<br />

<strong>in</strong>ositol glycerophospholipids that mimic sph<strong>in</strong>golipid structures.<br />

J Biol Chem 268: 845–856, 1993.<br />

194. LETOURNEUR F, GAYNOR EC, HENNECKE S, DEMOLLIERE C, DUDEN R,<br />

EMR SD, RIEZMAN H, AND COSSON P. Coatomer is essential for retrieval<br />

<strong>of</strong> dilys<strong>in</strong>e-tagged prote<strong>in</strong>s to the endoplasmic reticulum.<br />

Cell 79: 1199–1207, 1994.<br />

195. LEVINE TP, WIGGINS CA, AND MUNRO S. Inositol phosphorylceramide<br />

synthase is located <strong>in</strong> the Golgi apparatus <strong>of</strong> Saccharomyces cerevisiae.<br />

Mol Biol Cell 11: 2267–2281, 2000.<br />

196. LEWIS MJ AND PELHAM HR. SNARE-mediated retrograde traffic from<br />

the Golgi complex to the endoplasmic reticulum. Cell 85: 205–215,<br />

1996.<br />

197. LIN CC, LOVE HD, GUSHUE JN, BERGERON JJ, AND OSTERMANN J.<br />

ER/Golgi <strong>in</strong>termediates acquire Golgi enzymes by brefeld<strong>in</strong> A-sensitive<br />

retrograde transport <strong>in</strong> vitro. J Cell Biol 147: 1457–1472, 1999.<br />

198. LIN X, MATTJUS P, PIKE HM, WINDEBANK AJ, AND BROWN RE. Clon<strong>in</strong>g<br />

and expression <strong>of</strong> glycolipid transfer prote<strong>in</strong> from bov<strong>in</strong>e and<br />

porc<strong>in</strong>e bra<strong>in</strong>. J Biol Chem 275: 5104–5110, 2000.<br />

199. LININGTON C AND RUMSBY MG. Accessibility <strong>of</strong> galactosyl ceramides<br />

to probe reagents <strong>in</strong> central nervous system myel<strong>in</strong>. J Neurochem<br />

35: 983–992, 1980.<br />

200. LISANTI MP, CARAS IW, DAVITZ MA, AND RODRIGUEZ-BOULAN E. A<br />

glycophospholipid membrane anchor acts as an apical target<strong>in</strong>g<br />

signal <strong>in</strong> polarized epithelial cells. J Cell Biol 109: 2145–2156, 1989.<br />

201. LISANTI MP, SARGIACOMO M, GRAEVE L, SALTIEL AR, AND RODRIGUEZ-<br />

BOULAN E. Polarized apical distribution <strong>of</strong> glycosyl-phosphatidyl<strong>in</strong>ositol-anchored<br />

prote<strong>in</strong>s <strong>in</strong> a renal epithelial cell l<strong>in</strong>e. Proc Natl<br />

Acad Sci USA 85: 9557–9561, 1988.<br />

202. LISANTI MP, SCHERER PE, TANG ZL, AND SARGIACOMO M. Caveolae,<br />

caveol<strong>in</strong> and caveol<strong>in</strong>-rich membrane doma<strong>in</strong>s: a signall<strong>in</strong>g hypothesis.<br />

Trends Cell Biol 4: 231–235, 1994.<br />

203. LISCUM L AND MUNN NJ. <strong>Intracellular</strong> cholesterol transport. Biochim<br />

Biophys Acta 1438: 19–37, 1999.<br />

204. LÖFGREN H AND PASCHER I. Molecular arrangements <strong>of</strong> sph<strong>in</strong>golipids.<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

<strong>The</strong> monolayer behaviour <strong>of</strong> ceramides. Chem Phys Lipids 20:<br />

273–284, 1977.<br />

205. LOURA LM AND PRIETO M. Dehydroergosterol structural organization<br />

<strong>in</strong> aqueous medium and <strong>in</strong> a model system <strong>of</strong> membranes. Biophys<br />

J 72: 2226–2236, 1997.<br />

206. LOVE HD, LIN CC, SHORT CS, AND OSTERMANN J. Isolation <strong>of</strong> functional<br />

Golgi-derived vesicles with a possible role <strong>in</strong> retrograde<br />

transport. J Cell Biol 140: 541–551, 1998.<br />

207. LUETTERFORST R, STANG E, ZORZI N, CAROZZI A, WAY M, AND PARTON<br />

RG. Molecular characterization <strong>of</strong> caveol<strong>in</strong> association with the<br />

Golgi complex: identification <strong>of</strong> a cis-Golgi target<strong>in</strong>g doma<strong>in</strong> <strong>in</strong> the<br />

caveol<strong>in</strong> molecule. J Cell Biol 145: 1443–1459, 1999.<br />

208. LUND-KATZ S, LABODA HM, MCLEAN LR, AND PHILLIPS MC. Influence <strong>of</strong><br />

molecular pack<strong>in</strong>g and phospholipid type on rates <strong>of</strong> cholesterol<br />

exchange. Biochemistry 27: 3416–3423, 1988.<br />

209. MACCIONI HJ, DANIOTTI JL, AND MARTINA JA. Organization <strong>of</strong> ganglioside<br />

synthesis <strong>in</strong> the Golgi apparatus. Biochim Biophys Acta<br />

1437: 101–118, 1999.<br />

210. MACEYKA M AND MACHAMER CE. Ceramide accumulation uncovers a<br />

cycl<strong>in</strong>g pathway for the cis-Golgi network marker, <strong>in</strong>fectious bronchitis<br />

virus M prote<strong>in</strong>. J Cell Biol 139: 1411–1418, 1997.<br />

211. MADORE N, SMITH KL, GRAHAM CH, JEN A, BRADY K, HALL S, AND<br />

MORRIS R. Functionally different GPI prote<strong>in</strong>s are organized <strong>in</strong><br />

different doma<strong>in</strong>s on the neuronal surface. EMBO J 18: 6917–6926,<br />

1999.<br />

212. MAGGIO B, CUMAR FA, AND CAPUTTO R. Interactions <strong>of</strong> gangliosides<br />

with phospholipids and glycosph<strong>in</strong>golipids <strong>in</strong> mixed monolayers.<br />

Biochem J 175: 1113–1118, 1978.<br />

213. MALGAT M, MAURICE A, AND BARAUD J. Sph<strong>in</strong>gomyel<strong>in</strong> and ceramidephosphoethanolam<strong>in</strong>e<br />

synthesis by microsomes and plasma membranes<br />

from rat liver and bra<strong>in</strong>. J Lipid Res 27: 251–260, 1986.<br />

214. MANDALA SM, FROMMER BR, THORNTON RA, KURTZ MB, YOUNG NM,<br />

CABELLO MA, GENILLOUD O, LIESCH JM, SMITH JL, AND HORN WS.<br />

Inhibition <strong>of</strong> ser<strong>in</strong>e palmitoyl-transferase activity by lipoxamyc<strong>in</strong>. J<br />

Antibiotics 47: 376–379, 1994.<br />

215. MANDALA SM, THORNTON R, TU Z, KURTZ MB, NICKELS J, BROACH J,<br />

MENZELEEV R, AND SPIEGEL S. Sph<strong>in</strong>goid base 1-phosphate phosphatase:<br />

a key regulator <strong>of</strong> sph<strong>in</strong>golipid metabolism and stress response.<br />

Proc Natl Acad Sci USA 95: 150–155, 1998.<br />

216. MANDALA SM, THORNTON RA, FROMMER BR, CUROTTO JE, ROZDILSKY W,<br />

KURTZ MB, GIACOBBE RA, BILLS GF, CABELLO MA, AND MARTIN I. <strong>The</strong><br />

discovery <strong>of</strong> australifung<strong>in</strong>, a novel <strong>in</strong>hibitor <strong>of</strong> sph<strong>in</strong>gan<strong>in</strong>e Nacyltransferase<br />

from Sporormiella australis produc<strong>in</strong>g organism,<br />

fermentation, isolation, and biological activity. J Antibiotics 48:<br />

349–356, 1995.<br />

217. MANDALA SM, THORNTON RA, FROMMER BR, DREIKORN S, AND KURTZ<br />

MB. Viridi<strong>of</strong>ung<strong>in</strong>s, novel <strong>in</strong>hibitors <strong>of</strong> sph<strong>in</strong>golipid synthesis. J<br />

Antibiotics 50: 339–343, 1997.<br />

218. MANDALA SM, THORNTON RA, MILLIGAN J, ROSENBACH M, GARCIA-CALVO<br />

M, BULL HG, HARRIS G, ABRUZZO GK, FLATTERY AM, GILL CJ, BARTIZAL<br />

K, DREIKORN S, AND KURTZ MB. Rustmic<strong>in</strong>, a potent antifungal agent,<br />

<strong>in</strong>hibits sph<strong>in</strong>golipid synthesis at <strong>in</strong>ositol phosphoceramide synthase.<br />

J Biol Chem 273: 14942–14949, 1998.<br />

219. MANDALA SM, THORNTON RA, ROSENBACH M, MILLIGAN J, GARCIA-CALVO<br />

M, BULL HG, AND KURTZ MB. Khafrefung<strong>in</strong>, a novel <strong>in</strong>hibitor <strong>of</strong><br />

sph<strong>in</strong>golipid synthesis. J Biol Chem 272: 32709–32714, 1997.<br />

220. MANDON EC, EHSES I, ROTHER J, VAN ECHTEN G, AND SANDHOFF K.<br />

Subcellular localization and membrane topology <strong>of</strong> ser<strong>in</strong>e palmitoyltransferase,<br />

3-dehydrosph<strong>in</strong>gan<strong>in</strong>e reductase, and sph<strong>in</strong>gan<strong>in</strong>e<br />

N-acyltransferase <strong>in</strong> mouse liver. J Biol Chem 267: 11144–11148,<br />

1992.<br />

221. MAO C, WADLEIGH M, JENKINS GM, HANNUN YA, AND OBEID LM.<br />

Identification and characterization <strong>of</strong> Saccharomyces cerevisiae<br />

dihydrosph<strong>in</strong>gos<strong>in</strong>e-1-phosphate phosphatase. J Biol Chem 272:<br />

28690–28694, 1997.<br />

222. MAO C, XU R, BIELAWSKA A, AND OBEID LM. Clon<strong>in</strong>g <strong>of</strong> an alkal<strong>in</strong>e<br />

ceramidase from Saccharomyces cerevisiae. An enzyme with reverse<br />

(CoA-<strong>in</strong>dependent) ceramide synthase activity. J Biol Chem<br />

275: 6876–6884, 2000.<br />

223. MAO C, XU R, BIELAWSKA A, SZULC ZM, AND OBEID LM. Clon<strong>in</strong>g and<br />

characterization <strong>of</strong> a Saccharomyces cerevisiae alkal<strong>in</strong>e ceramidase<br />

with specificity for dihydroceramide. J Biol Chem 275: 31369–<br />

31378, 2000.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!