08.08.2013 Views

The Organizing Potential of Sphingolipids in Intracellular Membrane ...

The Organizing Potential of Sphingolipids in Intracellular Membrane ...

The Organizing Potential of Sphingolipids in Intracellular Membrane ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PHYSIOLOGICAL REVIEWS<br />

Vol. 81, No. 4, October 2001<br />

Pr<strong>in</strong>ted <strong>in</strong> U.S.A.<br />

<strong>The</strong> <strong>Organiz<strong>in</strong>g</strong> <strong>Potential</strong> <strong>of</strong> <strong>Sph<strong>in</strong>golipids</strong><br />

<strong>in</strong> <strong>Intracellular</strong> <strong>Membrane</strong> Transport<br />

JOOST C. M. HOLTHUIS, THOMAS POMORSKI, RENÉ J. RAGGERS, HEIN SPRONG,<br />

AND GERRIT VAN MEER<br />

Department <strong>of</strong> Cell Biology and Histology, Academic Medical Center, University <strong>of</strong> Amsterdam, Amsterdam;<br />

and Department <strong>of</strong> Cell Biology, Utrecht University School <strong>of</strong> Medic<strong>in</strong>e, Utrecht, <strong>The</strong> Netherlands<br />

I. Introduction 1690<br />

II. Why Are <strong>Sph<strong>in</strong>golipids</strong> Essential for Eukaryotic Life? 1691<br />

A. Sph<strong>in</strong>golipid requirements at the cellular level 1691<br />

B. Sph<strong>in</strong>golipid requirements at the organismal level 1693<br />

C. Do sph<strong>in</strong>golipids exert a vital signal<strong>in</strong>g function? 1694<br />

D. <strong>Sph<strong>in</strong>golipids</strong> and the spatial organization <strong>of</strong> cells 1694<br />

III. Sph<strong>in</strong>golipid Structure and Biophysical Properties 1695<br />

A. A concise <strong>in</strong>ventory <strong>of</strong> sph<strong>in</strong>golipid structure <strong>in</strong> dist<strong>in</strong>ct eukaryotic life forms 1695<br />

B. Biophysical differences between sph<strong>in</strong>golipids and glycerolipids 1696<br />

IV. <strong>Sph<strong>in</strong>golipids</strong> and the Lateral Organization <strong>of</strong> Biological <strong>Membrane</strong>s 1696<br />

A. Ordered sph<strong>in</strong>golipid doma<strong>in</strong>s <strong>in</strong> model membranes 1696<br />

B. Evidence for the existence <strong>of</strong> ordered sph<strong>in</strong>golipid doma<strong>in</strong>s <strong>in</strong> cellular membranes 1697<br />

V. Sph<strong>in</strong>golipid Assembly and Transport 1701<br />

A. Enzymes <strong>of</strong> sph<strong>in</strong>golipid metabolism and their topology 1701<br />

B. Subcellular distribution and topology <strong>of</strong> sph<strong>in</strong>golipids 1703<br />

C. Sph<strong>in</strong>golipid transport and sort<strong>in</strong>g 1704<br />

VI. <strong>Sph<strong>in</strong>golipids</strong> and the Creation <strong>of</strong> Selectivity <strong>in</strong> <strong>Intracellular</strong> <strong>Membrane</strong> Transport 1706<br />

A. <strong>The</strong> Golgi: a central sort<strong>in</strong>g device on the exocytic and endocytic pathways 1706<br />

B. A matur<strong>in</strong>g view on Golgi organization 1707<br />

C. <strong>Sph<strong>in</strong>golipids</strong>: <strong>in</strong>tegral parts <strong>of</strong> the Golgi-based sort<strong>in</strong>g mach<strong>in</strong>ery? 1709<br />

VII. Conclud<strong>in</strong>g Remarks 1712<br />

A. <strong>Sph<strong>in</strong>golipids</strong> and Golgi maturation 1712<br />

B. Doma<strong>in</strong>s <strong>of</strong> saturated lipids on the cytosolic surface 1713<br />

C. Sph<strong>in</strong>golipid doma<strong>in</strong>s as a general theme <strong>in</strong> cellular membrane traffic 1713<br />

Holthuis, Joost C. M., Thomas Pomorski, René J. Raggers, He<strong>in</strong> Sprong, and Gerrit van Meer. <strong>The</strong><br />

<strong>Organiz<strong>in</strong>g</strong> <strong>Potential</strong> <strong>of</strong> <strong>Sph<strong>in</strong>golipids</strong> <strong>in</strong> <strong>Intracellular</strong> <strong>Membrane</strong> Transport. Physiol Rev 81: 1689–1723, 2001.—<br />

Eukaryotes are characterized by endomembranes that are connected by vesicular transport along secretory and<br />

endocytic pathways. <strong>The</strong> compositional differences between the various cellular membranes are ma<strong>in</strong>ta<strong>in</strong>ed by<br />

sort<strong>in</strong>g events, and it has long been believed that sort<strong>in</strong>g is based solely on prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions. However,<br />

the central sort<strong>in</strong>g station along the secretory pathway is the Golgi apparatus, and this is the site <strong>of</strong> synthesis <strong>of</strong> the<br />

sph<strong>in</strong>golipids. <strong>Sph<strong>in</strong>golipids</strong> are essential for eukaryotic life, and this review ascribes the sort<strong>in</strong>g power <strong>of</strong> the Golgi<br />

to its capability to act as a distillation apparatus for sph<strong>in</strong>golipids and cholesterol. As Golgi cisternae mature,<br />

ongo<strong>in</strong>g sph<strong>in</strong>golipid synthesis attracts endoplasmic reticulum-derived cholesterol and drives a fluid-fluid lipid phase<br />

separation that segregates sph<strong>in</strong>golipids and sterols from unsaturated glycerolipids <strong>in</strong>to lateral doma<strong>in</strong>s. While<br />

sph<strong>in</strong>golipid doma<strong>in</strong>s move forward, unsaturated glycerolipids are retrieved by recycl<strong>in</strong>g vesicles budd<strong>in</strong>g from the<br />

sph<strong>in</strong>golipid-poor environment. We hypothesize that by this mechanism, the composition <strong>of</strong> the sph<strong>in</strong>golipid<br />

doma<strong>in</strong>s, and the surround<strong>in</strong>g membrane changes along the cis-trans axis. At the same time the membrane thickens.<br />

<strong>The</strong>se features are recognized by a number <strong>of</strong> membrane prote<strong>in</strong>s that as a consequence <strong>of</strong> partition<strong>in</strong>g between<br />

doma<strong>in</strong> and environment follow the doma<strong>in</strong>s but can enter recycl<strong>in</strong>g vesicles at any stage <strong>of</strong> the pathway. <strong>The</strong><br />

<strong>in</strong>terplay between prote<strong>in</strong>- and lipid-mediated sort<strong>in</strong>g is discussed.<br />

www.prv.org 0031-9333/01 $15.00 Copyright © 2001 the American Physiological Society<br />

1689


1690 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

I. INTRODUCTION<br />

<strong>Sph<strong>in</strong>golipids</strong> are typically found <strong>in</strong> eukaryotic cells<br />

where they comprise a small but vital fraction (10–20%)<br />

<strong>of</strong> the membrane lipids. <strong>The</strong>ir lipidic part consists <strong>of</strong> a<br />

sph<strong>in</strong>goid base, a straight-cha<strong>in</strong> am<strong>in</strong>o alcohol <strong>of</strong> 18–20<br />

carbon atoms, which normally carries a long saturated<br />

fatty acid amide bonded to the am<strong>in</strong>o group at the C2<br />

position (Fig. 1). Based on the type <strong>of</strong> headgroup attached<br />

to the C1, sph<strong>in</strong>golipids are classified as phosphosph<strong>in</strong>golipids<br />

or glycosph<strong>in</strong>golipids. <strong>The</strong> phosphosph<strong>in</strong>golipids<br />

sph<strong>in</strong>gomyel<strong>in</strong> (SM) <strong>in</strong> animals and <strong>in</strong>ositol phosphoceramide<br />

(IPC) <strong>in</strong> plants and fungi carry the polar headgroups<br />

phosphochol<strong>in</strong>e and phospho<strong>in</strong>ositol, just like the<br />

major glycerolipids phosphatidylchol<strong>in</strong>e (PC) and phosphatidyl<strong>in</strong>ositol<br />

(PI). In glycosph<strong>in</strong>golipids, the headgroup<br />

can conta<strong>in</strong> a variety <strong>of</strong> monosaccharides l<strong>in</strong>ked by<br />

various types <strong>of</strong> glycosidic bonds. S<strong>in</strong>ce the discovery <strong>of</strong><br />

the sph<strong>in</strong>golipids more than 100 years ago by Thudichum<br />

(376), their special lipid backbone and their bewilder<strong>in</strong>g<br />

structural heterogeneity have fasc<strong>in</strong>ated biologists, biochemists,<br />

and biophysicists alike.<br />

FIG. 1. Common lipids <strong>in</strong> fungi and various animals. a, Sph<strong>in</strong>gomyel<strong>in</strong> (SM); b, glucosylceramide (GlcCer), and a<br />

derived glycosph<strong>in</strong>golipid, e.g., GM1; c, glycerolipids; d, cholesterol; e, SM; f, glycosph<strong>in</strong>golipid <strong>of</strong> the arthro series; g, see<br />

b; h, sterol; i and j, see f; k, see b; l, sterol; m, M(IP) 2C; n, see c; o, ergosterol. Fat pr<strong>in</strong>t <strong>in</strong>dicates the sph<strong>in</strong>goid bases <strong>in</strong><br />

the sph<strong>in</strong>golipids a, b, e, f, i, j, and m; glycerol <strong>in</strong> the glycerolipids c, g, k, and n; and the sterols d, h, l, and o. A, head<br />

group: chol<strong>in</strong>e, ethanolam<strong>in</strong>e, ser<strong>in</strong>e, or <strong>in</strong>ositol; C, chol<strong>in</strong>e; E, ethanolam<strong>in</strong>e; G, glucose; Ino, <strong>in</strong>ositol; M, mannose; P,<br />

phosphate (note that <strong>in</strong>sects and nematodes are sterol auxotrophs).<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org


<strong>The</strong> major mission <strong>of</strong> the sph<strong>in</strong>golipid field is to<br />

understand the specific functions <strong>of</strong> these lipids <strong>in</strong> eukaryotic<br />

organisms and to evaluate their significance both<br />

for the function<strong>in</strong>g <strong>of</strong> <strong>in</strong>dividual cells and the organism as<br />

a whole. This is an arduous task, not <strong>in</strong> the least because,<br />

unlike glycerolipids and sterols, sph<strong>in</strong>golipids display a<br />

strik<strong>in</strong>g structural variation between dist<strong>in</strong>ct organisms,<br />

and even between different tissues and cell types with<strong>in</strong><br />

one organism. Moreover, sph<strong>in</strong>golipids are no longer<br />

viewed as primarily <strong>in</strong>ert structural components <strong>of</strong> cellular<br />

membranes, but also <strong>in</strong>creas<strong>in</strong>gly recognized as diverse<br />

and dynamic regulators <strong>of</strong> a multitude <strong>of</strong> cellular<br />

processes. An important development <strong>in</strong> this respect has<br />

been the realization that sph<strong>in</strong>goid bases, ceramides, and<br />

other <strong>in</strong>termediates <strong>of</strong> sph<strong>in</strong>golipid metabolism act as<br />

signal<strong>in</strong>g molecules <strong>in</strong> mediat<strong>in</strong>g cell cycle control, stress<br />

responses, and apoptosis (75, 127, 356). In addition, considerable<br />

attention has been drawn to the concept that<br />

sph<strong>in</strong>golipids drive the lateral differentiation <strong>of</strong> cellular<br />

membranes <strong>in</strong>to a mosaic <strong>of</strong> areas with unique molecular<br />

compositions. In essence, it has been postulated that a<br />

differential miscibility <strong>of</strong> sph<strong>in</strong>golipids, glycerolipids, and<br />

sterols triggers the formation <strong>of</strong> lateral lipid assemblies,<br />

termed microdoma<strong>in</strong>s or rafts, that acquire specific functions<br />

by concentrat<strong>in</strong>g or exclud<strong>in</strong>g specific membrane<br />

prote<strong>in</strong>s (341). 1 Rafts are now believed to serve as platforms<br />

for various cellular events <strong>in</strong>clud<strong>in</strong>g polarized prote<strong>in</strong><br />

sort<strong>in</strong>g, signal transduction, and cell adhesion (35,<br />

118, 178, 305, 340).<br />

<strong>Sph<strong>in</strong>golipids</strong> are essential to susta<strong>in</strong> eukaryotic life.<br />

Whereas glycosph<strong>in</strong>golipids are <strong>in</strong>dispensable for the development<br />

<strong>of</strong> complex multicellular organisms, phosphosph<strong>in</strong>golipids<br />

fulfill a vital function at a more fundamental<br />

level, namely, <strong>in</strong> the growth and survival <strong>of</strong> <strong>in</strong>dividual<br />

cells. This requirement for phosphosph<strong>in</strong>golipids appears<br />

to be a conserved feature <strong>of</strong> eukaryotic cells, as it is found<br />

both <strong>in</strong> animal cells and <strong>in</strong> yeast. Hence, it is not unlikely<br />

that the different sph<strong>in</strong>golipids synthesized <strong>in</strong> the various<br />

eukaryotic cell types serve a common function. If so, one<br />

would expect sph<strong>in</strong>golipids to share essential features<br />

that determ<strong>in</strong>e their <strong>in</strong>teractions with other cellular components.<br />

If there is such a unify<strong>in</strong>g pr<strong>in</strong>ciple, what could<br />

it be?<br />

This review serves to highlight some remarkable aspects<br />

<strong>of</strong> sph<strong>in</strong>golipids that we believe represent important<br />

guidel<strong>in</strong>es for unravel<strong>in</strong>g their vital function <strong>in</strong> eukaryotic<br />

cells. One <strong>of</strong> these is the strik<strong>in</strong>g observation that<br />

<strong>in</strong> yeast the requirement for sph<strong>in</strong>golipids can be bypassed<br />

by a suppressor mutation that enables yeast to<br />

1 It should be noted that the name raft implies that this would be<br />

a small doma<strong>in</strong> float<strong>in</strong>g <strong>in</strong> a sea <strong>of</strong> other lipids. However, <strong>in</strong> the many<br />

cases where the relative sizes <strong>of</strong> the sph<strong>in</strong>golipid-rich and glycerophospholipid-rich<br />

environments are not known the term doma<strong>in</strong> would be<br />

less suggestive.<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1691<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

synthesize a novel set <strong>of</strong> glycerolipids whose structural<br />

appearence and predicted biophysical properties closely<br />

mimic those <strong>of</strong> the sph<strong>in</strong>golipids (74, 193, 281). As discussed<br />

<strong>in</strong> section II, this would <strong>in</strong>dicate that some structural<br />

function, rather than a signal<strong>in</strong>g one, accounts for<br />

the sph<strong>in</strong>golipid requirement <strong>in</strong> cell growth. A comparison<br />

<strong>of</strong> sph<strong>in</strong>golipid structures from evolutionary dist<strong>in</strong>ct<br />

organisms (see sect. III) <strong>in</strong>dicates that, despite considerable<br />

chemical differences, the biophysical properties held<br />

responsible for microdoma<strong>in</strong> formation have been well<br />

preserved. Indeed, counterparts <strong>of</strong> the microdoma<strong>in</strong>s analyzed<br />

<strong>in</strong> mammalian cell membranes appear to exist <strong>in</strong><br />

flies, worms, and even <strong>in</strong> yeast (see sect. IV).<br />

A further strik<strong>in</strong>g aspect <strong>of</strong> sph<strong>in</strong>golipids is that their<br />

assembly <strong>in</strong> eukaryotic cells is spatially separated from that<br />

<strong>of</strong> glycerolipids and sterols. Whereas the latter are produced<br />

<strong>in</strong> the endoplasmic reticulum (ER), sph<strong>in</strong>golipid synthesis<br />

occurs primarily <strong>in</strong> the Golgi complex (see sect. V). <strong>The</strong><br />

Golgi has been well established as a polarized sort<strong>in</strong>g and<br />

process<strong>in</strong>g station that is situated right at the <strong>in</strong>tersection <strong>of</strong><br />

two major circuits <strong>of</strong> <strong>in</strong>tracellular membrane traffick<strong>in</strong>g.<br />

One circuit <strong>in</strong>terconnects the cis-side <strong>of</strong> the Golgi with the<br />

ER; the other one the trans-side with the plasma membrane.<br />

<strong>The</strong> ER and plasma membrane are engaged <strong>in</strong> fundamentally<br />

dist<strong>in</strong>ct cellular processes, as reflected by the dramatic<br />

differences found <strong>in</strong> the molecular composition and biophysical<br />

properties <strong>of</strong> their bilayers. In section VI we consider<br />

the possibility that sph<strong>in</strong>golipids evolved as an <strong>in</strong>tegral<br />

and essential part <strong>of</strong> the Golgi mach<strong>in</strong>ery responsible for<br />

establish<strong>in</strong>g the compositional and functional differences<br />

between the ER and the plasma membrane.<br />

II. WHY ARE SPHINGOLIPIDS ESSENTIAL<br />

FOR EUKARYOTIC LIFE?<br />

A. Sph<strong>in</strong>golipid Requirements at the Cellular Level<br />

<strong>The</strong> early steps <strong>in</strong> sph<strong>in</strong>golipid synthesis, up to the<br />

formation <strong>of</strong> sph<strong>in</strong>goid bases and ceramides, are essentially<br />

the same <strong>in</strong> all eukaryotes. It is <strong>in</strong> the subsequent<br />

reactions, when ceramide is converted to complex sph<strong>in</strong>golipids,<br />

that major species- and cell type-specific differences<br />

become apparent. Yeast, for example, is equipped<br />

with a s<strong>in</strong>gle biosynthetic pathway that serves to convert<br />

ceramide <strong>in</strong>to only a handful <strong>of</strong> <strong>in</strong>ositol-conta<strong>in</strong><strong>in</strong>g phosphosph<strong>in</strong>golipids.<br />

Animals, on the other hand, evolved<br />

three <strong>in</strong>dependent pathways that can operate simultaneously<br />

to produce both phosphosph<strong>in</strong>golipids and hundreds<br />

<strong>of</strong> different types <strong>of</strong> glycosph<strong>in</strong>golipids. 2 <strong>The</strong> divergence<br />

<strong>in</strong> headgroup structures found <strong>in</strong> glycosph<strong>in</strong>golipids<br />

2 Glycosph<strong>in</strong>golipid designation is accord<strong>in</strong>g to the recommendations<br />

<strong>of</strong> the IUPAC-IUB Jo<strong>in</strong>t Commission on Biochemical Nomenclature<br />

(53), us<strong>in</strong>g the Svennerholm abbreviations for gangliosides and<br />

us<strong>in</strong>g sulfatide to <strong>in</strong>dicate HSO 3 -3 Gal 1–1 Cer.


1692 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

accompanies functional differences between the various<br />

cell types <strong>of</strong> an animal. Whereas the synthesis <strong>of</strong> at least<br />

some glycosph<strong>in</strong>golipid species appears essential for the<br />

viability <strong>of</strong> animal organisms (see sect. IIB), as a lipid<br />

class they are dispensable for the growth and survival <strong>of</strong><br />

animal cells <strong>in</strong> culture. This is not the case for phosphosph<strong>in</strong>golipids.<br />

Phosphosph<strong>in</strong>golipid synthesis is required<br />

for cell growth and survival, <strong>in</strong> yeast as well as <strong>in</strong> mammals<br />

(the only organisms <strong>in</strong> which this has been studied<br />

so far). Yeast and Ch<strong>in</strong>ese hamster ovary cell mutants<br />

lack<strong>in</strong>g the first committed enzyme <strong>in</strong> sph<strong>in</strong>golipid biosynthesis,<br />

ser<strong>in</strong>e palmitoyl-transferase (Fig. 2), die <strong>in</strong> the<br />

absence <strong>of</strong> externally added sph<strong>in</strong>goid base (123, 411).<br />

<strong>The</strong> mammalian mutant could be rescued by exogenous<br />

SM, but not by glucosylceramide (GlcCer), the precursor<br />

<strong>of</strong> higher glycosph<strong>in</strong>golipids (121, 123). It therefore appears<br />

that SM, and not GlcCer (or higher glycosph<strong>in</strong>golipids),<br />

fulfills a vital role <strong>in</strong> mammalian cells. Indeed,<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

FIG. 2. Pathways <strong>of</strong> ceramide synthesis.<br />

Known metabolic <strong>in</strong>termediates, substrates,<br />

and enzymes are <strong>in</strong>dicated.<br />

Names <strong>of</strong> genes whose products are required<br />

for specific steps <strong>in</strong> yeast ceramide<br />

synthesis are shown <strong>in</strong> italics and<br />

discussed <strong>in</strong> section VA. Note that it rema<strong>in</strong>s<br />

to be established whether C 4-hydroxylation<br />

occurs on the free sph<strong>in</strong>goid<br />

base (sph<strong>in</strong>gan<strong>in</strong>e) or on ceramide.<br />

mammalian cell l<strong>in</strong>es unable to synthesize GlcCer are<br />

viable and proliferate (145). <strong>The</strong> alternative monoglycosylceramide,<br />

galactosylceramide (GalCer), is not required<br />

for cell survival either, s<strong>in</strong>ce it is absent from most mammalian<br />

cell types <strong>in</strong>clud<strong>in</strong>g the GlcCer-negative cells<br />

(145).<br />

Collectively, these observations raise two major<br />

questions. What vital function do phosphosph<strong>in</strong>golipids<br />

serve <strong>in</strong> the cell? And for what purpose do animal cells<br />

create so many different types <strong>of</strong> glycosph<strong>in</strong>golipids <strong>in</strong><br />

addition, given that, <strong>in</strong> pr<strong>in</strong>ciple, they can live without<br />

them? Complete answers to these questions are still<br />

lack<strong>in</strong>g. However, experimental work over the last decade<br />

has <strong>in</strong>dicated that cells exploit both chemical and<br />

biophysical characteristics <strong>of</strong> sph<strong>in</strong>golipids to accomplish<br />

some <strong>of</strong> their most fundamental tasks. Before<br />

explor<strong>in</strong>g which <strong>of</strong> these characteristics account for<br />

the sph<strong>in</strong>golipid requirement <strong>in</strong> cell growth and sur-


vival, we will first turn our attention to what is known<br />

about the sph<strong>in</strong>golipid requirements <strong>of</strong> complex multicellular<br />

organisms.<br />

B. Sph<strong>in</strong>golipid Requirements at the<br />

Organismal Level<br />

Gene knock-out studies <strong>in</strong> mice are start<strong>in</strong>g to reveal<br />

the physiological significance <strong>of</strong> sph<strong>in</strong>golipids <strong>in</strong> mammals.<br />

First <strong>of</strong> all, <strong>in</strong> addition to phosphosph<strong>in</strong>golipids<br />

be<strong>in</strong>g <strong>in</strong>dispensable for cell proliferation (see sect. IIA),<br />

glycosph<strong>in</strong>golipid production is essential for development<br />

and differentiation. Mice lack<strong>in</strong>g GlcCer and all complex<br />

glycosph<strong>in</strong>golipids due to disruption <strong>of</strong> the gene encod<strong>in</strong>g<br />

ceramide:glucosyltransferase were found to be embryonically<br />

lethal at the gastrulation stage just after formation<br />

<strong>of</strong> the primitive germ layers (421). After ectopic transplantation,<br />

glycosph<strong>in</strong>golipid-deficient embryonic stem cells<br />

were able to differentiate <strong>in</strong>to endodermal, mesodermal,<br />

and ectodermal derivatives but failed to give rise to mature,<br />

well-differentiated tissues.<br />

Knock-out mice have also been generated without<br />

a functional ceramide:galactosyltransferase (27, 58),<br />

the enzyme that synthesizes GalCer, which is the precursor<br />

<strong>of</strong> only a few other lipids like sulfatide (HSO 3 -3<br />

GalCer). <strong>The</strong>se mice live, but male mice were unable to<br />

breed, which reflects a function <strong>of</strong> galactolipids <strong>in</strong> spermatogenesis<br />

(95). In addition, such mice displayed<br />

compromised nerve fuction (27, 58), a f<strong>in</strong>d<strong>in</strong>g consistent<br />

with the putative <strong>in</strong>sulatory function <strong>of</strong> the bulk<br />

quantities <strong>of</strong> GalCer and sulfatide found <strong>in</strong> myel<strong>in</strong>, the<br />

plasma membrane <strong>of</strong> oligodendrocytes, and Schwann<br />

cells. High concentrations <strong>of</strong> GlcCer (mur<strong>in</strong>e) and/or<br />

GalCer (bov<strong>in</strong>e, human) and derivatives have also been<br />

found <strong>in</strong> the apical plasma membrane doma<strong>in</strong> <strong>of</strong> epithelial<br />

cells l<strong>in</strong><strong>in</strong>g the gastro<strong>in</strong>test<strong>in</strong>al and part <strong>of</strong> the<br />

urogenital tract (341). Here, the glycosph<strong>in</strong>golipids are<br />

thought to provide mechanical stability and, especially<br />

<strong>in</strong> the gut, protection aga<strong>in</strong>st harmful, hydrolytic enzymes<br />

such as phospholipases.<br />

In contrast to GlcCer and GalCer, complex glycosph<strong>in</strong>golipids<br />

are mostly present on cell surfaces <strong>in</strong> low<br />

quantities only. <strong>The</strong>ir importance for development and<br />

differentiation is supported first <strong>of</strong> all by the observation<br />

that knock-out mice be<strong>in</strong>g unable to synthesize the<br />

complex sialoglycosph<strong>in</strong>golipids. Of the double knockout<br />

mice be<strong>in</strong>g unable to synthesize glycosph<strong>in</strong>golipids<br />

beyond the simple ganglioside GM3 (Fig. 3), 50% died<br />

with<strong>in</strong> 13 wk (158). Mice unable to synthesize glycosph<strong>in</strong>golipids<br />

beyond GM3 and GD3 displayed axonal<br />

degeneration and decreased myel<strong>in</strong>ation (332, 371). As<br />

a possible explanation, it has been proposed that glycosph<strong>in</strong>golipids<br />

are <strong>in</strong>volved <strong>in</strong> specific recognition<br />

events between cells and between cells and matrix via<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1693<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

FIG. 3. Major routes <strong>of</strong> sph<strong>in</strong>golipid synthesis <strong>in</strong> eukaryotic cells.<br />

Ceramide serves as the immediate precursor for the phosphosph<strong>in</strong>golipids<br />

<strong>in</strong>ositol phosphoceramide (IPC), ethanolam<strong>in</strong>e phosphoceramide<br />

(EPC), and sph<strong>in</strong>gomyel<strong>in</strong> (SM), which obta<strong>in</strong> their phospho<strong>in</strong>ositol,<br />

phosphoethanolam<strong>in</strong>e, and phosphochol<strong>in</strong>e headgroups by transfer<br />

from the correspond<strong>in</strong>g glycerophospholipids. In addition, ceramide can<br />

be converted to the glycosph<strong>in</strong>golipids galactosylceramide (GalCer) and<br />

glucosylceramide (GlcCer) by transfer <strong>of</strong> galactose or glucose from<br />

UDP-Gal or UDP-Glc. GalCer can be further processed by the addition <strong>of</strong><br />

galactose (Ga 2Cer), sialic acid (GM4), or sulfate (SGalCer). In contrast,<br />

GlcCer can only be converted to LacCer, which <strong>in</strong> turn serves as the<br />

precursor for a large number <strong>of</strong> glycosph<strong>in</strong>golipid series. <strong>The</strong> ganglioseries<br />

(GgCer) are conveniently described by the Svennerholm nomenclature<br />

(GA2, GM3, etc.). Although the term sulfatide is generally used<br />

for SGalCer, <strong>of</strong>ten it is meant to <strong>in</strong>clude SLacCer.<br />

their specific carbohydrate moiety, and <strong>in</strong> the modulation<br />

<strong>of</strong> plasma membrane signal process<strong>in</strong>g. <strong>The</strong> latter<br />

may occur via specific glycosph<strong>in</strong>golipid-prote<strong>in</strong> <strong>in</strong>teractions<br />

(119) or via organiz<strong>in</strong>g functions <strong>of</strong> the glycosph<strong>in</strong>golipids<br />

<strong>in</strong> signal<strong>in</strong>g doma<strong>in</strong>s (118, 202).<br />

It should be noted that not only sph<strong>in</strong>golipid production,<br />

but also the proper removal <strong>of</strong> sph<strong>in</strong>golipids, is <strong>of</strong><br />

physiological significance for an organism. <strong>The</strong> absence<br />

<strong>of</strong> hydrolytic enzymes down to ceramidase or c<strong>of</strong>actors<br />

like sph<strong>in</strong>golipid activator prote<strong>in</strong>s from the lysosomes<br />

results <strong>in</strong> lysosomal storage <strong>of</strong> sph<strong>in</strong>golipids with characteristic<br />

and <strong>of</strong>ten severe pathologies <strong>in</strong> humans (167, 171,<br />

186, 260). Strategies devised to cure the symptoms <strong>of</strong><br />

these diseases now <strong>in</strong>clude enzyme replacement and gene<br />

therapy (22, 29, 323, 435) and prevention <strong>of</strong> accumulation<br />

by adm<strong>in</strong>istrat<strong>in</strong>g an <strong>in</strong>hibitor <strong>of</strong> glycosph<strong>in</strong>golipid synthesis<br />

(153, 287).


1694 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

C. Do <strong>Sph<strong>in</strong>golipids</strong> Exert a Vital<br />

Signal<strong>in</strong>g Function?<br />

An impressive number <strong>of</strong> studies have implicated<br />

sph<strong>in</strong>golipids <strong>in</strong> virtually all aspects <strong>of</strong> cellular signal<strong>in</strong>g<br />

(reviewed <strong>in</strong> Refs. 75, 118, 127, 356). First, sph<strong>in</strong>golipids<br />

serve as ligands for receptors present on neighbor<strong>in</strong>g cells<br />

(or <strong>in</strong> the matrix) to trigger various types <strong>of</strong> cell behavior<br />

(growth, adhesion, differentiation, migration). Second,<br />

sph<strong>in</strong>golipids <strong>in</strong>fluence properties <strong>of</strong> receptors on the<br />

same cell via specific lipid-prote<strong>in</strong> <strong>in</strong>teractions, thereby<br />

chang<strong>in</strong>g the cellular responsiveness to external stimuli<br />

(119). Third, sph<strong>in</strong>golipids modulate signal<strong>in</strong>g by their<br />

ability to assemble both receptors and their downstream<br />

effectors (e.g., Src family k<strong>in</strong>ases, G prote<strong>in</strong>s) <strong>in</strong> specialized<br />

plasma membrane microdoma<strong>in</strong>s, known as rafts and<br />

caveolae (7, 36, 118, 147, 202, 340). F<strong>in</strong>ally, sph<strong>in</strong>goid<br />

bases, ceramides, and their phosphorylated derivatives<br />

act as signal<strong>in</strong>g molecules <strong>in</strong> the regulation <strong>of</strong> membrane<br />

traffick<strong>in</strong>g, cell growth, cell death, and the ability <strong>of</strong> cells<br />

to cope with environmental stress (13, 152, 346, 356).<br />

Especially this last paradigm has attracted much attention<br />

<strong>in</strong> the recent literature. Although ceramide-activated prote<strong>in</strong><br />

k<strong>in</strong>ases and phosphatases have been implicated <strong>in</strong><br />

transmitt<strong>in</strong>g sph<strong>in</strong>golipid-derived signals (126, 431), the<br />

mechanisms by which ceramide pathways operate have<br />

not been elucidated (138, 139, 170, 409). Recent work has<br />

shown that ongo<strong>in</strong>g synthesis <strong>of</strong> sph<strong>in</strong>goid bases forms a<br />

prerequisite for the <strong>in</strong>ternalization step <strong>of</strong> endocytosis <strong>in</strong><br />

yeast (429). It appears that sph<strong>in</strong>goid base levels help<br />

control the relative activities <strong>of</strong> specific prote<strong>in</strong> k<strong>in</strong>ases<br />

and phosphatases whose downstream targets are elements<br />

<strong>of</strong> the endocytic mach<strong>in</strong>ery and/or act<strong>in</strong> cytoskeleton<br />

(93). Another excit<strong>in</strong>g development <strong>in</strong> the field is the<br />

emergence <strong>of</strong> sph<strong>in</strong>gos<strong>in</strong>e-1-phosphate as a prototype <strong>of</strong> a<br />

new class <strong>of</strong> lipid signal<strong>in</strong>g molecules that function not<br />

only as <strong>in</strong>tracellular second messengers, but also as extracellular<br />

ligands for cell surface receptors (356). In<br />

support <strong>of</strong> the extracellular ligand function, several<br />

closely related transmembrane receptors have recently<br />

been identified as putative sph<strong>in</strong>gos<strong>in</strong>e-1-phosphate receptors<br />

<strong>in</strong> mammals (6, 191).<br />

Sph<strong>in</strong>golipid signal<strong>in</strong>g pathways have been found to<br />

operate <strong>in</strong> many different cell types, from mammals down<br />

to yeast (74). <strong>The</strong> impressive array <strong>of</strong> cellular processes<br />

that appears to be regulated by these pathways would<br />

provide a logical explanation for the observed lethality <strong>of</strong><br />

sph<strong>in</strong>golipid-deficient mutant cells and organisms. However,<br />

studies <strong>in</strong> yeast have demonstrated that the putative<br />

signal<strong>in</strong>g function <strong>of</strong> its sph<strong>in</strong>golipids is dispensable for<br />

cell growth and survival, although only under nonstressed<br />

conditions. A mutant stra<strong>in</strong> lack<strong>in</strong>g sph<strong>in</strong>golipids has<br />

been isolated upon suppression <strong>of</strong> a genetic defect <strong>in</strong><br />

sph<strong>in</strong>goid base synthesis. This suppression is due to a<br />

mutation <strong>in</strong> the SLC1 gene, believed to encode a fatty<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

acyltransferase (261). <strong>The</strong> suppressor mutation enables<br />

cells to produce a novel set <strong>of</strong> glycerolipids that mimic<br />

sph<strong>in</strong>golipid structures, both with respect to their headgroup<br />

and fatty acyl cha<strong>in</strong> composition (193). <strong>The</strong> novel<br />

lipids identified were phosphatidyl<strong>in</strong>ositol (PI), mannosyl-<br />

PI, and <strong>in</strong>ositol-P-(mannosyl-PI), all conta<strong>in</strong><strong>in</strong>g a C26 fatty<br />

acid <strong>in</strong> the sn-2 position <strong>of</strong> the glycerol moiety. Normally<br />

the C26 fatty acid is not found <strong>in</strong> yeast glycerolipids, but<br />

only <strong>in</strong> the sph<strong>in</strong>golipids (Fig. 1) and <strong>in</strong> the lipid backbone<br />

<strong>of</strong> some glycosylphosphatidyl<strong>in</strong>ositol (GPI)-anchored<br />

prote<strong>in</strong>s. When exposed to extremes <strong>of</strong> pH or temperature,<br />

the suppressor mutant fails to grow unless provided<br />

with externally added phytosph<strong>in</strong>gos<strong>in</strong>e (74, 193, 281).<br />

<strong>The</strong>se and other observations (76) show that yeast requires<br />

sph<strong>in</strong>golipids to build up a proper stress response.<br />

In contrast, the essential function <strong>of</strong> sph<strong>in</strong>golipids <strong>in</strong><br />

growth and survival under normal conditions can be<br />

taken over by the novel glycerolipids, and is, apparently,<br />

structural.<br />

D. <strong>Sph<strong>in</strong>golipids</strong> and the Spatial Organization<br />

<strong>of</strong> Cells<br />

Clearly, sph<strong>in</strong>golipids are not just a reservoir <strong>of</strong> signal<strong>in</strong>g<br />

molecules; they also contribute to vital properties<br />

<strong>of</strong> cellular membranes. Studies <strong>of</strong> their physical behavior<br />

(see sect. III) have provided thorough <strong>in</strong>sights <strong>in</strong> the basis<br />

<strong>of</strong> how sph<strong>in</strong>golipids and cholesterol <strong>in</strong>duce lateral segregation<br />

<strong>of</strong> membrane components (see sect. IV). However,<br />

to understand the functional implications, we will<br />

have to def<strong>in</strong>e the consequences <strong>of</strong> this lateral organization<br />

for activities <strong>in</strong> and on the membrane. With what<br />

other molecules do sph<strong>in</strong>golipids <strong>in</strong>teract, and for what<br />

processes are these <strong>in</strong>teractions relevant? If we want to<br />

learn how sph<strong>in</strong>golipid-mediated processes are <strong>in</strong>tegrated<br />

<strong>in</strong> the physiology <strong>of</strong> the cell, we will also need to know<br />

how these processes are regulated at the level <strong>of</strong> the<br />

sph<strong>in</strong>golipids. What rules govern their <strong>in</strong>teractions at the<br />

biophysical level, and what determ<strong>in</strong>es their concentration<br />

<strong>in</strong> the various cellular membranes <strong>in</strong> time? First<br />

<strong>in</strong>sights have been obta<strong>in</strong>ed from the localization <strong>of</strong> the<br />

subcellular sites <strong>of</strong> sph<strong>in</strong>golipid synthesis and hydrolysis,<br />

and from study<strong>in</strong>g their mechanisms <strong>of</strong> transport (see<br />

sect. V). Because metabolism and transport are mediated<br />

by enzymes and transporters, regulation <strong>of</strong> these processes<br />

must be exerted at the level <strong>of</strong> the prote<strong>in</strong>s and the<br />

genes by which they are encoded. <strong>The</strong> available data<br />

suggest a pivotal role for sph<strong>in</strong>golipids <strong>in</strong> the operation <strong>of</strong><br />

the Golgi complex, the central sort<strong>in</strong>g station <strong>in</strong> the delivery<br />

<strong>of</strong> cargo, and membrane components to their<br />

proper dest<strong>in</strong>ations (see sect. VI). So far, it was believed<br />

that sort<strong>in</strong>g processes were governed exclusively by <strong>in</strong>formation<br />

<strong>in</strong> the molecular structure <strong>of</strong> prote<strong>in</strong>s. We now<br />

start to realize that sph<strong>in</strong>golipids produced <strong>in</strong> the Golgi


may well form <strong>in</strong>dispensable parts <strong>of</strong> the organelle’s sort<strong>in</strong>g<br />

mach<strong>in</strong>ery. Our challenge is to f<strong>in</strong>d out how the mach<strong>in</strong>e<br />

works.<br />

III. SPHINGOLIPID STRUCTURE AND<br />

BIOPHYSICAL PROPERTIES<br />

A. A Concise Inventory <strong>of</strong> Sph<strong>in</strong>golipid Structure<br />

<strong>in</strong> Dist<strong>in</strong>ct Eukaryotic Life Forms<br />

<strong>The</strong> key structural features by which sph<strong>in</strong>golipids<br />

can be dist<strong>in</strong>guished from glycerolipids and sterols are<br />

outl<strong>in</strong>ed <strong>in</strong> Figure 1. First <strong>of</strong> all, the backbone <strong>of</strong> sph<strong>in</strong>golipids<br />

is a sph<strong>in</strong>goid base. With respect to molecular<br />

conformation, the sph<strong>in</strong>goid base is structurally equivalent<br />

to the glycerol and the sn-1 acyl cha<strong>in</strong> <strong>in</strong> a typical<br />

glycerolipid. Saturated sn-1 cha<strong>in</strong>s <strong>of</strong> 16 or 18 carbons<br />

(C16:0, C18:0) predom<strong>in</strong>ate <strong>in</strong> most eukaryotic glycerolipids.<br />

<strong>The</strong> prevalent sph<strong>in</strong>goid base found <strong>in</strong> mammalian<br />

sph<strong>in</strong>golipids is sph<strong>in</strong>gos<strong>in</strong>e with a cha<strong>in</strong> length <strong>of</strong> 18<br />

carbon atoms and a trans-double bond between carbons<br />

4 and 5. However, over 60 different species <strong>of</strong> sph<strong>in</strong>goid<br />

bases have been described with alkyl cha<strong>in</strong> lengths vary<strong>in</strong>g<br />

from 14 to 22 carbon atoms, different degrees <strong>of</strong><br />

saturation [the saturated form <strong>of</strong> sph<strong>in</strong>gos<strong>in</strong>e is called<br />

sph<strong>in</strong>gan<strong>in</strong>e (53)] and hydroxylation (154). <strong>The</strong> saturated<br />

and 4-hydroxylated form <strong>of</strong> sph<strong>in</strong>gos<strong>in</strong>e is generally referred<br />

to as phytosph<strong>in</strong>gos<strong>in</strong>e because it is the common<br />

sph<strong>in</strong>goid base found <strong>in</strong> sph<strong>in</strong>golipids <strong>of</strong> plants and fungi.<br />

In vertebrates, high levels (even up to 70%) <strong>of</strong> phytosph<strong>in</strong>gos<strong>in</strong>e-based<br />

sph<strong>in</strong>golipids have been found <strong>in</strong> kidney and<br />

<strong>in</strong>test<strong>in</strong>e (8, 28, 113, 155, 266). <strong>Sph<strong>in</strong>golipids</strong> <strong>in</strong> <strong>in</strong>sects are<br />

based on a C14 sph<strong>in</strong>goid base rather than the C18 backbone<br />

generally found <strong>in</strong> mammals, plants, and fungi (192,<br />

304, 414). <strong>Sph<strong>in</strong>golipids</strong> <strong>of</strong> nematodes are unusual <strong>in</strong> that<br />

they are based entirely on a C16 sph<strong>in</strong>gos<strong>in</strong>e methylated<br />

at C15 (55, 105).<br />

<strong>The</strong> am<strong>in</strong>o group at the second carbon <strong>of</strong> the sph<strong>in</strong>goid<br />

base serves to attach a fatty acid <strong>in</strong> amide l<strong>in</strong>kage.<br />

<strong>The</strong> N-acylated sph<strong>in</strong>goid base ceramide is the precursor<br />

<strong>of</strong> all membrane sph<strong>in</strong>golipids. <strong>The</strong> trivial name <strong>of</strong> ceramides<br />

based on sph<strong>in</strong>gan<strong>in</strong>e is dihydroceramide. <strong>The</strong><br />

sph<strong>in</strong>goid C1 hydroxyl group <strong>in</strong> ceramide is used as the<br />

attachment site for a polar head group. Based on their<br />

head groups, sph<strong>in</strong>golipids are <strong>of</strong>ten grouped <strong>in</strong>to phosphosph<strong>in</strong>golipids<br />

and glycosph<strong>in</strong>golipids. However, these<br />

categories are not mutually exclusive; plants and fungi,<br />

for example, add phospho<strong>in</strong>ositol to phytoceramide to<br />

generate IPC, and this head group can be further decorated<br />

with one or more monosaccharides. <strong>Sph<strong>in</strong>golipids</strong><br />

with <strong>in</strong>ositol phosphate-conta<strong>in</strong><strong>in</strong>g head groups are also<br />

common <strong>in</strong> protozoans (192). <strong>The</strong> ma<strong>in</strong> phosphosph<strong>in</strong>golipid<br />

<strong>in</strong> mammals and nematodes, SM, carries a phosphochol<strong>in</strong>e<br />

(12, 55). Mammals also produce small quantities<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1695<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

<strong>of</strong> ethanolam<strong>in</strong>ephosphorylceramide (213). <strong>The</strong> latter is<br />

the pr<strong>in</strong>cipal phosphosph<strong>in</strong>golipid found <strong>in</strong> <strong>in</strong>sects (304,<br />

414). Tremendous diversity exists among the carbohydrate<br />

head groups <strong>of</strong> glycosph<strong>in</strong>golipids (Fig. 3), which<br />

may conta<strong>in</strong> as many as 30 glycosyl residues per lipid. A<br />

glycosph<strong>in</strong>golipid is termed ganglioside if one or more <strong>of</strong><br />

its sugar residues is a sialic acid. Gangliosides are particularly<br />

abundant <strong>in</strong> the central nervous system <strong>of</strong> higher<br />

organisms (240). Whereas sph<strong>in</strong>golipids display a strik<strong>in</strong>g<br />

organism- and cell type-dependent variation <strong>in</strong> head<br />

group composition, this is generally not the case for the<br />

glycerolipids. In most eukaryotic cells, glycerolipids utilize<br />

phosphate ester-l<strong>in</strong>ked chol<strong>in</strong>e, ser<strong>in</strong>e, ethanolam<strong>in</strong>e,<br />

and <strong>in</strong>ositol to achieve diversity.<br />

One additional feature that makes sph<strong>in</strong>golipids different<br />

from glycerolipids is their fatty acyl cha<strong>in</strong>. Typically,<br />

the amide-l<strong>in</strong>ked fatty acyl cha<strong>in</strong>s <strong>in</strong> sph<strong>in</strong>golipids<br />

are long and saturated. Often they are hydroxylated at the<br />

-position. 3 In mammals, SM typically consists <strong>of</strong> two<br />

types, roughly half conta<strong>in</strong><strong>in</strong>g C16:0 and C18:0 and the<br />

other half C22:0, C24:0, and C24:1 (12, 156). <strong>The</strong> glycosph<strong>in</strong>golipids<br />

have similar fatty acids, but, depend<strong>in</strong>g on<br />

the tissue, a large fraction (up to 70%) may consist <strong>of</strong> the<br />

-hydroxylated form <strong>of</strong> each <strong>of</strong> these fatty acids (28, 268).<br />

<strong>The</strong> acyl cha<strong>in</strong>s <strong>in</strong> the sn-2 position <strong>of</strong> mammalian glycerophospholipids,<br />

on the other hand, are mostly shorter,<br />

(poly)unsaturated (e.g., C18:1, C18:2, or C20:4) and not<br />

hydroxylated. As illustrated <strong>in</strong> Figure 1, this strik<strong>in</strong>g difference<br />

<strong>in</strong> length, saturation, and hydroxylation status<br />

between fatty acyl cha<strong>in</strong>s <strong>of</strong> sph<strong>in</strong>golipids and glycerolipids<br />

has also been observed <strong>in</strong> Caenorhabditis elegans<br />

(55), Drosophila (304), and yeast. In yeast sph<strong>in</strong>golipids,<br />

C26:0 and hydroxylated C26:0 are the major fatty acids<br />

(192, 411). Interest<strong>in</strong>gly, the prevalence <strong>of</strong> monounsaturated<br />

species <strong>of</strong> am<strong>in</strong>ophospholipids at the expense <strong>of</strong><br />

diunsaturated species <strong>in</strong> the plasma membrane <strong>of</strong> wildtype<br />

yeast is reversed <strong>in</strong> elo3 mutant cells that accumulate<br />

C22:0 fatty acid-conta<strong>in</strong><strong>in</strong>g sph<strong>in</strong>golipids <strong>in</strong>stead <strong>of</strong> the<br />

normal C26:0 fatty acid-conta<strong>in</strong><strong>in</strong>g ones (269, 325). This<br />

observation <strong>in</strong>dicates that the structural differences between<br />

the fatty acid cha<strong>in</strong>s <strong>of</strong> sph<strong>in</strong>golipids and glycerolipids<br />

serve important biological functions.<br />

We conclude that, despite the considerable variation<br />

<strong>in</strong> chemical composition between lipids <strong>of</strong> dist<strong>in</strong>ct organisms,<br />

the structural features by which sph<strong>in</strong>golipids can<br />

be discrim<strong>in</strong>ated from glycerolipids have been preserved<br />

from vertebrates down to flies, worms, and fungi. Moreover,<br />

when these differences are underm<strong>in</strong>ed by muta-<br />

3 Sk<strong>in</strong> conta<strong>in</strong>s sph<strong>in</strong>golipids carry<strong>in</strong>g very-long-cha<strong>in</strong> (C28-C34)<br />

fatty acids that are hydroxylated at the -position. After hav<strong>in</strong>g been<br />

esterified to l<strong>in</strong>oleic acid and hydrolyzed, the -hydroxyl serves to<br />

couple the sph<strong>in</strong>golipid, first glucosylceramide and later ceramide, to<br />

prote<strong>in</strong>s on the cell surface (79, 412) where they are essential for the<br />

permeability barrier <strong>of</strong> the sk<strong>in</strong> (17).


1696 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

tion, organisms will exploit lipid-remodel<strong>in</strong>g mechanisms<br />

to recreate structural diversity (193, 325). This presents us<br />

with the question, What would be the functional significance<br />

<strong>of</strong> these structural differences for eukaryotic life?<br />

B. Biophysical Differences Between <strong>Sph<strong>in</strong>golipids</strong><br />

and Glycerolipids<br />

<strong>The</strong> <strong>in</strong>terfacial region that l<strong>in</strong>ks the nonpolar hydrocarbon<br />

region to the polar headgroup provides sph<strong>in</strong>golipids<br />

and glycerolipids with different biophysical properties.<br />

In sph<strong>in</strong>golipids, this region conta<strong>in</strong>s the 2-amide and<br />

3-hydroxyl groups, <strong>of</strong>ten supplemented with additional<br />

hydroxyls at the sph<strong>in</strong>goid C4 and fatty acid C2, and with<br />

further hydroxyls on the carbohydrates. <strong>The</strong>se groups can<br />

function both as hydrogen bond donors and acceptors<br />

and are thought to participate <strong>in</strong> extensive <strong>in</strong>ter- and<br />

<strong>in</strong>tramolecular hydrogen bond<strong>in</strong>g <strong>of</strong> the sph<strong>in</strong>golipids,<br />

whereas glycerolipids have only hydrogen bond-accept<strong>in</strong>g<br />

properties <strong>in</strong> this part <strong>of</strong> the molecule (278). This property<br />

allows sph<strong>in</strong>golipids but not glycerolipids to associate<br />

with themselves <strong>in</strong> the plane <strong>of</strong> the membrane <strong>in</strong>to a<br />

highly flexible hydrogen-bonded network (23; see sect.<br />

IIIB). In membranes exposed to physical and chemical<br />

stress as <strong>in</strong> the apical membranes <strong>in</strong> kidney and <strong>in</strong>test<strong>in</strong>e<br />

and <strong>in</strong> microorganisms, the sph<strong>in</strong>golipids exhibit an <strong>in</strong>creased<br />

number <strong>of</strong> hydroxyl groups. This property is believed<br />

to improve the stability and decrease the permeability<br />

<strong>of</strong> those surface membranes (278). Although this<br />

may be generally true, under certa<strong>in</strong> conditions the loss <strong>of</strong><br />

a specific hydroxyl was found to <strong>in</strong>crease membrane stability<br />

<strong>in</strong> yeast (82).<br />

<strong>The</strong> lipid tails <strong>of</strong> natural sph<strong>in</strong>golipids are more<br />

tightly packed than those <strong>of</strong> the most abundant phosphoglycerolipid,<br />

monounsaturated PC. <strong>The</strong> surface area <strong>of</strong><br />

GlcCer and GalCer at a surface pressure <strong>of</strong> 30 mN/m,<br />

typical <strong>of</strong> plasma membranes, is 0.40 nm 2 (212), versus<br />

0.63 nm 2 for stearoyl-oleoyl PC (71). <strong>The</strong> fatty cha<strong>in</strong>s <strong>of</strong><br />

sph<strong>in</strong>golipids are therefore more extended, and consequently<br />

the th<strong>in</strong>ner and taller sph<strong>in</strong>golipids form up to<br />

30% thicker membranes than unsaturated phospholipids. 4<br />

Second, sph<strong>in</strong>golipids contact their neighbors along a<br />

greater and flatter surface, which results <strong>in</strong> a dramatic<br />

<strong>in</strong>crease <strong>in</strong> the van der Waals attraction between neighbor<strong>in</strong>g<br />

sph<strong>in</strong>golipid molecules. Van der Waals <strong>in</strong>teractions<br />

have also been held responsible for the strong b<strong>in</strong>d<strong>in</strong>g<br />

between the sph<strong>in</strong>golipids and cholesterol with its rigid<br />

and flat-cyl<strong>in</strong>drical steroid backbone (235). A preferential<br />

b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> cholesterol to sph<strong>in</strong>golipids, <strong>in</strong> particular to<br />

4 <strong>The</strong> distance between the head groups <strong>in</strong> a double layer <strong>of</strong> C18:0<br />

SM <strong>in</strong> the presence <strong>of</strong> cholesterol was reported to be 46–48 Å (232, 300),<br />

whereas this was 40 Å for C16:0-C18:1 PC <strong>in</strong> the presence and 35 Å <strong>in</strong> the<br />

absence <strong>of</strong> cholesterol (262, 300).<br />

SM, has been observed <strong>in</strong> many biophysical studies (23). 5<br />

Interest<strong>in</strong>gly, the surface areas <strong>of</strong> disaturated PC (0.41–<br />

0.44 nm 2 ; Refs. 71, 212) and PS (0.40–0.44 nm 2 ; Ref. 72)<br />

are close to those <strong>of</strong> sph<strong>in</strong>golipids, and a preferential<br />

<strong>in</strong>teraction <strong>of</strong> cholesterol with diC16:0 PC (less than or<br />

equal to that with SM; Refs. 181, 208) over mono-unsaturated<br />

PC has been observed (208). This illustrates the<br />

possibility that disaturated phospholipids may resemble<br />

sph<strong>in</strong>golipids <strong>in</strong> their hydrophobic <strong>in</strong>teractions with other<br />

membrane components. This is especially relevant for the<br />

cholesterol-rich plasma membrane, where 40% <strong>of</strong> the PC<br />

and 75% <strong>of</strong> the PS are disaturated, while disaturated species,<br />

sph<strong>in</strong>golipids, and cholesterol are virtually absent<br />

from the ER (160).<br />

<strong>The</strong> sph<strong>in</strong>goid cha<strong>in</strong> extends less far <strong>in</strong>to the membrane<br />

core than the N-l<strong>in</strong>ked fatty acid, a disparity not<br />

found <strong>in</strong> glycerolipids (Fig. 1). It has been argued that the<br />

difference <strong>in</strong> length between the two cha<strong>in</strong>s leads to<br />

pack<strong>in</strong>g defects (voids) <strong>in</strong> the membrane <strong>in</strong>terior and that<br />

these defects may be complemented via <strong>in</strong>terdigitation <strong>of</strong><br />

two sph<strong>in</strong>golipids <strong>in</strong> the opposed bilayer leaflets (23, 44,<br />

324). This may be an example <strong>of</strong> how lipids <strong>in</strong> one bilayer<br />

leaflet may couple to lipids <strong>in</strong> the opposite leaflet (see<br />

sect. VIIB). Interest<strong>in</strong>gly, also cholesterol molecules <strong>in</strong> the<br />

two opposed bilayer leaflets may <strong>in</strong>teract by form<strong>in</strong>g<br />

transmembrane cholesterol dimers (129, 205, 250).<br />

Whether these transmembrane lipid <strong>in</strong>teractions are <strong>of</strong><br />

physiological relevance depends first <strong>of</strong> all on whether<br />

sph<strong>in</strong>golipids and cholesterol are present <strong>in</strong> both bilayer<br />

leaflets, and second on the relative aff<strong>in</strong>ities <strong>in</strong>volved <strong>in</strong><br />

transmembrane <strong>in</strong>teractions and <strong>in</strong> lateral <strong>in</strong>teractions <strong>of</strong><br />

the lipids.<br />

IV. SPHINGOLIPIDS AND THE LATERAL<br />

ORGANIZATION OF BIOLOGICAL<br />

MEMBRANES<br />

A. Ordered Sph<strong>in</strong>golipid Doma<strong>in</strong>s<br />

<strong>in</strong> Model <strong>Membrane</strong>s<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

At low temperatures, bilayers <strong>of</strong> a s<strong>in</strong>gle phospholipid<br />

or sph<strong>in</strong>golipid exist <strong>in</strong> a frozen state. Above a<br />

melt<strong>in</strong>g temperature (T m) characteristic <strong>of</strong> each lipid, the<br />

bilayer enters a phase <strong>in</strong> which the lipid acyl cha<strong>in</strong>s are<br />

fluid and disordered (50). <strong>The</strong> frozen state is referred to as<br />

the gel, solid-ordered (s o), or l ß phase. <strong>The</strong> fluid phase is<br />

5 <strong>The</strong> cis double bond <strong>in</strong> C24:1, which <strong>in</strong> its 2-hydroxylated form or<br />

its nonhydroxylated form is found <strong>in</strong> a significant fraction (up to 40%) <strong>of</strong><br />

the sph<strong>in</strong>golipids <strong>in</strong> mammalian myel<strong>in</strong> (89) and <strong>in</strong>test<strong>in</strong>e (28), is located<br />

at C15, deep <strong>in</strong> the bilayer, where it does not disrupt the close pack<strong>in</strong>g<br />

arrangement <strong>of</strong> the sph<strong>in</strong>golipids (204) and the sph<strong>in</strong>golipid-cholesterol<br />

<strong>in</strong>teraction (296). This contrasts with the C9 cis double bond <strong>in</strong> the C2<br />

fatty acids <strong>of</strong> the glycerolipids.


termed the liquid-crystall<strong>in</strong>e, liquid disordered (l d), or l <br />

phase (173, 319). <strong>Sph<strong>in</strong>golipids</strong> (especially glycosph<strong>in</strong>golipids)<br />

display a much higher T m than glycerolipids, due to<br />

their denser pack<strong>in</strong>g, which <strong>in</strong> turn is due to the saturation<br />

<strong>of</strong> their fatty cha<strong>in</strong>s and to the fact that they are more<br />

prone to <strong>in</strong>termolecular hydrogen bond<strong>in</strong>g. While the<br />

phase transition for the typical mono-unsaturated PCs<br />

C16:0-C18:1 PC and C18:0-C18:1 PC occurs at 3 and 7°C,<br />

this temperature is 42°C for diC16:0 PC, 45°C for C18:0<br />

SM, but 85°C for C18:0 GlcCer and GalCer (see Refs. 172,<br />

173). Studies with model membranes consist<strong>in</strong>g <strong>of</strong> b<strong>in</strong>ary<br />

mixtures <strong>of</strong> lipids with different T m revealed that at temperatures<br />

between the T m <strong>of</strong> the two lipids, a cooperative<br />

phase separation can occur, result<strong>in</strong>g <strong>in</strong> the coexistence<br />

<strong>of</strong> gel and l d phase. <strong>The</strong> physiological significance <strong>of</strong> this<br />

type <strong>of</strong> phase separation <strong>in</strong> eukaryotes is questionable,<br />

ma<strong>in</strong>ly because membranes that conta<strong>in</strong> high amounts <strong>of</strong><br />

lipids with T m values at or above room temperature, like the<br />

plasma membrane (160), also conta<strong>in</strong> high levels <strong>of</strong> cholesterol.<br />

Cholesterol at concentrations <strong>of</strong> 30–50 mol% abolishes<br />

the gel-liquid crystall<strong>in</strong>e phase transition (179, 319).<br />

Remarkably, a phase separation between two fluid<br />

phases has been described <strong>in</strong> model membranes conta<strong>in</strong><strong>in</strong>g<br />

b<strong>in</strong>ary mixtures <strong>of</strong> a high-T m lipid (saturated-cha<strong>in</strong><br />

lipid) and cholesterol (299). At temperatures above the T m<br />

<strong>of</strong> the lipid, with <strong>in</strong>creas<strong>in</strong>g cholesterol concentrations a<br />

liquid-ordered (l o) phase can separate from the liquiddisordered<br />

(l d) phase. Above a threshold concentration <strong>of</strong><br />

cholesterol, only the l o phase exists, <strong>in</strong>dependent <strong>of</strong> the<br />

temperature. For diC16:0 PC, this occurs at 30 mol%<br />

cholesterol (319). Acyl cha<strong>in</strong>s <strong>of</strong> lipids <strong>in</strong> the l o phase have<br />

properties that are <strong>in</strong>termediate between those <strong>of</strong> the gel<br />

and l d phases; they are extended and ordered as <strong>in</strong> the gel<br />

phase but are laterally mobile <strong>in</strong> the bilayer as <strong>in</strong> the l d<br />

phase. Also <strong>in</strong> bilayers <strong>of</strong> more complex composition the<br />

coexistence <strong>of</strong> l o and l d phases depends on the cholesterol<br />

concentration (reviewed <strong>in</strong> detail by Refs. 37, 40), and<br />

three fluid phases can coexist, <strong>of</strong> which two are l o phases<br />

(294). <strong>The</strong> phase separation is especially pronounced<br />

when the T m <strong>of</strong> the lipids is greatly different, like <strong>in</strong> the<br />

case <strong>of</strong> PCs <strong>of</strong> different cha<strong>in</strong> length (338). Disaturated<br />

phospholipids and sph<strong>in</strong>golipids would preferentially partition<br />

<strong>in</strong>to the l o phase, which as a consequence would<br />

conta<strong>in</strong> more cholesterol, whereas (poly)unsaturated lipids<br />

would prefer the l d phase. Us<strong>in</strong>g a fluorescence<br />

quench<strong>in</strong>g assay, Ahmed et al. (1) found that cholesterol<br />

<strong>in</strong>duces the formation <strong>of</strong> a SM-enriched l o phase at 37°C <strong>in</strong><br />

a mixture <strong>of</strong> SM and monounsaturated PC. Mixtures <strong>of</strong><br />

GlcCer, GalCer, and monounsaturated PC were found to<br />

be significantly <strong>in</strong>homogeneous at 37°C, regardless <strong>of</strong><br />

whether cholesterol was absent or present at concentrations<br />

at which the lateral separation <strong>in</strong> mixtures <strong>of</strong> SM<br />

and PC is abolished. Hence, glycosph<strong>in</strong>golipids appear to<br />

have a stronger tendency than SM to segregate from<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1697<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

glycerolipids <strong>in</strong>to an l o phase (337). 6 Ceramides at low<br />

concentrations occur as s<strong>in</strong>gle monomers <strong>in</strong> a membrane,<br />

whereas at high concentrations they partition <strong>in</strong>to hydrophobic<br />

ceramide droplets <strong>in</strong> between the two leaflets <strong>of</strong><br />

the bilayer (404). At <strong>in</strong>termediate concentrations (10<br />

mol%; Ref. 141), the ceramides can aggregate to form a<br />

ceramide doma<strong>in</strong>. <strong>The</strong> higher the aff<strong>in</strong>ity between ceramides,<br />

e.g., long acyl cha<strong>in</strong> conta<strong>in</strong><strong>in</strong>g hydroxylated ceramides<br />

<strong>of</strong> yeast versus short acyl cha<strong>in</strong> and sph<strong>in</strong>gos<strong>in</strong>e<br />

conta<strong>in</strong><strong>in</strong>g ceramides <strong>of</strong> mammals (204), the lower the<br />

ceramide concentration needed for segregation.<br />

In a membrane with coexist<strong>in</strong>g l d and l o phases, the<br />

distribution <strong>of</strong> each lipid species over the two phases is<br />

not governed solely by its relative aff<strong>in</strong>ity for the lipids <strong>in</strong><br />

either phase. A different energy parameter is the longrange<br />

order <strong>of</strong> the lipids. Accord<strong>in</strong>g to the superlattice<br />

view (350, 372), lipids tend to be regularly distributed.<br />

Cholesterol with its different shape and smaller surface<br />

area imposes a steric stra<strong>in</strong> on the alkyl cha<strong>in</strong> matrix. To<br />

m<strong>in</strong>imize the stra<strong>in</strong>, cholesterol will adopt a regular lateral<br />

distribution, which yields a so-called superlattice. In<br />

a particular phospholipid mixture, only a def<strong>in</strong>ed set <strong>of</strong><br />

cholesterol concentrations fits a superlattice, and this has<br />

been experimentally confirmed (349). At any given cholesterol<br />

concentration, a membrane would thus consist <strong>of</strong><br />

doma<strong>in</strong>s display<strong>in</strong>g one <strong>of</strong> the allowed, m<strong>in</strong>imum-energy<br />

superlattice organizations. A particular lipid will be arranged<br />

accord<strong>in</strong>g to some superlattice pattern whether it<br />

is present <strong>in</strong> an l o or <strong>in</strong> an l d phase. Still, <strong>in</strong>dividual<br />

molecules will rapidly exchange positions, whereby the<br />

rate <strong>of</strong> exchange, and thus lateral diffusion, will be higher<br />

<strong>in</strong> the l d phase. <strong>The</strong> degree to which each lipid type fits the<br />

superlattice <strong>of</strong> one phase will contribute to its partition<strong>in</strong>g<br />

between the two phases.<br />

B. Evidence for the Existence <strong>of</strong> Ordered<br />

Sph<strong>in</strong>golipid Doma<strong>in</strong>s <strong>in</strong> Cellular <strong>Membrane</strong>s<br />

An overwhelm<strong>in</strong>g number <strong>of</strong> studies <strong>in</strong> artificial bilayers<br />

have demonstrated that lipids have a strong selforganiz<strong>in</strong>g<br />

capacity; lipid immiscibility can drive phase<br />

separation and give rise to doma<strong>in</strong>s (used <strong>in</strong> the mean<strong>in</strong>g<br />

<strong>of</strong> “environments”) with unique lipid compositions and<br />

biophysical properties. <strong>The</strong> current evidence does support<br />

the existence <strong>of</strong> such phase-separated lipid doma<strong>in</strong>s<br />

6 Phase separation will only occur above a critical concentration <strong>of</strong><br />

a lipid <strong>in</strong> the membrane. In analogy to the aggregation <strong>of</strong> detergent <strong>in</strong>to<br />

micelles above the critical micellar concentration (CMC), the concentration<br />

above which a lipid aggregates <strong>in</strong> an environment <strong>of</strong> other lipids<br />

may be called the critical doma<strong>in</strong> concentration (CDC). Just as the CMC<br />

depends on the molecular characteristics <strong>of</strong> the detergent, the CDC<br />

depends on the molecular characteristics <strong>of</strong> the aggregat<strong>in</strong>g lipid. <strong>The</strong><br />

CDC also depends on the lipid matrix with<strong>in</strong> which the aggregate forms.<br />

Furthermore, it depends on the presence <strong>of</strong> similarly aggregat<strong>in</strong>g lipids,<br />

just like detergents <strong>in</strong> water coaggregate with other detergents.


1698 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

<strong>in</strong> cellular membranes. However, many uncerta<strong>in</strong>ties rema<strong>in</strong><br />

concern<strong>in</strong>g their composition, size, and dynamics<br />

and concern<strong>in</strong>g their location. In which <strong>of</strong> the subcellular<br />

membranes do they occur? Do they exist on both sides <strong>of</strong><br />

the membrane, and if so, do doma<strong>in</strong>s on the one surface<br />

colocalize with doma<strong>in</strong>s on the opposite surface? Are doma<strong>in</strong>s<br />

the cause <strong>of</strong> variations <strong>in</strong> biomembrane thickness?<br />

F<strong>in</strong>ally, a most relevant question: by what molecular <strong>in</strong>teractions<br />

can membrane prote<strong>in</strong>s discrim<strong>in</strong>ate between<br />

different lipid environments (69), and what is the contribution<br />

<strong>of</strong> membrane prote<strong>in</strong>s to the properties <strong>of</strong> the doma<strong>in</strong>s?<br />

1. Early evidence for lipid lateral heterogeneity<br />

<strong>The</strong> fluid-mosaic models <strong>of</strong> biomembranes <strong>in</strong> which<br />

prote<strong>in</strong>s freely float around <strong>in</strong> an oily lipid bilayer (148,<br />

343) marked a breakthrough <strong>in</strong> the th<strong>in</strong>k<strong>in</strong>g about membrane<br />

structure and function. However, already at that<br />

time, evidence became available suggest<strong>in</strong>g that lipids<br />

and prote<strong>in</strong>s were not randomly distributed <strong>in</strong> the membrane.<br />

For the lipids, phase separations had been demonstrated<br />

<strong>in</strong> the plasma membrane <strong>of</strong> Acholeplasma by calorimetry<br />

(363) and by freeze-fracture electron microscopy<br />

(403). Electron sp<strong>in</strong> resonance studies suggested lipid<br />

phase heterogeneity <strong>in</strong> the ER (234, 364), and subsequently,<br />

a variety <strong>of</strong> techniques suggested the same for<br />

the plasma membrane <strong>of</strong> mammalian cells (157). Ideas on<br />

long-range order <strong>in</strong> the organization <strong>of</strong> lipids and prote<strong>in</strong>s<br />

and the occurrence <strong>of</strong> microdoma<strong>in</strong>s were then formulated<br />

(148).<br />

2. From macrodoma<strong>in</strong> <strong>in</strong> epithelial plasma membrane<br />

to microdoma<strong>in</strong> <strong>in</strong> the trans-Golgi network<br />

A unique type <strong>of</strong> sph<strong>in</strong>golipid (macro)doma<strong>in</strong> organization<br />

exists <strong>in</strong> the plasma membrane <strong>of</strong> epithelial cells,<br />

where orig<strong>in</strong>ally an accumulation <strong>of</strong> glycosph<strong>in</strong>golipids<br />

was reported for the apical plasma membrane doma<strong>in</strong> <strong>of</strong><br />

<strong>in</strong>test<strong>in</strong>al epithelial cells (92). Later work (30, 81, 159)<br />

demonstrated a two- to fourfold enrichment <strong>of</strong> glycosph<strong>in</strong>golipids<br />

<strong>in</strong> the apical versus the basolateral doma<strong>in</strong><br />

<strong>of</strong> the cont<strong>in</strong>uous plasma membrane <strong>of</strong> these cells. Similar<br />

differences have been reported for ur<strong>in</strong>ary bladder<br />

epithelium (369) and, <strong>in</strong>directly, for Mad<strong>in</strong>-Darby can<strong>in</strong>e<br />

kidney (MDCK) cells derived from the distal nephron<br />

(341). Apical membranes from kidney cortex, which conta<strong>in</strong><br />

low levels <strong>of</strong> glycosph<strong>in</strong>golipids (358), conta<strong>in</strong>ed an<br />

exceptionally high level <strong>of</strong> SM (35% compared with 13% <strong>in</strong><br />

basolateral membranes; Refs. 48, 137, 247, 330, 402).<br />

<strong>The</strong>se differences reside <strong>in</strong> the outer leaflet <strong>of</strong> the plasma<br />

membrane where they are ma<strong>in</strong>ta<strong>in</strong>ed by the presence <strong>of</strong><br />

a barrier to lipid diffusion, the tight junctions (reviewed <strong>in</strong><br />

Ref. 341). Similar surface doma<strong>in</strong>s have been proposed to<br />

exist <strong>in</strong> sperm (reviewed <strong>in</strong> Refs. 14, 102), and a lipidphase<br />

separation has been held responsible for their<br />

ma<strong>in</strong>tenance. 7 Based on sph<strong>in</strong>golipid transport experiments<br />

(398), it was subsequently postulated that the<br />

sph<strong>in</strong>golipid-rich apical macrodoma<strong>in</strong>s orig<strong>in</strong>ate from<br />

sph<strong>in</strong>golipid- and cholesterol-enriched microdoma<strong>in</strong>s <strong>in</strong><br />

trans-Golgi membranes (339, 341, 395). 8 <strong>The</strong>se would<br />

then act as a sort<strong>in</strong>g device for the delivery <strong>of</strong> apically<br />

directed cell surface components <strong>in</strong> polarized epithelial<br />

cells (see sect. VI).<br />

3. Resistance to detergent extraction<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

<strong>The</strong> first candidate prote<strong>in</strong>s <strong>of</strong> sph<strong>in</strong>golipid membrane<br />

doma<strong>in</strong>s were the prote<strong>in</strong>s that are anchored <strong>in</strong> the<br />

noncytoplasmic bilayer leaflet <strong>of</strong> apical membranes by a<br />

GPI anchor (201). <strong>The</strong>se prote<strong>in</strong>s were found to be targeted<br />

to the apical cell surface, obviously via some <strong>in</strong>teraction<br />

<strong>in</strong> the lum<strong>in</strong>al leaflet <strong>of</strong> the Golgi membrane (34,<br />

200). At the same time it was observed that <strong>in</strong>fluenza virus<br />

hemagglut<strong>in</strong><strong>in</strong>, which is targeted to the apical membrane<br />

<strong>of</strong> <strong>in</strong>fected epithelial cells, became partially resistant to<br />

extraction by Triton X-100 (TX-100) <strong>in</strong> the cold dur<strong>in</strong>g<br />

transport to the surface (344), and it was proposed that<br />

the prote<strong>in</strong> may complex with glycosph<strong>in</strong>golipids, as glycosph<strong>in</strong>golipids<br />

had been shown to be TX-100 <strong>in</strong>soluble<br />

as well. Progress <strong>in</strong> the field was tremendously accelerated<br />

when it was realized that not only hemagglut<strong>in</strong><strong>in</strong> and<br />

sph<strong>in</strong>golipids but also the GPI prote<strong>in</strong>s show resistance to<br />

extraction by detergent at low temperature, that this behavior<br />

might reflect the presence <strong>of</strong> these components <strong>in</strong><br />

GPI prote<strong>in</strong>/sph<strong>in</strong>golipid microdoma<strong>in</strong>s <strong>in</strong> the membrane,<br />

and that detergent <strong>in</strong>solubility might be an experimental<br />

tool to study the doma<strong>in</strong>s (38). <strong>The</strong> method consisted <strong>of</strong><br />

the addition <strong>of</strong> 1% TX-100 to cells on ice for 20 m<strong>in</strong>,<br />

homogenization <strong>of</strong> the cells, addition <strong>of</strong> sucrose to 40%,<br />

and flotation <strong>in</strong> a 30%-5% l<strong>in</strong>ear sucrose gradient without<br />

detergent. A GPI prote<strong>in</strong> was found to float to a density <strong>of</strong><br />

1.081 g/ml, 9 and closer <strong>in</strong>spection showed that the GPI<br />

prote<strong>in</strong> was present <strong>in</strong> closed membrane vesicles that<br />

were now resistant to TX-100 (detergent-resistant mem-<br />

7 Although GM1 was found to be exclusively localized <strong>in</strong> axons <strong>of</strong><br />

hippocampal neurons <strong>in</strong> culture (188), this was not confirmed <strong>in</strong> <strong>in</strong>dependent<br />

studies <strong>in</strong> the same system (335). Also, the presence <strong>of</strong> a lipid<br />

diffusion barrier between axon and dendrites (165) has been contested<br />

(99).<br />

8 With an SM content <strong>of</strong> 8–12% <strong>in</strong> the total Golgi (90, 160) and with<br />

all SM <strong>in</strong> the lum<strong>in</strong>al leaflet, 16–24% <strong>of</strong> that surface might be covered by<br />

a sph<strong>in</strong>golipid microdoma<strong>in</strong>. <strong>The</strong> expected enrichment <strong>of</strong> SM <strong>in</strong> the TGN<br />

to plasma membrane levels (16–19%), the presence <strong>of</strong> cholesterol, and<br />

participation <strong>of</strong> disaturated PC (9% <strong>of</strong> total Golgi lipids; Ref. 160) <strong>in</strong>creases<br />

the relative area <strong>of</strong> the TGN lum<strong>in</strong>al surface covered by the<br />

microdoma<strong>in</strong> to numbers above 40%. In this sense, the term microdoma<strong>in</strong><br />

is mislead<strong>in</strong>g.<br />

9 A density <strong>of</strong> 1.081 g/ml equals 20% sucrose (wt/wt), 21.6% sucrose<br />

(wt/vol), or 0.63 M sucrose.


anes; DRMs). 10 <strong>The</strong> low-density vesicles conta<strong>in</strong>ed<br />

some 10% <strong>of</strong> the total cellular lipids: all <strong>of</strong> the SM, 50% <strong>of</strong><br />

the glycosph<strong>in</strong>golipids, 25% <strong>of</strong> the cellular cholesterol, but<br />

only 5% <strong>of</strong> the glycerolipids (38). Subsequent work on<br />

model membranes has suggested that SM is detergent<br />

<strong>in</strong>soluble only when it was present <strong>in</strong> an l 0 liquid-ordered<br />

phase before the addition <strong>of</strong> the detergent (1), support<strong>in</strong>g<br />

the idea that DRMs are derived from preexist<strong>in</strong>g l 0 phase<br />

doma<strong>in</strong>s. <strong>The</strong> power <strong>of</strong> the DRM isolation method to study<br />

the structure and function <strong>of</strong> doma<strong>in</strong>s was demonstrated by<br />

the f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> the orig<strong>in</strong>al paper (38) that the GPI prote<strong>in</strong>s<br />

became detergent <strong>in</strong>soluble at 20 m<strong>in</strong> after synthesis only,<br />

which suggested that the prote<strong>in</strong>s became <strong>in</strong>soluble upon<br />

enter<strong>in</strong>g the Golgi where they are thought to come <strong>in</strong>to<br />

contact with the sph<strong>in</strong>golipids (see sect. VI). 11 <strong>The</strong> method<br />

has been applied to identify prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> the transport<br />

pathway from the trans-Golgi network (TGN) to the<br />

apical doma<strong>in</strong> (180, 304). Evidence has been reported for<br />

the coexistence <strong>in</strong> the same membrane <strong>of</strong> doma<strong>in</strong>s with<br />

different (GPI) prote<strong>in</strong> compositions and different physical<br />

properties (211, 307). <strong>The</strong> same was reported for<br />

myel<strong>in</strong> where TX-100 and CHAPS yielded DRMs <strong>of</strong> different<br />

prote<strong>in</strong> compositions (342). 12 SM-enriched DRMs<br />

have been isolated from nuclei, where they were assumed<br />

to represent the <strong>in</strong>ner nuclear membrane (18).<br />

DRMs have been isolated from the plasma membrane,<br />

suggest<strong>in</strong>g the existence <strong>of</strong> phase-separated sph<strong>in</strong>golipid/cholesterol<br />

doma<strong>in</strong>s on the cell surface where<br />

they would compartmentalize, modulate, and <strong>in</strong>tegrate<br />

signal<strong>in</strong>g events by provid<strong>in</strong>g sites for the assembly <strong>of</strong><br />

components <strong>in</strong>volved <strong>in</strong> signal transduction (202, 340).<br />

Excit<strong>in</strong>g new developments <strong>in</strong> the field are the regulation,<br />

by ligand b<strong>in</strong>d<strong>in</strong>g, <strong>of</strong> the association with the doma<strong>in</strong> <strong>of</strong><br />

signal<strong>in</strong>g receptors and <strong>of</strong> the Src family k<strong>in</strong>ases that<br />

transduce the signals <strong>in</strong>to the cell. <strong>The</strong> latter k<strong>in</strong>ases are<br />

anchored to the cytoplasmic bilayer leaflet by two saturated<br />

acyl cha<strong>in</strong>s, whereas <strong>in</strong> contrast prote<strong>in</strong>s anchored<br />

10 <strong>The</strong> term DRM describes the remnant left after detergent extraction.<br />

Formally, this term cannot be used to describe a doma<strong>in</strong> that<br />

existed <strong>in</strong> the orig<strong>in</strong>al membrane before detergent addition, s<strong>in</strong>ce this<br />

would assume that detergent has no effect on the properties <strong>of</strong> the<br />

doma<strong>in</strong>. <strong>The</strong> latter must be proven for each property studied.<br />

11 Although also hemagglut<strong>in</strong><strong>in</strong> became detergent <strong>in</strong>soluble after<br />

20 m<strong>in</strong> (344), this may have a different reason. <strong>The</strong> <strong>in</strong>solubility <strong>of</strong><br />

hemagglut<strong>in</strong><strong>in</strong> requires its triple palmitoylation (sites), and the organelle<br />

where palmitoylation takes place has not been established (237). So<br />

<strong>in</strong>solubility 20 m<strong>in</strong> after synthesis might be due either to contact with<br />

sph<strong>in</strong>golipids <strong>in</strong> the Golgi or to palmitoylation <strong>in</strong> the Golgi.<br />

12 However, 60–80% <strong>of</strong> the GalCer and cholesterol <strong>in</strong> myel<strong>in</strong> were<br />

resistant to each detergent, show<strong>in</strong>g that at least part <strong>of</strong> the GalCer was<br />

resistant to both detergents. One possible explanation is that there were<br />

three different doma<strong>in</strong>s: one doma<strong>in</strong> conta<strong>in</strong><strong>in</strong>g TX-100-resistant prote<strong>in</strong>s,<br />

one conta<strong>in</strong><strong>in</strong>g CHAPS-resistant prote<strong>in</strong>s, and a third doma<strong>in</strong><br />

resistant to both detergents and conta<strong>in</strong><strong>in</strong>g some 40% <strong>of</strong> the GalCer.<br />

Alternatively, there was only one type <strong>of</strong> doma<strong>in</strong>, but TX-100 and CHAPS<br />

selectively extracted certa<strong>in</strong> prote<strong>in</strong>s.<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1699<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

by the branched isoprenyl groups are not recovered <strong>in</strong><br />

DRMs (237). This supports the idea that an ordered lipid<br />

environment is present on the cytoplasmic surface <strong>of</strong> the<br />

sph<strong>in</strong>golipid rafts. Some <strong>of</strong> the DRMs from the plasma<br />

membrane were derived from caveolae, morphologically<br />

well-established flasklike <strong>in</strong>vag<strong>in</strong>ations <strong>of</strong> the plasma<br />

membrane (7, 37). Caveolae are def<strong>in</strong>ed by the presence<br />

on the cytosolic surface <strong>of</strong> the palmitoylated, cholesterolb<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong> caveol<strong>in</strong> (7, 256). Multiple palmitoylation<br />

<strong>of</strong> caveol<strong>in</strong> was found to be required for its <strong>in</strong>teraction<br />

with dually acylated G prote<strong>in</strong>s (103), but not for b<strong>in</strong>d<strong>in</strong>g<br />

to caveolae (78). Caveol<strong>in</strong> (VIP21) was also localized to<br />

the Golgi (177, 207), where it is supposed to be <strong>in</strong>volved<br />

<strong>in</strong> membrane transport. DRMs have been isolated from<br />

many different mammalian cell types, but also from Drosophila<br />

(304), Dictyostelium (419), yeast (11, 174), and<br />

protozoans (430).<br />

Obviously, the detergent extraction method has its<br />

limitations. It cannot be concluded that the organization<br />

<strong>of</strong> the lipids (and prote<strong>in</strong>s) <strong>in</strong> the result<strong>in</strong>g DRMs reflects<br />

their organization <strong>in</strong> the cellular membrane <strong>of</strong> orig<strong>in</strong> <strong>in</strong><br />

full detail, because some rearrangement may have occurred<br />

as a consequence <strong>of</strong> low temperature, detergent<br />

addition, and detergent dilution. Low temperature favors<br />

formation <strong>of</strong> ordered doma<strong>in</strong>s, while detergent will <strong>in</strong>sert<br />

<strong>in</strong>to the membrane and <strong>in</strong>fluence the partition<strong>in</strong>g <strong>of</strong> the<br />

various lipids. Notably, the size <strong>of</strong> the orig<strong>in</strong>al sph<strong>in</strong>golipid<br />

doma<strong>in</strong>s cannot be assessed by detergent extraction,<br />

because separate doma<strong>in</strong>s with<strong>in</strong> the same membrane<br />

may coalesce due to removal <strong>of</strong> the surround<strong>in</strong>g glycerolipids.<br />

Because the bulk <strong>of</strong> the sph<strong>in</strong>golipids has been<br />

localized to the noncytoplasmic surface <strong>of</strong> cellular membranes<br />

(see sect. VB), one other uncerta<strong>in</strong>ty is the composition<br />

<strong>of</strong> the lipids on the cytosolic surface fac<strong>in</strong>g the<br />

sph<strong>in</strong>golipid doma<strong>in</strong> and their behavior dur<strong>in</strong>g detergent<br />

extraction (discussed <strong>in</strong> detail <strong>in</strong> Ref. 36). Various groups<br />

have published methods to isolate caveolae without the<br />

use <strong>of</strong> detergent (326, 348, 351, 361). Whereas three<br />

groups set out by isolat<strong>in</strong>g plasma membranes, the fourth<br />

group (351) followed the detergent extraction method but<br />

without detergent. Cells were homogenized and sonicated,<br />

and the membranes were floated up <strong>in</strong> a sucrose<br />

gradient. <strong>Membrane</strong>s at the 35/5% sucrose <strong>in</strong>terface were<br />

separated from membranes at the 45/35% sucrose <strong>in</strong>terface<br />

and were designated “purified caveolae membranes.”<br />

13 It will be <strong>in</strong>terest<strong>in</strong>g to see how these protocols<br />

will complement the DRM method.<br />

13 Accord<strong>in</strong>g to common cell fractionation experience, the 35%/5%<br />

sucrose <strong>in</strong>terface should conta<strong>in</strong> most <strong>of</strong> the Golgi, early endosomes,<br />

and plasma membrane. <strong>The</strong> fraction at the 45%/35% sucrose <strong>in</strong>terface<br />

typically conta<strong>in</strong>s ER and lysosomes, while the alkal<strong>in</strong>e carbonate used<br />

for homogenization should cause a large part <strong>of</strong> the ER to float up to the<br />

35%/5% <strong>in</strong>terface as well. Without any determ<strong>in</strong>ation <strong>of</strong> the flotation <strong>of</strong><br />

these membranes, the use <strong>of</strong> the term purified caveolae membranes is<br />

optimistic, if not naive.


1700 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

4. Microscopy on fixed cells<br />

Independent evidence for cluster<strong>in</strong>g <strong>of</strong> glycosph<strong>in</strong>golipids<br />

on the cell surface has been obta<strong>in</strong>ed by microscopy.<br />

A first approach has utilized glycosph<strong>in</strong>golipid-b<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong>s, which were visualized by a fluorescent or<br />

electron-dense tag or by a secondary labeled prote<strong>in</strong>. <strong>The</strong><br />

major problem <strong>in</strong> such studies is that lipids cannot be<br />

fixed at their orig<strong>in</strong>al location. Artificial cluster<strong>in</strong>g was<br />

<strong>in</strong>duced when the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> a primary antibody to globoside<br />

(Gb 4Cer) or Forssman glycosph<strong>in</strong>golipid (IV 3 --<br />

GalNAc-Gb 4Cer) was followed by label<strong>in</strong>g with a dimeric<br />

secondary antibody, tetrameric prote<strong>in</strong> A, or when multimeric<br />

complexes were used <strong>of</strong> the primary or secondary<br />

ligand to ferrit<strong>in</strong> or colloidal gold (47, 96, 377). Cluster<strong>in</strong>g<br />

<strong>of</strong> the ganglioside GM1 was observed when it was labeled<br />

with pentameric cholera tox<strong>in</strong> B subunit by itself (9) or<br />

conjugated with gold <strong>in</strong>to a multimeric complex (276), or<br />

when a biot<strong>in</strong>ylated GM1 was labeled with anti-biot<strong>in</strong>gold<br />

(246). <strong>The</strong> latter studies were performed on freezesubstituted<br />

samples <strong>in</strong> which redistribution seems rather<br />

unlikely. In an <strong>in</strong>dependent approach, label<strong>in</strong>g <strong>of</strong> glycosph<strong>in</strong>golipids<br />

with a primary antibody was followed by<br />

fixation before the addition <strong>of</strong> the secondary antibodygold<br />

complex, a condition that had been shown to prevent<br />

redistribution <strong>of</strong> Forssman glycosph<strong>in</strong>golipid (47, 96).<br />

Clusters <strong>of</strong> GM3 were still observed <strong>in</strong> one study (354),<br />

while cluster<strong>in</strong>g <strong>of</strong> a number <strong>of</strong> sph<strong>in</strong>golipids <strong>in</strong> caveolae<br />

was no longer observed under these str<strong>in</strong>gent conditions<br />

(96). Still, a local enrichment <strong>of</strong> the ganglioside GM1 <strong>in</strong><br />

caveolae was found by a postembedd<strong>in</strong>g label<strong>in</strong>g protocol<br />

us<strong>in</strong>g cholera tox<strong>in</strong> where redistribution could be excluded<br />

(276). 14 In cells transfected with <strong>in</strong>fluenza virus<br />

hemagglut<strong>in</strong><strong>in</strong> or GPI prote<strong>in</strong>s, the distribution <strong>of</strong> these<br />

prote<strong>in</strong>s overlapped with that <strong>of</strong> GM1 (128). Cluster<strong>in</strong>g <strong>of</strong><br />

GPI prote<strong>in</strong>s has been observed by microscopy under a<br />

variety <strong>of</strong> conditions (7). However, <strong>in</strong> many cases cluster<strong>in</strong>g<br />

was <strong>in</strong>duced by the protocol used. A major po<strong>in</strong>t <strong>of</strong><br />

concern <strong>in</strong> most microscopic studies on lipid and lipidl<strong>in</strong>ked<br />

molecules is the use <strong>of</strong> multimeric reporter ligands<br />

without proper controls.<br />

14 When sections <strong>of</strong> freeze-substituted A431 cells were labeled<br />

with cholera tox<strong>in</strong> B-gold, clusters were observed <strong>in</strong> uncoated <strong>in</strong>vag<strong>in</strong>ations<br />

<strong>of</strong> the plasma membrane. It seems unlikely that cluster<strong>in</strong>g was<br />

<strong>in</strong>duced by the multimeric ligand as lipids most likely do not diffuse on<br />

the surface <strong>of</strong> the section which <strong>in</strong> this case consists <strong>of</strong> Lowicryl<br />

polymer. This is different <strong>in</strong> frozen sections, where dur<strong>in</strong>g the label<strong>in</strong>g <strong>of</strong><br />

the thawed sections lipids are free to diffuse <strong>in</strong> the membranes. In the<br />

freeze-substituted cells, GM1 was also found <strong>in</strong> small vesicles <strong>in</strong> the<br />

cytosol <strong>in</strong> close approximation with the patches on the plasma membrane.<br />

Because the vesicle pr<strong>of</strong>iles were not <strong>in</strong> contact with the plasma<br />

membrane dur<strong>in</strong>g the label<strong>in</strong>g <strong>of</strong> the section, a higher concentration <strong>of</strong><br />

GM1 <strong>in</strong> these vesicles must have been present already <strong>in</strong> the liv<strong>in</strong>g cell.<br />

In the cell, the vesicle membranes are thought to be cont<strong>in</strong>uous with the<br />

plasma membrane or to be derived from the plasma membrane by<br />

endocytosis. In both cases, the results demonstrate that GM1 is enriched<br />

<strong>in</strong> subdoma<strong>in</strong>s <strong>of</strong> the plasma membrane <strong>of</strong> these A431 cells.<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

5. Optical studies on liv<strong>in</strong>g cells<br />

Already <strong>in</strong> the early 1980s, measurements on the<br />

behavior <strong>of</strong> fluorescent probes <strong>in</strong> biomembranes supported<br />

the concept <strong>of</strong> lipid doma<strong>in</strong>s <strong>in</strong> membranes (157),<br />

and microscopy was performed on liv<strong>in</strong>g cells us<strong>in</strong>g fluorescent<br />

lipids (357). In the latter study, the redistribution<br />

<strong>of</strong> GM1 by cholera tox<strong>in</strong> caused cocapp<strong>in</strong>g <strong>of</strong> the unrelated<br />

ganglioside GM3, which suggested that the headgroup-labeled<br />

GM1 and GM3 were associated by lipidlipid<br />

<strong>in</strong>teractions. Much more recently, a major<br />

breakthrough <strong>in</strong> the field has been the application to liv<strong>in</strong>g<br />

cells <strong>of</strong> novel high-resolution optical techniques, like resonance<br />

energy transfer between fluorescent membrane<br />

molecules, s<strong>in</strong>gle particle track<strong>in</strong>g, two-dimension scann<strong>in</strong>g<br />

resistance, and s<strong>in</strong>gle dye trac<strong>in</strong>g. A number <strong>of</strong> these<br />

studies support the existence <strong>of</strong> locations on the cell<br />

surface that are enriched <strong>in</strong> GPI prote<strong>in</strong>s and glycosph<strong>in</strong>golipids<br />

and, <strong>in</strong> addition, <strong>of</strong> areas with enhanced resistance<br />

to lateral diffusion that are preferred by some but<br />

not by other probes. One controversial issue is the size <strong>of</strong><br />

the doma<strong>in</strong>s. What is their diameter? Whereas the detergent-extraction<br />

studies yielded DRM vesicles with a diameter<br />

<strong>of</strong> 0.1–1 m (39), suggest<strong>in</strong>g a diameter size <strong>of</strong> 200–<br />

2,000 nm, this was a few hundred nanometers for the<br />

small regions to which a GPI prote<strong>in</strong> and GM1 were found<br />

to be conf<strong>in</strong>ed <strong>in</strong> particle track<strong>in</strong>g studies (290, 331). 15<br />

<strong>The</strong> newest s<strong>in</strong>gle particle track<strong>in</strong>g measurements on<br />

these doma<strong>in</strong>s suggest that they are even smaller with a<br />

diameter <strong>of</strong> 50 nm (roughly 3,500 lipids), exist for more<br />

than 1 m<strong>in</strong>, and comprise 50 prote<strong>in</strong>s (289). Chemical<br />

cross-l<strong>in</strong>k<strong>in</strong>g and fluorescence resonance energy transfer<br />

to measure GPI-prote<strong>in</strong> <strong>in</strong>teractions led to estimates <strong>of</strong> 70<br />

nm (94, 401). In contrast to these data, no cluster<strong>in</strong>g <strong>of</strong> a<br />

GPI prote<strong>in</strong> was observed on the apical surface <strong>of</strong> MDCK<br />

cells (162). In addition, a comparison between various<br />

GPI prote<strong>in</strong>s on various cell surfaces did not provide<br />

evidence for the occurrence <strong>of</strong> a sizeable fraction <strong>of</strong> the<br />

GPI prote<strong>in</strong>s as stable clusters (163). <strong>The</strong> authors expla<strong>in</strong>ed<br />

the discrepancies with the earlier work, by conclud<strong>in</strong>g<br />

that lipid rafts either exist only as transiently<br />

stabilized structures or, if stable, comprise at most a<br />

m<strong>in</strong>or fraction <strong>of</strong> the cell surface.<br />

Here, it becomes relevant to discuss the area <strong>of</strong> the<br />

membrane covered by rafts. SM constitutes 20% <strong>of</strong> the<br />

plasma membrane phospholipids. If, as generally believed,<br />

SM is located <strong>in</strong> the outer leaflet, it covers 40% <strong>of</strong><br />

the surface. When saturated phospholipids and choles-<br />

15 It should be noted that each gold particle possessed many<br />

b<strong>in</strong>d<strong>in</strong>g sites aga<strong>in</strong>st the GPI prote<strong>in</strong> (antibodies conjugated to gold) and<br />

to GM1 (cholera tox<strong>in</strong> B subunits conjugated to gold). In the case <strong>of</strong> the<br />

GPI prote<strong>in</strong>, the number <strong>of</strong> b<strong>in</strong>d<strong>in</strong>g sites did not affect the results.<br />

Concern<strong>in</strong>g GM1, cholera tox<strong>in</strong> has been shown to reduce its solubility<br />

<strong>in</strong> detergent, which implies that b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> the pentavalent tox<strong>in</strong> changes<br />

the phase behavior <strong>of</strong> GM1 (117).


terol are added to this figure, one would expect most <strong>of</strong><br />

the plasma membrane to be covered by a liquid-ordered<br />

doma<strong>in</strong>. In a special case, the apical surface <strong>of</strong> epithelial<br />

cells <strong>of</strong> kidney and <strong>in</strong>test<strong>in</strong>e, the surface is completely<br />

covered by sph<strong>in</strong>golipids (341). This supports the idea<br />

that the apical membrane <strong>of</strong> kidney cells, like MDCK, is<br />

one big raft (162). Cluster<strong>in</strong>g on apical surfaces may<br />

therefore not occur (162). When it occurs, it may imply<br />

that there are different types <strong>of</strong> rafts (211, 307, 342).<br />

Interest<strong>in</strong>gly, when beads attached to a GPI prote<strong>in</strong> (major<br />

histocompatibility complex class I) were scanned over<br />

the surface <strong>of</strong> hepatoma cells by laser tweezers, the beads<br />

experienced areas <strong>of</strong> <strong>in</strong>creased resistance <strong>of</strong> 100 nm diameter,<br />

that were <strong>in</strong>dependent <strong>of</strong> the act<strong>in</strong> skeleton and<br />

covered an area <strong>of</strong> 10% <strong>of</strong> the surface, which is similar<br />

to caveolae (370). <strong>The</strong> physicochemical basis <strong>of</strong> the existence<br />

<strong>of</strong> multiple types <strong>of</strong> rafts rema<strong>in</strong>s to be resolved but<br />

may <strong>in</strong>volve cholesterol-<strong>in</strong>duced doma<strong>in</strong>s (294) and<br />

caveolae (7), both <strong>of</strong> which are very stable. In contrast to<br />

measurements on beads attached to diC16:0 phosphatidylethanolam<strong>in</strong>e<br />

(PE) where no <strong>in</strong>dications for areas <strong>of</strong><br />

higher resistance were observed (370), <strong>in</strong> trac<strong>in</strong>gs <strong>of</strong> s<strong>in</strong>gle<br />

fluorescent molecules on muscle cells, the lipid analog<br />

Cy5-diC14:0-PE, but not Cy5-diC18:1-PE (which were assumed<br />

to represent lipids preferr<strong>in</strong>g areas <strong>of</strong> lower and<br />

higher fluidity, respectively), was 100-fold enriched <strong>in</strong><br />

doma<strong>in</strong>s <strong>of</strong> 0.7 m, that were stable for several m<strong>in</strong>utes<br />

(329). No ultrastructural correlate for such doma<strong>in</strong>s has<br />

been found.<br />

In l<strong>in</strong>e with the model <strong>of</strong> GPI prote<strong>in</strong> sort<strong>in</strong>g <strong>in</strong><br />

epithelial cells via sph<strong>in</strong>golipid doma<strong>in</strong>s (201, 341), a GPI<br />

prote<strong>in</strong> was found by various techniques to be clustered<br />

dur<strong>in</strong>g transport to the apical MDCK cell surface, after<br />

which it diffused over the apical surface (125). However,<br />

<strong>in</strong> contrast to <strong>in</strong>hibition <strong>of</strong> sph<strong>in</strong>golipid synthesis (233),<br />

cholesterol depletion did not change polarity <strong>of</strong> cell surface<br />

delivery <strong>of</strong> the GPI prote<strong>in</strong> (124). Cholesterol depletion<br />

did <strong>in</strong>hibit transport <strong>of</strong> hemagglut<strong>in</strong><strong>in</strong> to the apical<br />

membrane (161).<br />

V. SPHINGOLIPID ASSEMBLY AND TRANSPORT<br />

A. Enzymes <strong>of</strong> Sph<strong>in</strong>golipid Metabolism<br />

and <strong>The</strong>ir Topology<br />

1. Ceramide synthesis<br />

Sph<strong>in</strong>golipid synthesis <strong>in</strong> all eukaryotes starts <strong>in</strong> the<br />

ER with the condensation <strong>of</strong> L-ser<strong>in</strong>e with palmitoyl coenzyme<br />

A, a reaction catalyzed by ser<strong>in</strong>e palmitoyl-transferase<br />

(SPT) and yield<strong>in</strong>g 3-ketosph<strong>in</strong>gan<strong>in</strong>e (Fig. 2). SPT<br />

forms the target <strong>of</strong> several potent natural <strong>in</strong>hibitors that<br />

<strong>in</strong>clude sph<strong>in</strong>g<strong>of</strong>ung<strong>in</strong> (436), lipoxamyc<strong>in</strong> (214), myrioc<strong>in</strong><br />

(245), and viridi<strong>of</strong>ung<strong>in</strong>s (217). Genetic studies <strong>in</strong> yeast<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1701<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

revealed that at least two genes, LCB1 and LCB2, are<br />

required for SPT activity, suggest<strong>in</strong>g that the enzyme is<br />

composed <strong>of</strong> at least two dist<strong>in</strong>ct prote<strong>in</strong>s (43, 258). This<br />

was confirmed when the prote<strong>in</strong>s encoded by mammalian<br />

homologs <strong>of</strong> these genes were characterized and found to<br />

be part <strong>of</strong> a functional enzyme complex (121, 122). <strong>The</strong><br />

product <strong>of</strong> SPT, 3-ketosph<strong>in</strong>gan<strong>in</strong>e, is reduced to sph<strong>in</strong>gan<strong>in</strong>e<br />

(also called dihydrosph<strong>in</strong>gos<strong>in</strong>e), which <strong>in</strong> yeast<br />

requires the TSC10 gene product (15). Reactions up to the<br />

formation <strong>of</strong> sph<strong>in</strong>gan<strong>in</strong>e appear to be the same from<br />

mammals down to yeast. Sph<strong>in</strong>gan<strong>in</strong>e <strong>in</strong> mammals is<br />

N-acylated by ceramide synthase to form dihydroceramide,<br />

which is rapidly desaturated to give ceramide; a 4,5trans-double<br />

bond is <strong>in</strong>troduced <strong>in</strong> the sph<strong>in</strong>gan<strong>in</strong>e moiety<br />

to form ceramide conta<strong>in</strong><strong>in</strong>g sph<strong>in</strong>gos<strong>in</strong>e as its longcha<strong>in</strong><br />

base (241). In yeast, but probably also <strong>in</strong> mammals,<br />

sph<strong>in</strong>gan<strong>in</strong>e is hydroxylated to form 4-hydroxy-sph<strong>in</strong>gan<strong>in</strong>e,<br />

commonly named phytosph<strong>in</strong>gos<strong>in</strong>e. This reaction<br />

requires the SYR2 gene product and, unlike earlier enzymatic<br />

steps <strong>in</strong> the biosynthetic pathway, is not essential<br />

for cell growth <strong>in</strong> yeast (116). Amide l<strong>in</strong>kage <strong>of</strong> a fatty<br />

acid to phytosph<strong>in</strong>gos<strong>in</strong>e yields phytoceramide, the ceramide<br />

found <strong>in</strong> most fungal and plant sph<strong>in</strong>golipids and<br />

abundant <strong>in</strong> some mammalian tissues (see sect. IIIA).<br />

Ceramide synthesis is believed to take place on the cytosolic<br />

face <strong>of</strong> the ER (220). In mammals, this reaction can<br />

be <strong>in</strong>hibited by fumonis<strong>in</strong>s (405), while australifung<strong>in</strong> effectively<br />

blocks ceramide synthesis <strong>in</strong> yeast (216). So far,<br />

no s<strong>in</strong>gle acyl CoA-dependent ceramide synthase has<br />

been purified or cloned. However, the alkal<strong>in</strong>e ceramidases<br />

encoded by the yeast genes YPC1 and YDC1 possess<br />

a reverse, acyl CoA-<strong>in</strong>dependent ceramide synthase<br />

activity that is <strong>in</strong>sensitive to classical ceramide synthesis<br />

<strong>in</strong>hibitors (222, 223). <strong>The</strong> very-long-cha<strong>in</strong> (20 carbon)<br />

fatty acids found <strong>in</strong> (phyto)ceramides are formed by ER<br />

membrane-bound fatty acid elongation systems whose<br />

components belong to a evolutionary conserved family <strong>of</strong><br />

transmembrane prote<strong>in</strong>s (269, 382, 383). Disruption <strong>of</strong> the<br />

correspond<strong>in</strong>g genes <strong>in</strong> yeast reduces the cellular sph<strong>in</strong>golipid<br />

levels (269) and <strong>in</strong>duces pleiotropic phenotypes<br />

such as bud site localization defects, changes <strong>in</strong> plasma<br />

membrane H -ATPase levels, and resistance to sterol<br />

synthesis <strong>in</strong>hibitors (104, 303). <strong>The</strong> fatty acid moiety <strong>in</strong><br />

ceramides can be mono- or dihydroxylated. In yeast, the<br />

first hydroxylation step occurs <strong>in</strong> the ER and requires<br />

SCS7, a gene structurally related to the SUR2 gene (116).<br />

<strong>The</strong> second hydroxylation takes place <strong>in</strong> the Golgi and<br />

requires the Golgi copper transporter encoded by the<br />

CCC2 gene (16).<br />

2. Synthesis <strong>of</strong> sph<strong>in</strong>gomyel<strong>in</strong> and glycosph<strong>in</strong>golipids<br />

In animal cells, ceramide is used to produce SM and<br />

GlcCer, the precursor for the higher glycosph<strong>in</strong>golipids<br />

(Fig. 3). SM production occurs <strong>in</strong> the lumen <strong>of</strong> the cis and


1702 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

medial Golgi and <strong>in</strong>volves the transfer <strong>of</strong> phosphochol<strong>in</strong>e<br />

from PC to ceramide, yield<strong>in</strong>g diacylglycerol as a (potentially<br />

important) side product (101, 150). A second SM<br />

synthase activity has been located on the cell surface<br />

(392). Two SM synthases with different properties have<br />

also been found <strong>in</strong> the <strong>in</strong>tra-erythrocyte stage <strong>of</strong> Plasmodium<br />

(120). <strong>The</strong> SM synthases rema<strong>in</strong> to be identified.<br />

<strong>The</strong> ceramide:glucosyltransferase <strong>in</strong>volved <strong>in</strong> GlcCer production<br />

is located on the cytosolic surface <strong>of</strong> the early<br />

Golgi (45, 65, 100, 151, 224). Whereas the GlcCer synthase<br />

<strong>in</strong> mammals is encoded by a s<strong>in</strong>gle gene, three GlcCer<br />

synthase analogs have been identified <strong>in</strong> the C. elegans<br />

genome (144). <strong>The</strong> physiological significance <strong>of</strong> this multiplicity<br />

rema<strong>in</strong>s to be solved. By an unknown mechanism,<br />

GlcCer is translocated to the Golgi lumen where it can be<br />

trapped by galactosylation to Galß1–4GlcCer (LacCer;<br />

Refs. 45, 183, 267). Various series <strong>of</strong> complex glycosph<strong>in</strong>golipids<br />

can then be generated by stepwise addition <strong>of</strong><br />

sugars to LacCer, whereby the first sugar and its glycosidic<br />

l<strong>in</strong>kage determ<strong>in</strong>e the name <strong>of</strong> the series (53), e.g.,<br />

Gal1–4: globo- or Gb, Gal1–3: isoglobo or iGb, Glc-<br />

NAcß1–3: lacto or Lc (Fig. 3). <strong>The</strong> ganglio series (or Gg)<br />

is based on GalNAcß1–4LacCer. <strong>The</strong> ganglio series also<br />

comprises the simple gangliosides NeuAc 1–3-LacCer, wellknown<br />

under the Svennerholm nomenclature as GM3,<br />

GD3, and GT3, respectively (53). Glycosph<strong>in</strong>golipids <strong>in</strong><br />

the various series may be fucosylated or sulfated. LacCer<br />

synthesis and all further conversions occur <strong>in</strong> the lumen<br />

<strong>of</strong> the Golgi and require import <strong>of</strong> the necessary sugar<br />

nucleotides (45, 183; reviewed <strong>in</strong> Ref. 209). With the use <strong>of</strong><br />

subcellular fractionation, a sequential distribution over<br />

the Golgi was observed for glycosph<strong>in</strong>golipid glycosyltransferases<br />

(143, 380, 381), with a significant overlap <strong>in</strong><br />

distributions. A later paper (184) assigned the synthesis <strong>of</strong><br />

LacCer, GM3, and GM2 to the trans-Golgi and the TGN,<br />

whereby a considerable fraction <strong>of</strong> the LacCer and GM3<br />

synthases localized to the cis-Golgi. Pharmacological<br />

studies, us<strong>in</strong>g the drugs brefeld<strong>in</strong> A (308, 333, 384, 427)<br />

and monens<strong>in</strong> (244, 316, 317, 385) to discrim<strong>in</strong>ate enzymes<br />

<strong>of</strong> the Golgi stack from those <strong>in</strong> the TGN, localized<br />

GM2 synthase (GalNAc-transferase) and two galactosyltransferases<br />

<strong>of</strong> complex glycosph<strong>in</strong>golipid synthesis to<br />

the TGN (see, however, Ref. 426). <strong>The</strong> same conclusion<br />

was reached <strong>in</strong> a study on mitotic cells (62).<br />

Arthropods and mollusks transfer a mannose onto<br />

GlcCer and further extend this cha<strong>in</strong> <strong>in</strong> the arthro (At) or<br />

the mollu (Mu) series. In some mammalian tissues, notably<br />

myel<strong>in</strong>, but <strong>in</strong> humans also the epithelia <strong>of</strong> the gastro<strong>in</strong>test<strong>in</strong>al<br />

and urogenital tracts, ceramide is ma<strong>in</strong>ly glycosylated<br />

to GalCer by the ceramide:galactosyltransferase,<br />

an enzyme situated on the lum<strong>in</strong>al face <strong>of</strong> the ER (328,<br />

359, 360). <strong>The</strong> enzyme displays a preference for ceramides<br />

conta<strong>in</strong><strong>in</strong>g a 2-hydroxylated fatty acid which are abundant<br />

<strong>in</strong> these tissues. GalCer can be further galactosylated and/or<br />

sulfated (or sialylated) <strong>in</strong> the Golgi lumen (45, 183, 373).<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

3. Synthesis <strong>of</strong> <strong>in</strong>ositol sph<strong>in</strong>golipids<br />

In contrast to animals, all fungi and plants studied<br />

s<strong>of</strong>ar, as well as several protozoa, add <strong>in</strong>ositol phosphate<br />

to phytoceramide to form IPC (192). <strong>The</strong> biosynthetic<br />

route <strong>of</strong> <strong>in</strong>ositol sph<strong>in</strong>golipids <strong>in</strong> yeast has been studied <strong>in</strong><br />

great detail. Yeast produces only three types <strong>of</strong> <strong>in</strong>ositol<br />

sph<strong>in</strong>golipids: IPC, mannose 1–2IPC: MIPC, and <strong>in</strong>ositol-<br />

1-P-6 mannose 1–2IPC or mannose-(<strong>in</strong>ositol-P) 2-ceramide:<br />

M(IP) 2C. <strong>The</strong> IPC synthase, or an essential subunit<br />

there<strong>of</strong>, is encoded by the AUR1 gene (259). AUR1 homologs<br />

have been identified <strong>in</strong> a wide variety <strong>of</strong> fungi<br />

(132, 176). IPC activity is effectively blocked by the antifungal<br />

agents aureobasid<strong>in</strong> A (259), khafrefung<strong>in</strong> (219),<br />

and rustmyc<strong>in</strong> (218). Because IPC synthase activity is<br />

essential and not found <strong>in</strong> mammals, it provides an ideal<br />

target for therapeutic drugs to fight pathogenic fungi <strong>in</strong><br />

immunocompromised <strong>in</strong>dividuals. IPC synthesis <strong>in</strong> yeast<br />

was previously thought to occur <strong>in</strong> the ER. This idea was<br />

based on the fact that the formation <strong>of</strong> IPC from ERderived<br />

ceramide and PI cont<strong>in</strong>ues under conditions<br />

when ER-to-Golgi vesicular transport is blocked <strong>in</strong> temperature-sensitive<br />

secretion (sec) mutants (292). However,<br />

fluorescence microscopy and membrane fractionation<br />

experiments have recently shown that both the<br />

AUR1 gene product and IPC synthase activity are located<br />

<strong>in</strong> the Golgi (195). This discrepancy <strong>in</strong> results rema<strong>in</strong>s to<br />

be clarified but could be expla<strong>in</strong>ed if the IPC synthase<br />

would constitutively cycle between the ER and the Golgi,<br />

a feature <strong>in</strong>herent <strong>of</strong> several Golgi-based prote<strong>in</strong>s (60, 146,<br />

210). An alternative explanation could be that ceramide<br />

made <strong>in</strong> the ER can reach the Golgi by a vesicle-<strong>in</strong>dependent<br />

transport mechanism (see sect. VC).<br />

Whereas the sidedness <strong>of</strong> IPC production is unknown,<br />

mannosylation to form MIPC most likely occurs<br />

<strong>in</strong> the lumen <strong>of</strong> the Golgi. <strong>The</strong> latter reaction requires at<br />

least three genes: SUR1, VRG4, and CSG2. SUR1 most<br />

likely encodes a mannosyltransferase (16), whereas VRG4<br />

is required for GDP-mannose transport <strong>in</strong>to the Golgi<br />

lumen (68). CSG2 encodes a member <strong>of</strong> the major facilitator<br />

superfamily, and its role <strong>in</strong> MIPC production is<br />

unclear (432). <strong>The</strong> f<strong>in</strong>al and most abundant sph<strong>in</strong>golipid<br />

<strong>in</strong> yeast, M(IP) 2C, is formed by transfer <strong>of</strong> <strong>in</strong>ositol phosphate<br />

from PI onto MIPC and requires a prote<strong>in</strong> encoded<br />

by the IPT1 gene (77). This reaction resembles the one<br />

that yields IPC. Accord<strong>in</strong>gly, the IPT1 and AUR1 gene<br />

products exhibit a strik<strong>in</strong>g structural similarity.<br />

4. Sph<strong>in</strong>golipid hydrolysis and signal<strong>in</strong>g<br />

sph<strong>in</strong>golipids<br />

<strong>The</strong> major pathway along which sph<strong>in</strong>golipids are<br />

degraded is removal <strong>of</strong> the head group and subsequent<br />

hydrolysis <strong>of</strong> ceramide to sph<strong>in</strong>goid base and free fatty<br />

acid. <strong>The</strong> breakdown products are then further metabolized<br />

or reutilized. Glycosph<strong>in</strong>golipids are degraded via a


complex cascade <strong>of</strong> glycosidases and activator prote<strong>in</strong>s<br />

or sapos<strong>in</strong>s <strong>in</strong> the lysosomes, and defects <strong>in</strong> any <strong>of</strong> the<br />

steps result <strong>in</strong> lysosomal storage diseases (171). A nonlysosomal<br />

glucocerebrosidase activity has been found<br />

(400). It appears to be active on the cytosolic surface <strong>of</strong> a<br />

cellular membrane, possibly the plasma membrane. Glc-<br />

Cer is the only glycosph<strong>in</strong>golipid that is synthesized on<br />

the cytosolic surface <strong>of</strong> the Golgi. <strong>The</strong> enzyme may be<br />

<strong>in</strong>volved <strong>in</strong> regulat<strong>in</strong>g GlcCer availability on cytosolic<br />

surfaces (R. Raggers and G. van Meer, personal communication).<br />

SM is degraded by a lysosomal acid sph<strong>in</strong>gomyel<strong>in</strong>ase<br />

(327) <strong>in</strong> the lysosomal lumen. Alternatively, the<br />

acid sph<strong>in</strong>gomyel<strong>in</strong>ase and neutral sph<strong>in</strong>gomyel<strong>in</strong>ases<br />

(51, 85, 140, 378) have been <strong>in</strong>voked as the enzymes that<br />

generate ceramide <strong>in</strong> signal transduction on the cytosolic<br />

surface <strong>of</strong> cellular membranes (see sect. IIC). Sph<strong>in</strong>gomyel<strong>in</strong>ase<br />

activity has also been reported for yeast (84) and<br />

requires ISC1, a gene whose product is structurally related<br />

to neutral sph<strong>in</strong>gomyel<strong>in</strong>ases (320). <strong>The</strong> ISC1-encoded<br />

prote<strong>in</strong> displays phospholipase C activity toward<br />

SM, IPC, MIPC, and M(IP) 2C, but not to PI, PC, or lyso-PC,<br />

<strong>in</strong>dicat<strong>in</strong>g that it functions as a <strong>in</strong>ositol phosphosph<strong>in</strong>golipid-specific<br />

phospholipase C <strong>in</strong> yeast (320). Where <strong>in</strong> the<br />

cell and on which side <strong>of</strong> the membrane Isc1p-mediated<br />

hydrolysis <strong>of</strong> sph<strong>in</strong>golipids occurs is unclear. Whether<br />

yeast conta<strong>in</strong>s additional enzymes for break<strong>in</strong>g down its<br />

sph<strong>in</strong>golipids rema<strong>in</strong>s to be established. Ceramides are<br />

broken down by a number <strong>of</strong> ceramidase activities that<br />

are classified as acidic, neutral, or alkal<strong>in</strong>e, based on their<br />

pH optimum. Acidic ceramidase is localized <strong>in</strong> lysosomes<br />

and its gene has been cloned from human (166). Two<br />

alkal<strong>in</strong>e ceramidases associated with the ER have been<br />

identified <strong>in</strong> yeast (222, 223).<br />

Although the bulk <strong>of</strong> sph<strong>in</strong>goid bases and ceramides<br />

is <strong>in</strong>corporated <strong>in</strong>to sph<strong>in</strong>golipids, cells do conta<strong>in</strong> small<br />

quantities <strong>of</strong> free sph<strong>in</strong>goid bases and ceramides, <strong>in</strong>clud<strong>in</strong>g<br />

some phosphorylated derivatives; these are newly<br />

synthesized or derived from sph<strong>in</strong>golipid breakdown and<br />

are generally (re)utilized for sph<strong>in</strong>golipid synthesis <strong>in</strong> ER<br />

and Golgi. Sph<strong>in</strong>gos<strong>in</strong>e-1-phosphate and sph<strong>in</strong>gan<strong>in</strong>e-1phosphate<br />

are special <strong>in</strong> the sense that they are the f<strong>in</strong>al<br />

substrates <strong>in</strong> sph<strong>in</strong>golipid hydrolysis, be<strong>in</strong>g converted by<br />

a lyase to ethanolam<strong>in</strong>e phosphate and a C16 aldehyde<br />

(315, 399, 433). At the same time, sph<strong>in</strong>goid long-cha<strong>in</strong><br />

base-1-phosphates are important <strong>in</strong>tra- and <strong>in</strong>tercellular<br />

second messengers (see sect. IIC), and their concentration<br />

is tightly regulated by the comb<strong>in</strong>ation <strong>of</strong> k<strong>in</strong>ases (167,<br />

186, 260), the lyase, and a phosphatase (149, 215, 221,<br />

399).<br />

B. Subcellular Distribution and Topology<br />

<strong>of</strong> <strong>Sph<strong>in</strong>golipids</strong><br />

A sph<strong>in</strong>golipid gradient exists along the organelles <strong>of</strong><br />

the secretory pathway. Although primarily assembled <strong>in</strong><br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1703<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

the Golgi, sph<strong>in</strong>golipids are enriched <strong>in</strong> the plasma membrane<br />

and endocytic membranes <strong>of</strong> cells, whereas only<br />

low amounts are found <strong>in</strong> the ER. This has been demonstrated<br />

both <strong>in</strong> yeast (131, 280) and <strong>in</strong> animal cells (59, 90,<br />

160, 302). Although over 90% <strong>of</strong> the cellular SM was<br />

assigned to the plasma membrane by a cell fractionation<br />

approach (182), some 60% <strong>of</strong> the cellular SM has been<br />

rout<strong>in</strong>ely found <strong>in</strong> the plasma membrane by an assay<br />

based on exogenous sph<strong>in</strong>gomyel<strong>in</strong>ase (5, 297, 334, 347,<br />

389). Very high concentrations <strong>of</strong> glycosph<strong>in</strong>golipids (30–<br />

40% <strong>of</strong> total membrane lipids) have been found <strong>in</strong> the<br />

apical plasma membrane doma<strong>in</strong> <strong>of</strong> epithelial cells (see<br />

sect. VB) and <strong>in</strong> myel<strong>in</strong>, a specialized plasma membrane<br />

doma<strong>in</strong> <strong>of</strong> Schwann cells and oligodendrocytes (366). By<br />

electron microscopy, the complex glycosph<strong>in</strong>golipid<br />

Forssman antigen was found absent from mitochondria<br />

and peroxisomes, low <strong>in</strong> ER and Golgi and enriched <strong>in</strong><br />

plasma membrane and endocytic structures (387). Although<br />

generally enriched <strong>in</strong> the plasma membrane and<br />

related membranes, there are differences with respect to<br />

the distribution <strong>of</strong> <strong>in</strong>dividual sph<strong>in</strong>golipid classes between<br />

organelles (231) or between apical and basolateral<br />

plasma membrane doma<strong>in</strong>s (159, 358). <strong>The</strong> <strong>in</strong>tracellular<br />

distribution <strong>of</strong> ceramides, sph<strong>in</strong>goid bases, and their<br />

1-phosphates is less clear.<br />

<strong>The</strong> accessibility <strong>of</strong> glycosph<strong>in</strong>golipids and SM to<br />

reagents, antibodies, and enzymes on the cell surface has<br />

led to the general belief that sph<strong>in</strong>golipids are primarily<br />

situated <strong>in</strong> the noncytoplasmic leaflet <strong>of</strong> cellular membranes.<br />

This is <strong>in</strong> l<strong>in</strong>e with their site <strong>of</strong> synthesis that is on<br />

the lum<strong>in</strong>al aspect <strong>of</strong> the Golgi (for GalCer on the lum<strong>in</strong>al<br />

aspect <strong>of</strong> the ER). Only GlcCer is synthesized on the<br />

cytosolic surface <strong>of</strong> the Golgi (see sect. VA). <strong>The</strong> best<br />

evidence seems available for SM. In the orig<strong>in</strong>al studies<br />

on erythrocytes, bacterial sph<strong>in</strong>gomyel<strong>in</strong>ase hydrolyzed<br />

80–85% <strong>of</strong> the SM (404), suggest<strong>in</strong>g that the bulk <strong>of</strong> the<br />

SM is situated <strong>in</strong> the outer, noncytoplasmic leaflet. A<br />

similar conclusion can be drawn from the accessibility <strong>of</strong><br />

60% <strong>of</strong> the SM to sph<strong>in</strong>gomyel<strong>in</strong>ase <strong>in</strong> <strong>in</strong>tact nucleated<br />

cells (5, 297, 334, 347, 389), where a significant fraction <strong>of</strong><br />

the rema<strong>in</strong><strong>in</strong>g 40% can be expected to be present <strong>in</strong><br />

<strong>in</strong>tracellular membranes like endosomes and Golgi. 16 Indeed,<br />

no SM was found accessible to sph<strong>in</strong>gomyel<strong>in</strong>ase <strong>in</strong><br />

microsomal membranes (263, 264), and 20% was hydrolyzed<br />

<strong>in</strong> isolated chromaff<strong>in</strong> granules (42), <strong>in</strong> which cases<br />

the cytosolic surface is exposed. Only little quantitative<br />

data are available on the transbilayer distribution <strong>of</strong> gly-<br />

16 A similar SM hydrolysis <strong>of</strong> 50–70% was observed when sph<strong>in</strong>gomyel<strong>in</strong>ase<br />

was applied after glutaraldehyde fixation (5) or at 15°C<br />

(334, 389), conditions under which there is no vesicular traffic between<br />

the plasma membrane and the endosomes/Golgi. Still, it should be<br />

realized that the sph<strong>in</strong>gomyel<strong>in</strong>ase method is an <strong>in</strong>vasive technique; it<br />

modifies the membrane under study and may not be free from artifacts<br />

(336).


1704 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

cosph<strong>in</strong>golipids. From studies on GalCer <strong>in</strong> myel<strong>in</strong> (199),<br />

GM3 <strong>in</strong> membrane viruses (365, 367), and GM3 and GD1a<br />

<strong>in</strong> a number <strong>of</strong> cells (242) it has been concluded that the<br />

bulk <strong>of</strong> these lipids is situated <strong>in</strong> the noncytoplasmic<br />

surface <strong>of</strong> the plasma membrane (for discussion <strong>of</strong> the<br />

methodology, see Ref. 336).<br />

Still, pools <strong>of</strong> sph<strong>in</strong>golipids may exist on the cytosolic<br />

surface <strong>of</strong> membranes. This is especially true for<br />

GlcCer, which after synthesis is <strong>in</strong>itially present <strong>in</strong> the<br />

cytosolic leaflet <strong>of</strong> the Golgi membrane (65). A cytosolic<br />

prote<strong>in</strong> that can <strong>in</strong>teract with GlcCer has been isolated<br />

from cytosol and its gene cloned (198). Other cytosolic<br />

prote<strong>in</strong>s have been found to be capable <strong>of</strong> <strong>in</strong>teract<strong>in</strong>g with<br />

complex glycosph<strong>in</strong>golipids (49, 54, 134, 135, 243, 352,<br />

353), whereas also glycosph<strong>in</strong>golipids have been colocalized<br />

with cytoskeletal elements (106, 107, 318). 17 This may<br />

suggest that also complex glycosph<strong>in</strong>golipids are present<br />

<strong>in</strong> cytosolic surfaces. This could be a consequence <strong>of</strong> lipid<br />

mix<strong>in</strong>g caused by fission and fusion events dur<strong>in</strong>g membrane<br />

traffic, or <strong>of</strong> transbilayer equilibration <strong>of</strong> a small<br />

sph<strong>in</strong>golipid fraction reach<strong>in</strong>g the ER (see below).<br />

C. Sph<strong>in</strong>golipid Transport and Sort<strong>in</strong>g<br />

1. Concepts<br />

After synthesis, sph<strong>in</strong>golipids can move around the<br />

cell <strong>in</strong> various ways. <strong>Intracellular</strong> transport processes are<br />

fast (m<strong>in</strong>utes) compared with sph<strong>in</strong>golipid turnover<br />

(many hours). So, to ma<strong>in</strong>ta<strong>in</strong> the differences <strong>in</strong> sph<strong>in</strong>golipid<br />

concentration between cellular membranes, there<br />

must be specificity <strong>in</strong> sph<strong>in</strong>golipid transport. We recently<br />

discussed sph<strong>in</strong>golipid transport <strong>in</strong> a separate review<br />

(397). <strong>The</strong> present paper focuses on the specificity <strong>in</strong><br />

sph<strong>in</strong>golipid transport and the <strong>in</strong>volvement <strong>of</strong> sph<strong>in</strong>golipids<br />

<strong>in</strong> sort<strong>in</strong>g other membrane components.<br />

When situated <strong>in</strong> a membrane, sph<strong>in</strong>golipids first <strong>of</strong><br />

all can diffuse as monomers <strong>in</strong> four directions. If we do<br />

not take <strong>in</strong>to account the motions <strong>of</strong> the entire molecule<br />

that do not result <strong>in</strong> transport, like the rotation around<br />

their longitud<strong>in</strong>al axis and the wobble (279), sph<strong>in</strong>golipids<br />

can diffuse laterally <strong>in</strong> the two-dimensional plane <strong>of</strong> the<br />

membrane; they can diffuse out <strong>of</strong> the membrane <strong>in</strong>to the<br />

aqueous phase, and they can flip across the membrane<br />

<strong>in</strong>to the opposite lipid monolayer. 18 Of these movements,<br />

17 Because the cells had been treated with acetone and/or TX-100<br />

before antibody addition, it is possible that these lipids were orig<strong>in</strong>ally<br />

present on the lum<strong>in</strong>al side <strong>of</strong> cytosolic vesicles or vacuoles.<br />

18 Diffusion <strong>in</strong>to the opposite leaflet <strong>of</strong> the bilayer without a<br />

change <strong>in</strong> the longitud<strong>in</strong>al orientation <strong>of</strong> the molecule, by which the<br />

molecule merely dips deeper <strong>in</strong>to the membrane, is followed by movement<br />

back to its orig<strong>in</strong>al position, without consequences for transport.<br />

Only transversal diffusion plus rotation around one <strong>of</strong> its short axes, by<br />

which the head group changes orientation, flips the molecule <strong>in</strong>to the<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

only diffusion out <strong>of</strong> the membrane may result <strong>in</strong> transport<br />

between cellular organelles. <strong>The</strong> second mechanism<br />

<strong>of</strong> lipid transfer <strong>in</strong> cells is by the vesicular transport<br />

pathways that connect most cellular organelles. F<strong>in</strong>ally,<br />

lipids may be transported between organelles via transient<br />

contacts between the membranes <strong>of</strong> the two organelles.<br />

19<br />

<strong>The</strong> word sort<strong>in</strong>g is used to <strong>in</strong>dicate the process by<br />

which the cell generates the differences <strong>in</strong> prote<strong>in</strong> and<br />

lipid composition between two membranes, start<strong>in</strong>g from<br />

a membrane where these components were mixed. Because<br />

the <strong>in</strong>tracellular traffic is practically a closed system<br />

for membrane components, the term generates is<br />

equivalent to the term ma<strong>in</strong>ta<strong>in</strong>s. Where transport between<br />

membranes occurs by aqueous diffusion <strong>of</strong> a certa<strong>in</strong><br />

component as monomers, sort<strong>in</strong>g requires a different<br />

aff<strong>in</strong>ity <strong>of</strong> this component for the two membranes. This<br />

may concern the aff<strong>in</strong>ity <strong>of</strong> the component for other membrane<br />

components, or, theoretically, the aqueous diffusion<br />

could be made unidirectional by transfer prote<strong>in</strong>s. 20<br />

In vesicular transport pathways, bidirectional transport <strong>of</strong><br />

vesicles <strong>of</strong> random composition would result <strong>in</strong> mix<strong>in</strong>g <strong>of</strong><br />

all components and dissipation <strong>of</strong> differences between<br />

the two compartments. In this case sort<strong>in</strong>g requires preferential<br />

<strong>in</strong>clusion <strong>of</strong> a specific component <strong>in</strong> the budd<strong>in</strong>g<br />

vesicle <strong>in</strong> at least one <strong>of</strong> the two compartments. This<br />

means lateral concentration <strong>of</strong> this component and locat<strong>in</strong>g<br />

the site <strong>of</strong> higher concentration to the site <strong>of</strong> vesicle<br />

budd<strong>in</strong>g.<br />

2. Monomeric transport through the cytosol<br />

<strong>The</strong> rate <strong>of</strong> monomeric diffusion <strong>of</strong> a sph<strong>in</strong>golipid<br />

between two membranes strongly depends on its physical<br />

structure. <strong>The</strong> smaller the hydrophobic part, and the<br />

larger or more polar the hydrophilic part, the higher the<br />

rate <strong>of</strong> exchange. Sph<strong>in</strong>goid bases and their phosphory-<br />

opposite membrane leaflet. <strong>The</strong> degree <strong>of</strong> wobble experienced by a lipid<br />

<strong>in</strong> a certa<strong>in</strong> membrane is clearly one parameter that determ<strong>in</strong>es the flip<br />

rate. Other parameters are the size and polarity <strong>of</strong> the polar head group<br />

and the dielectric constant <strong>of</strong> the membrane <strong>in</strong>terior.<br />

19 <strong>Membrane</strong>s may come <strong>in</strong>to close proximity, which stimulates<br />

monomeric exchange though the aqueous phase by enhanc<strong>in</strong>g the desorption<br />

from the membrane (treated <strong>in</strong> detail <strong>in</strong> Ref. 39). <strong>The</strong> cytosolic<br />

monolayers <strong>of</strong> the two organelles may transiently become cont<strong>in</strong>uous<br />

(hemi-fusion), or transient fusion between the apposed membranes may<br />

occur. <strong>The</strong> last possibility can be considered a special case <strong>of</strong> vesicular<br />

traffic.<br />

20 In an <strong>in</strong> vitro study <strong>in</strong> a mixture <strong>of</strong> ER and plasma membrane,<br />

cholesterol preferentially partitioned <strong>in</strong>to the plasma membrane, which<br />

is thought to be due to its high aff<strong>in</strong>ity for the sph<strong>in</strong>golipids abundant <strong>in</strong><br />

plasma membranes (408; for a review see Ref. 203). On the other hand,<br />

transfer prote<strong>in</strong>s might pick up a lipid from one membrane and deliver<br />

it to another membrane after be<strong>in</strong>g modified by, e.g., phosphorylation at<br />

that target membrane. <strong>The</strong> activated prote<strong>in</strong> would then leave the membrane<br />

empty, be <strong>in</strong>activated at the donor membrane, and start a new<br />

round <strong>of</strong> delivery. No experimental support for this mechanism exists.


lated derivatives can therefore be expected to readily<br />

equilibrate between membranes with half times <strong>of</strong> seconds,<br />

whereas ceramide is on the other end <strong>of</strong> the spectrum.<br />

For SM and glycosph<strong>in</strong>golipids, the rate <strong>of</strong> spontaneous<br />

exchange is very low with half times <strong>of</strong> days, even<br />

when they are present as monomers <strong>in</strong> a liquid-disordered<br />

membrane (39, 375). Over the last decade, many studies<br />

have utilized analogs <strong>of</strong> SM or GlcCer carry<strong>in</strong>g a shortened<br />

radiolabeled or fluorescent fatty acyl cha<strong>in</strong>. In contrast<br />

to the natural lipids, these lipids display greatly<br />

enhanced rates <strong>of</strong> <strong>in</strong>termembrane exchange, and <strong>in</strong>terpretations<br />

<strong>of</strong> results obta<strong>in</strong>ed with such lipids must take this<br />

difference <strong>in</strong> properties <strong>in</strong>to account (reviewed <strong>in</strong> Ref.<br />

397). In cells, transfer <strong>of</strong> sph<strong>in</strong>golipids may be stimulated<br />

by prote<strong>in</strong> factors. One prote<strong>in</strong> has been identified that <strong>in</strong><br />

vitro stimulates transfer <strong>of</strong> glycosph<strong>in</strong>golipids between<br />

membranes (198), whereas prote<strong>in</strong>s that can transfer SM<br />

have been identified as well (73, 83). Whether these prote<strong>in</strong>s<br />

actually function as transfer prote<strong>in</strong>s <strong>in</strong> the cell<br />

rema<strong>in</strong>s to be demonstrated, as is the case for the phospholipid<br />

transfer prote<strong>in</strong>s first identified over 30 years ago<br />

(388, 417).<br />

For monomeric transport <strong>of</strong> a sph<strong>in</strong>golipid to another<br />

cellular membrane to occur, the sph<strong>in</strong>golipid must<br />

be present on the cytosolic surface <strong>of</strong> the donor compartment.<br />

As discussed above, this is the case for sph<strong>in</strong>golipids<br />

synthesized on the cytosolic surface like the sph<strong>in</strong>goid<br />

bases and their phosphates. Little is known concern<strong>in</strong>g<br />

their <strong>in</strong>tracellular distribution and transport and concern<strong>in</strong>g<br />

the site <strong>of</strong> action <strong>of</strong> the sph<strong>in</strong>goid long-cha<strong>in</strong> base<br />

phosphates <strong>in</strong> <strong>in</strong>tracellular signal<strong>in</strong>g. Also, ceramide is<br />

synthesized on the cytosolic surface. Evidence has been<br />

presented to suggest that ceramide, newly synthesized <strong>in</strong><br />

the ER and dest<strong>in</strong>ed for GlcCer synthesis <strong>in</strong> the Golgi, can<br />

be transported from the ER to the Golgi by nonvesicular<br />

traffic (62, 97, 98, 169, 249). However, new evidence raises<br />

the alternative <strong>in</strong>terpretation that some ceramide glucosyltransferase<br />

is located <strong>in</strong> the ER, while the pathway<br />

<strong>of</strong> ceramide transport from the ER to the Golgi site <strong>of</strong> SM<br />

synthesis is ATP and cytosol dependent, and therefore<br />

likely mediated by vesicles (K. Hanada, personal communication).<br />

F<strong>in</strong>ally, also GlcCer is synthesized on a cytosolic<br />

surface, that <strong>of</strong> the Golgi. Indeed, GlcCer transport<br />

from the Golgi to the plasma membrane proceeded <strong>in</strong> the<br />

presence <strong>of</strong> brefeld<strong>in</strong> A when vesicular traffic was <strong>in</strong>hibited<br />

(406), suggest<strong>in</strong>g that it may have equilibrated via the<br />

aqueous phase. In view <strong>of</strong> its very low rate <strong>of</strong> spontaneous<br />

exchange, such transport would most likely be mediated<br />

by a transfer prote<strong>in</strong>.<br />

<strong>Sph<strong>in</strong>golipids</strong> could also become available on the<br />

cytosolic surface by a transbilayer translocation event.<br />

This has been suggested to occur for GalCer after synthesis<br />

on the lum<strong>in</strong>al aspect <strong>of</strong> the ER (45). It is unclear<br />

whether GalCer exchanges between membranes through<br />

the aqueous phase. Both GlcCer and GalCer can be re-<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1705<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

moved from the cytosolic surface <strong>of</strong> the Golgi to the Golgi<br />

lumen where they can be utilized for higher glycosph<strong>in</strong>golipid<br />

synthesis. This process is apparently mediated by<br />

a non-energy-consum<strong>in</strong>g translocator (45, 183). In addition,<br />

GlcCer is actively translocated from the cytosolic<br />

surface <strong>of</strong> the plasma membrane to the outer bilayer<br />

leaflet by the multidrug transporter MDR1 P-glycoprote<strong>in</strong><br />

(390; Raggers and van Meer, personal communication).<br />

Translocation across the ER membrane may not be limited<br />

to GalCer, s<strong>in</strong>ce this event is probably mediated by a<br />

nonspecific translocator (46, 133). Although only a small<br />

fraction <strong>of</strong> the sph<strong>in</strong>golipids is <strong>in</strong> the ER, these molecules<br />

may have access to the cytosolic surface and transfer<br />

through the aqueous phase. It is presently unclear<br />

whether the cell conta<strong>in</strong>s translocators to flip them back<br />

to the noncytoplasmic surface (295). F<strong>in</strong>ally, also a small<br />

fraction <strong>of</strong> the SM may reside <strong>in</strong> the cytosolic leaflet (see<br />

above). Under some conditions SM may flow <strong>in</strong>to the<br />

cytosolic leaflet <strong>of</strong> the plasma membrane due to the activation<br />

<strong>of</strong> a scramblase (295, 434). It is unclear what is its<br />

fate: transfer to other organelles via a transfer prote<strong>in</strong> <strong>in</strong><br />

the cytosol (73), removal by a translocator like MDR1<br />

P-glycoprote<strong>in</strong> (390), or hydrolysis by a cytosolic neutral<br />

sph<strong>in</strong>gomyel<strong>in</strong>ase. In cancer cells, a remarkable <strong>in</strong>crease<br />

<strong>in</strong> SM content has been observed <strong>in</strong> microsomes (ER) and<br />

mitochondria (20, 21, 142, 301). Because mitochondria are<br />

thought to receive lipids from the ER by a monomeric<br />

transfer process only, SM may have reached the mitochondria<br />

via translocation across the ER membrane followed<br />

by monomeric transport, maybe via sites <strong>of</strong> ERmitochondrial<br />

contact (see Ref. 66).<br />

3. Vesicular traffic<br />

<strong>The</strong> organelles along the exocytic and endocytic<br />

routes are connected through a series <strong>of</strong> fusion and fission<br />

events. Essentially, membrane vesicles bud from one<br />

compartment and fuse to the next, while at the same time<br />

there is a vesicular pathway <strong>in</strong> the opposite direction. As<br />

a variation on this theme, both at the level <strong>of</strong> the Golgi<br />

and that <strong>of</strong> the endosomes, the complete organelle may<br />

move forward <strong>in</strong> a maturation process, while generat<strong>in</strong>g<br />

vesicles that follow the opposite direction (discussed <strong>in</strong><br />

detail <strong>in</strong> sect. VI). <strong>The</strong> rate <strong>of</strong> the process is sufficiently<br />

high that, if each budd<strong>in</strong>g vesicle would randomly reflect<br />

the composition <strong>of</strong> the membrane <strong>of</strong> orig<strong>in</strong>, complete<br />

mix<strong>in</strong>g <strong>of</strong> all membrane components could be expected<br />

on a time scale <strong>of</strong> hours. 21 Such mix<strong>in</strong>g is not observed,<br />

and the different cellular membranes are capable <strong>of</strong> ma<strong>in</strong>-<br />

21 Calculations on fibroblasts suggested that per hour a surface<br />

area is endocytosed equivalent to the plasma membrane (112). An area<br />

equivalent to five times their surface area would pass through the<br />

endosomes per hour. Endocytic uptake <strong>of</strong> 50% <strong>of</strong> the plasma membrane<br />

surface area per hour was measured for the apical and the basolateral<br />

plasma membrane doma<strong>in</strong> <strong>of</strong> kidney epithelial MDCKII cells (386).


1706 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

ta<strong>in</strong><strong>in</strong>g their unique prote<strong>in</strong> and lipid compositions. For<br />

prote<strong>in</strong>s, the underly<strong>in</strong>g process is clearly not ongo<strong>in</strong>g<br />

local synthesis and hydrolysis, and this is also true for<br />

lipids. <strong>The</strong> enrichment <strong>of</strong> sph<strong>in</strong>golipids <strong>in</strong> the plasma<br />

membrane compared with the ER is not due to synthesis<br />

<strong>of</strong> these lipids <strong>in</strong> the plasma membrane nor to hydrolysis<br />

<strong>of</strong> sph<strong>in</strong>golipids <strong>in</strong> the ER. As a consequence, there must<br />

be specificity <strong>in</strong> vesicular transport; membrane components<br />

must be sorted. As def<strong>in</strong>ed above, this implies that<br />

at each budd<strong>in</strong>g event, specific membrane components<br />

must be <strong>in</strong>cluded or excluded from the budd<strong>in</strong>g vesicle. In<br />

the exocytic pathway, the sph<strong>in</strong>golipids are preferentially<br />

<strong>in</strong>cluded <strong>in</strong> membranes that travel <strong>in</strong> the forward direction<br />

and/or excluded from transport <strong>in</strong> the retrograde direction.<br />

Because SM and all glycosph<strong>in</strong>golipids with the exception<br />

<strong>of</strong> GlcCer are synthesized on the lum<strong>in</strong>al surface<br />

<strong>of</strong> the Golgi, sph<strong>in</strong>golipid doma<strong>in</strong>s would form <strong>in</strong> the<br />

lum<strong>in</strong>al leaflet <strong>of</strong> the Golgi membrane (398). 22 From the<br />

preferential <strong>in</strong>teraction between cholesterol and sph<strong>in</strong>golipids<br />

(see sect. IIIB), it was then suggested that sort<strong>in</strong>g <strong>of</strong><br />

the sph<strong>in</strong>golipids could be the driv<strong>in</strong>g force for sort<strong>in</strong>g <strong>of</strong><br />

cholesterol along the exocytic pathway (395). Obviously,<br />

the presence <strong>of</strong> cholesterol may be a prerequisite for<br />

segregation to occur. To convert the lateral segregation<br />

<strong>in</strong>to a sort<strong>in</strong>g event whereby sph<strong>in</strong>golipids and cholesterol<br />

are sorted to the plasma membrane, m<strong>in</strong>imally one<br />

<strong>of</strong> the two doma<strong>in</strong>s must be selectively <strong>in</strong>cluded <strong>in</strong>to a<br />

budd<strong>in</strong>g vesicle. Vesicle budd<strong>in</strong>g along the exocytic pathway<br />

is mediated by prote<strong>in</strong> coats on the cytosolic surface.<br />

<strong>The</strong>refore, sort<strong>in</strong>g via lipid doma<strong>in</strong>s requires the recruitment<br />

<strong>of</strong> a specific set <strong>of</strong> coat components to one doma<strong>in</strong>.<br />

Because the coat prote<strong>in</strong>s are recruited on the cytosolic<br />

surface while the doma<strong>in</strong>s reside on the opposite, lum<strong>in</strong>al<br />

surface, there must be components that recognize both.<br />

<strong>The</strong>se could be prote<strong>in</strong>s that span the membrane like<br />

SNAREs (discussed <strong>in</strong> sect. VI). Alternatively, or <strong>in</strong> addition,<br />

lipid segregation may also occur <strong>in</strong> the cytosolic<br />

surface, and a liquid-ordered doma<strong>in</strong> on the lum<strong>in</strong>al surface<br />

may colocalize with a similar doma<strong>in</strong> on the cytosolic<br />

surface. Evidence for such a mechanism may be found <strong>in</strong><br />

the fact that at least one type <strong>of</strong> lipid on the cytosolic<br />

surface <strong>of</strong> the plasma membrane, phosphatidylser<strong>in</strong>e<br />

(PS), is highly saturated compared with the same lipid<br />

class <strong>in</strong> the ER <strong>of</strong> rat liver (160) 23 and yeast (325). One<br />

22 In pr<strong>in</strong>ciple, doma<strong>in</strong>s <strong>of</strong> GlcCer may also exist on the cytosolic<br />

surface <strong>of</strong> cellular membranes. In cells that synthesize GalCer, sph<strong>in</strong>golipid<br />

doma<strong>in</strong>s may already form <strong>in</strong> the lum<strong>in</strong>al leaflet <strong>of</strong> the ER, where<br />

GalCer is synthesized (328, 359, 360). As discussed <strong>in</strong> section IIIB, the<br />

possibility exists that ceramide <strong>in</strong> the ER forms a doma<strong>in</strong>, especially <strong>in</strong><br />

yeast with its long-cha<strong>in</strong> hydroxylated ceramides (252). Because shortcha<strong>in</strong><br />

analogs <strong>of</strong> Cer and GalCer readily translocate across the ER<br />

membrane (45), doma<strong>in</strong>s <strong>of</strong> these lipids may be situated <strong>in</strong> either membrane<br />

leaflet.<br />

23 While <strong>of</strong> the PS <strong>in</strong> the plasma membrane, which is exclusively<br />

present <strong>in</strong> the cytosolic leaflet, at least 75% was found to be disaturated,<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

additional <strong>in</strong>dication that the lipid environment on the<br />

cytosolic leaflet opposed to a sph<strong>in</strong>golipid doma<strong>in</strong> <strong>in</strong> the<br />

noncytoplasmic leaflet may be special comes from studies<br />

on sph<strong>in</strong>golipid doma<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> signal<strong>in</strong>g <strong>in</strong> the<br />

plasma membrane (see sect. IVB). By various techniques,<br />

the coat prote<strong>in</strong> caveol<strong>in</strong> and signal<strong>in</strong>g prote<strong>in</strong>s that are<br />

anchored to the cytosolic surface via saturated fatty acids<br />

were found to colocalize with the doma<strong>in</strong>s <strong>in</strong> the opposite<br />

noncytoplasmic leaflet (202, 237).<br />

VI. SPHINGOLIPIDS AND THE CREATION<br />

OF SELECTIVITY IN INTRACELLULAR<br />

MEMBRANE TRANSPORT<br />

A. <strong>The</strong> Golgi: a Central Sort<strong>in</strong>g Device on the<br />

Exocytic and Endocytic Pathways<br />

Remarkably, sph<strong>in</strong>golipid synthesis <strong>in</strong> eukaryotic<br />

cells primarily takes place <strong>in</strong> the Golgi, spatially separated<br />

from glycerolipid and sterol production <strong>in</strong> the ER (see<br />

sect. VA). To better understand the biological significance<br />

<strong>of</strong> this arrangement, the first two parts <strong>of</strong> this section<br />

serve to describe the elementary features <strong>of</strong> the Golgi and<br />

to discuss how the organelle is organized to perform its<br />

vital function <strong>in</strong> the cell.<br />

<strong>The</strong> Golgi occupies a key position <strong>in</strong> the secretory<br />

membrane system <strong>of</strong> cells. Arguably its most fundamental<br />

task is to act as a filter between the glycerolipid-rich ER<br />

and sterol/sph<strong>in</strong>golipid-rich plasma membrane. A filter<br />

function is reflected by the organelle’s unique morphological<br />

appearance: a stack <strong>of</strong> flattened cisternae flanked by<br />

two tubular networks that serve as the polarized entry<br />

and exit faces (Fig. 4). <strong>The</strong> number <strong>of</strong> cisternae with<strong>in</strong> the<br />

stack can vary from 3 to 20, depend<strong>in</strong>g on cell type<br />

(248). <strong>The</strong> multicisternal nature <strong>of</strong> the Golgi is thought to<br />

allow repeated opportunities for sort<strong>in</strong>g out ER-based<br />

and Golgi-resident components from constituents to be<br />

delivered to the plasma membrane or elsewhere <strong>in</strong> the cell.<br />

<strong>The</strong> cis-Golgi network, also called ER-Golgi <strong>in</strong>termediate<br />

compartment, forms the site where ER-derived<br />

cargo is received <strong>in</strong> a process that <strong>in</strong>volves the formation<br />

and fusion <strong>of</strong> vesicular tubular clusters. It also provides a<br />

major site for the budd<strong>in</strong>g <strong>of</strong> vesicles mediat<strong>in</strong>g retrograde<br />

transport <strong>of</strong> selected prote<strong>in</strong>s and lipids from the<br />

Golgi back to the ER. This retrograde flow serves to<br />

ma<strong>in</strong>ta<strong>in</strong> the surface area <strong>of</strong> the ER <strong>in</strong> the face <strong>of</strong> extensive<br />

membrane outflow <strong>in</strong>to the secretory pathway (415),<br />

to return escaped ER resident prote<strong>in</strong>s (284), and to<br />

recycle membrane mach<strong>in</strong>ery <strong>in</strong>volved <strong>in</strong> ER to Golgi<br />

<strong>in</strong> the ER at least 50% <strong>of</strong> the PS conta<strong>in</strong>ed two unsaturated fatty acids.<br />

For comparison, the major species <strong>of</strong> cellular PC conta<strong>in</strong>s a saturated<br />

C16 or C18 at the sn-1 position and an unsaturated fatty acid at the sn-2<br />

position <strong>of</strong> the glycerol.


transport (196, 310). As cargo moves through the stack, it<br />

is modified by Golgi-associated process<strong>in</strong>g enzymes.<br />

<strong>The</strong>se enzymes, which <strong>in</strong>clude numerous glycosidases<br />

and glycosyltransferases, are generally not distributed<br />

evenly between the cisternae, but <strong>of</strong>ten found <strong>in</strong> the order<br />

<strong>in</strong> which they act on their substrates (see sect. VA). 24 An<br />

advantage <strong>of</strong> this compartmental organization is that<br />

cargo can be exposed to an ordered array <strong>of</strong> process<strong>in</strong>g<br />

steps, allow<strong>in</strong>g the cell to generate highly complex glycoprote<strong>in</strong>s<br />

and glycosph<strong>in</strong>golipids. Positioned at the transside<br />

<strong>of</strong> the Golgi stack is the TGN. Here, processed cargo<br />

24 It should be noted that this <strong>in</strong>tra-Golgi separation is not precise<br />

because the enzymes are generally spread over several cisternae, display<strong>in</strong>g<br />

considerable overlap <strong>in</strong> their distributions (reviewed <strong>in</strong> Ref.<br />

109). <strong>The</strong>refore, different Golgi cisternae have unique mixtures <strong>of</strong> enzymes<br />

rather than different sets <strong>of</strong> enzymes. Moreover, the distribution<br />

<strong>of</strong> a given enzyme can vary between different cell types. <strong>The</strong> basis for<br />

this plasticity is unknown but may reflect an underly<strong>in</strong>g dynamic behavior<br />

<strong>of</strong> Golgi membranes, as discussed further below.<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1707<br />

FIG. 4. Model depict<strong>in</strong>g how sph<strong>in</strong>golipid synthesis may contribute to the sort<strong>in</strong>g power <strong>of</strong> the Golgi. As Golgi<br />

cisternae mature (large gray arrow), sph<strong>in</strong>golipids are synthesized and gradually accumulate by be<strong>in</strong>g specifically<br />

excluded from the tightly curved membrane <strong>in</strong> percolat<strong>in</strong>g COPI vesicles or tubular connections. By attract<strong>in</strong>g endoplasmic<br />

reticulum (ER)-synthesized cholesterol, the flat sph<strong>in</strong>golipid-rich regions <strong>in</strong> the cisternal bilayer grow thicker<br />

(see footnote 4). Due to their short transmembrane segments, Golgi enzymes and escaped ER-resident prote<strong>in</strong>s are<br />

excluded from the thick, sph<strong>in</strong>golipid/sterol-rich membrane regions where transport <strong>in</strong>termediates depart for the cell<br />

surface. Instead, they will partition preferentially <strong>in</strong>to earlier cisternae. Upon thicken<strong>in</strong>g <strong>of</strong> the bilayer, basolateral (or<br />

lysosomal) membrane prote<strong>in</strong>s adopt a conformation recognized by adaptor prote<strong>in</strong> complexes (AP1/AP3; see footnote<br />

30). AP-dependent removal <strong>of</strong> basolateral (lysosomal) material represents the term<strong>in</strong>al step <strong>in</strong> the cisternal maturation<br />

process, leav<strong>in</strong>g beh<strong>in</strong>d an apical membrane carrier whose content is determ<strong>in</strong>ed by a “sort<strong>in</strong>g by retention” pr<strong>in</strong>ciple<br />

based on coaggregative properties <strong>of</strong> apical sph<strong>in</strong>golipids and prote<strong>in</strong>s. Note that although the model implies a gradual<br />

<strong>in</strong>crease <strong>in</strong> membrane thickness across the Golgi stack, the shape <strong>of</strong> this thickness gradient is not known (see footnote<br />

28). See text for further details. VTC, vesicular-tubular clusters; PGC, post-Golgi conta<strong>in</strong>ers; PM, plasma membrane.<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

is sorted, packaged <strong>in</strong>to dist<strong>in</strong>ct vesicles (or larger membrane<br />

carriers), and shipped to various dest<strong>in</strong>ations.<br />

<strong>The</strong>se post-Golgi dest<strong>in</strong>ations <strong>in</strong>clude the cell surface<br />

(either the apical or basolateral surface <strong>of</strong> epithelial<br />

cells), secretory storage granules, and the various compartments<br />

<strong>of</strong> the endosomal/lysosomal system. <strong>The</strong> TGN<br />

not only serves as a major branch<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> the secretory<br />

pathway but also forms the major site where the<br />

secretory and endocytic pathways become <strong>in</strong>terconnected.<br />

This <strong>in</strong>terconnection enables cells to balance membrane<br />

flow between the pathways and to ma<strong>in</strong>ta<strong>in</strong> the proper<br />

composition <strong>of</strong> their surfaces and <strong>in</strong>tracellular organelles.<br />

B. A Matur<strong>in</strong>g View on Golgi Organization<br />

A fundamental problem currently be<strong>in</strong>g addressed <strong>in</strong><br />

cell biology is how the Golgi is organized to perform its<br />

vital tasks and how its functional <strong>in</strong>tegrity is ma<strong>in</strong>ta<strong>in</strong>ed


1708 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

despite the constant flow <strong>of</strong> membrane that enters and<br />

leaves the organelle on both sides. Until recently, it was<br />

widely held that the structural elements <strong>of</strong> the Golgi, the<br />

cisternae, have a stable existence and that anterograde<br />

movement <strong>of</strong> cargo is achieved exclusively by transport<br />

vesicles that p<strong>in</strong>ch <strong>of</strong>f from one cisternae and fuse with<br />

the next, while Golgi resident enzymes stay put <strong>in</strong> the<br />

appropriate cisternae. This idea was largely based on<br />

results obta<strong>in</strong>ed with a cell-free system <strong>in</strong> which isolated<br />

Golgi membranes were used to measure the sequential<br />

process<strong>in</strong>g <strong>of</strong> cargo by Golgi-associated enzymes (309,<br />

312). <strong>The</strong>se studies <strong>of</strong>fered key <strong>in</strong>sights <strong>in</strong>to the <strong>in</strong>tra-<br />

Golgi transport mach<strong>in</strong>ery. <strong>The</strong>y allowed the identification<br />

<strong>of</strong> a cytoplasmic coat prote<strong>in</strong> complex, termed COPI,<br />

whose regulated assembly on Golgi membranes was<br />

found to promote the formation <strong>of</strong> fusion-competent vesicles<br />

conta<strong>in</strong><strong>in</strong>g secretory cargo (270, 275). 25 In the light<br />

<strong>of</strong> these data, it was assumed that COPI-coated vesicles<br />

mediate transport <strong>of</strong> secretory cargo through sequential<br />

Golgi compartments <strong>in</strong> a cis-to-trans (or anterograde)<br />

direction.<br />

However, this view was challenged by the discovery<br />

that COPI plays a crucial role <strong>in</strong> retrograde vesicular<br />

transport. This notion emerged when COPI subunits were<br />

found to b<strong>in</strong>d the dilys<strong>in</strong>e retrieval signal on the cytoplasmic<br />

tails <strong>of</strong> ER membrane prote<strong>in</strong>s (64). Moreover, mutations<br />

<strong>in</strong> COPI blocked retrieval <strong>of</strong> these prote<strong>in</strong>s from<br />

the Golgi complex (194). Consistent with a function <strong>of</strong><br />

COPI <strong>in</strong> retrograde transport, quantitative immunoelectron<br />

microscopy revealed that COPI-coated tips at the<br />

CGN are enriched for recycl<strong>in</strong>g membrane prote<strong>in</strong>s<br />

whereas secretory cargo prevailed at COPI-negative regions<br />

(228). <strong>The</strong> f<strong>in</strong>d<strong>in</strong>g that COPI vesicles conta<strong>in</strong> Golgi<br />

enzymes and serve as their transport <strong>in</strong>termediates <strong>in</strong><br />

vitro (185, 197, 206) <strong>of</strong>fered an alternative explanation for<br />

the results previously obta<strong>in</strong>ed with the Golgi cell-free<br />

transport assay; <strong>in</strong>stead <strong>of</strong> mov<strong>in</strong>g secretory cargo forward,<br />

COPI may serve to retrieve transport mach<strong>in</strong>ery<br />

and Golgi enzymes to cisternae conta<strong>in</strong><strong>in</strong>g cargo to be<br />

modified. <strong>The</strong>se novel data predicted a prom<strong>in</strong>ent role for<br />

COPI-mediated retrograde traffic <strong>in</strong> Golgi function and<br />

ma<strong>in</strong>tenance. Support for this prediction came when<br />

25 Coat prote<strong>in</strong>s are believed to have a dual function <strong>in</strong> membrane<br />

traffick<strong>in</strong>g, serv<strong>in</strong>g both to shape a transport vesicle and to select, by<br />

direct or <strong>in</strong>direct <strong>in</strong>teractions, the desired set <strong>of</strong> cargo molecules.<br />

Among the cargo molecules recruited by these vesicle coats are components<br />

that specify the dock<strong>in</strong>g and fusion <strong>of</strong> transport vesicles with<br />

their appropriate target organelles. <strong>The</strong>se <strong>in</strong>clude members <strong>of</strong> the<br />

SNARE family <strong>of</strong> membrane prote<strong>in</strong>s (311). Coat recruitment, cargo<br />

selection, and the subsequent fission and fusion <strong>of</strong> transport vesicles is<br />

coord<strong>in</strong>ated by dist<strong>in</strong>ct families <strong>of</strong> GTPases. Hence, coat prote<strong>in</strong>s function<br />

together with target<strong>in</strong>g and fusion components to form so-called<br />

“vesicle sort<strong>in</strong>g mach<strong>in</strong>es” by which specific types <strong>of</strong> cargo can be<br />

moved from one dest<strong>in</strong>ation to the next. Cells have a variety <strong>of</strong> coat<br />

prote<strong>in</strong>s, allow<strong>in</strong>g different species <strong>of</strong> vesicles to depart from various<br />

subcellular locations.<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

movement <strong>of</strong> green fluorescent prote<strong>in</strong> (GFP)-tagged<br />

Golgi enzymes was followed with fluorescence video microscopy.<br />

In contrast to previous assumptions (265), it<br />

was found that Golgi enzymes are highly mobile (61),<br />

undergo substantial recycl<strong>in</strong>g with<strong>in</strong> Golgi stacks (418),<br />

and redistribute <strong>in</strong>to the ER when export from this compartment<br />

is blocked (60, 368, 428).<br />

<strong>The</strong> existence <strong>of</strong> recycl<strong>in</strong>g pathways both with<strong>in</strong> and<br />

from the Golgi stack together with the unsolved problem<br />

<strong>of</strong> how COPI vesicles, the only type <strong>of</strong> vesicles known to<br />

mediate <strong>in</strong>tra-Golgi transport, would contribute to vectorial<br />

transport <strong>of</strong> secretory cargo led to a renewed <strong>in</strong>terest<br />

<strong>in</strong>to an old idea, namely, that the Golgi is a collection <strong>of</strong><br />

matur<strong>in</strong>g compartments (111). 26 This “cisternal progression”<br />

or “maturation” model arose from previous observations<br />

that large cargo complexes produced by certa<strong>in</strong><br />

cell types (e.g., algal scales, procollagen) move through<br />

the Golgi stack without enter<strong>in</strong>g transport vesicles or<br />

leav<strong>in</strong>g the cisternae (25, 238). Accord<strong>in</strong>g to the model,<br />

cisternae are cont<strong>in</strong>uously formed de novo by fusion <strong>of</strong><br />

ER-derived vesicles (314), pass through the stack as they<br />

mature, and eventually dis<strong>in</strong>tegrate at the level <strong>of</strong> the<br />

TGN. While secretory cargo stays put <strong>in</strong> cisternae, Golgi<br />

enzymes are delivered at the appropriate time and <strong>in</strong> the<br />

appropriate order by recycl<strong>in</strong>g vesicles so that each cisterna<br />

matures <strong>in</strong>to the next (reviewed <strong>in</strong> Refs. 4, 110, 285).<br />

On the basis <strong>of</strong> the currently available data, evidence<br />

<strong>in</strong> support <strong>of</strong> cisternal maturation cannot preclude the<br />

possibility <strong>of</strong> coexist<strong>in</strong>g anterograde vesicular transport,<br />

and vice versa. In fact, there is reason to believe that both<br />

mechanisms operate simultaneously (286). First, procollagen<br />

aggregates appear to traverse the Golgi stack at a<br />

much slower pace (hours) than other cargo prote<strong>in</strong>s such<br />

as VSV-G (10–20 m<strong>in</strong>; Refs. 24, 25). This f<strong>in</strong>d<strong>in</strong>g suggests<br />

that cisternal maturation is too slow to account for all<br />

anterograde cargo transport. Second, Golgi prote<strong>in</strong>s <strong>in</strong>volved<br />

<strong>in</strong> vesicle target<strong>in</strong>g, like SNAREs, are typically<br />

distributed over multiple cisternae across the stack (130,<br />

272). Because there are no known components <strong>of</strong> the<br />

target<strong>in</strong>g mach<strong>in</strong>ery that can specify a s<strong>in</strong>gle cisterna, it is<br />

hard to envision how an exclusive unidirectional movement<br />

<strong>of</strong> COPI vesicles, whether forward or backward, can<br />

be achieved. On the basis <strong>of</strong> these notions, it has been<br />

postulated that COPI vesicles may “percolate” up and<br />

down the stack <strong>in</strong> a bidirectional fashion, allow<strong>in</strong>g a rapid<br />

26 A role for COPI <strong>in</strong> bidirectional vesicular transport has been<br />

postulated based on the observation that pancreatic -cells conta<strong>in</strong> two<br />

dist<strong>in</strong>ct populations <strong>of</strong> Golgi-associated COPI vesicles: one conta<strong>in</strong><strong>in</strong>g<br />

recycl<strong>in</strong>g components and the other one secretory cargo (274). However,<br />

because the concentration <strong>of</strong> secretory cargo found <strong>in</strong> the second<br />

vesicle population was comparable to that <strong>in</strong> the cisternae, it is unclear<br />

how these vesicles would contribute to vectorial transport through the<br />

stack. Moreover, the model leaves unresolved by what mechanism prote<strong>in</strong>s<br />

bear<strong>in</strong>g dilys<strong>in</strong>e retrieval signals can be excluded from anterograde<br />

COPI vesicles while be<strong>in</strong>g <strong>in</strong>cluded <strong>in</strong> retrograde ones.


equilibration <strong>of</strong> plasma membrane and soluble secretory<br />

cargo between adjacent cisternae (272, 286). Percolat<strong>in</strong>g<br />

vesicles (or transient tubular connections; Ref. 410)<br />

would give rise to a “fast track” by which cargo can flow<br />

across the entire Golgi stack. Larger cargo structures and<br />

other molecules that cannot enter COPI vesicles (or tubules)<br />

would then transit the stack at the slower pace <strong>of</strong><br />

cisternal maturation.<br />

In view <strong>of</strong> these coexist<strong>in</strong>g modes <strong>of</strong> transport, how<br />

does the Golgi ensure efficient vectorial movement <strong>of</strong> cell<br />

surface-dest<strong>in</strong>ed prote<strong>in</strong>s and lipids, while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g at<br />

the same time an asymmetric arrangement <strong>of</strong> its process<strong>in</strong>g<br />

enzymes? Without a mechanism that regulates the<br />

partition<strong>in</strong>g <strong>of</strong> cargo molecules and Golgi residents <strong>in</strong>to<br />

COPI vesicles, a rapid <strong>in</strong>terchange would result <strong>in</strong> complete<br />

uniformity and underm<strong>in</strong>e directionality <strong>of</strong> transport.<br />

In the next section, we discuss how the assembly <strong>of</strong><br />

sph<strong>in</strong>golipids <strong>in</strong> Golgi cisternae and their impact on the<br />

lateral organization <strong>of</strong> other membrane molecules may<br />

provide a physical basis exploited by the Golgi to segregate<br />

forward-mov<strong>in</strong>g cargo from recycl<strong>in</strong>g components,<br />

and once this is accomplished, to organize specialized<br />

TGN export sites used for polarized secretion.<br />

C. <strong>Sph<strong>in</strong>golipids</strong>: Integral Parts <strong>of</strong> the Golgi-Based<br />

Sort<strong>in</strong>g Mach<strong>in</strong>ery?<br />

1. Segregat<strong>in</strong>g forward-mov<strong>in</strong>g cargo from<br />

recycl<strong>in</strong>g components<br />

After assembly <strong>in</strong> the Golgi, sph<strong>in</strong>golipids accumulate<br />

<strong>in</strong> the plasma membrane (see sect. VB). <strong>The</strong>ir long<br />

and saturated fatty acyl cha<strong>in</strong>s, capacity for hydrogen<br />

bond<strong>in</strong>g, and association with sterols is thought to<br />

promote the compactness and thickness, and hence the<br />

impermeability <strong>of</strong> the cell’s outer bilayer (see sect. IIIB).<br />

Compared with the plasma membrane, the ER conta<strong>in</strong>s<br />

much lower concentrations <strong>of</strong> sph<strong>in</strong>golipids (396), despite<br />

extensive bidirectional membrane traffick<strong>in</strong>g at<br />

the ER-Golgi <strong>in</strong>terface (415). Hence, a mechanism must<br />

exist by which the Golgi prevents backflow <strong>of</strong> sph<strong>in</strong>golipids<br />

to the ER and promotes their concentration toward<br />

the trans-site where membrane carriers depart<br />

for the plasma membrane. This could <strong>in</strong> pr<strong>in</strong>ciple be<br />

achieved if sph<strong>in</strong>golipids were prevented from leav<strong>in</strong>g<br />

the cisternae <strong>in</strong> which they are made. <strong>The</strong> result would<br />

be a gradual rise <strong>in</strong> their concentration as cisternae<br />

mature. Such a scenario is <strong>in</strong> l<strong>in</strong>e with the recent<br />

f<strong>in</strong>d<strong>in</strong>g that COPI vesicles conta<strong>in</strong> significantly less<br />

sph<strong>in</strong>golipids and cholesterol than their parental Golgi<br />

membranes (41). Indeed, a segregation <strong>of</strong> sph<strong>in</strong>golipids<br />

and cholesterol from COPI vesicles could expla<strong>in</strong> why<br />

the <strong>in</strong>terleaflet clear space <strong>of</strong> these vesicles appears<br />

th<strong>in</strong>ner than that <strong>of</strong> the cisternal membranes from<br />

which they bud (273).<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1709<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

How are sph<strong>in</strong>golipids and sterols segregated from<br />

COPI vesicles? Two dist<strong>in</strong>ct mechanisms can be envisaged:<br />

1) segregation may occur because the coat mach<strong>in</strong>ery<br />

<strong>in</strong>fluences the lipid composition at the bud site.<br />

Accord<strong>in</strong>g to this scheme, sort<strong>in</strong>g could result from<br />

preferential <strong>in</strong>teractions <strong>of</strong> certa<strong>in</strong> lipids with the membrane-proximal<br />

surfaces <strong>of</strong> the coat prote<strong>in</strong>s and/or the<br />

transmembrane segments <strong>of</strong> selected prote<strong>in</strong>s (e.g.,<br />

COPI coat receptors; Ref. 31). Alternatively, the COPI<br />

coat mach<strong>in</strong>ery might <strong>in</strong>fluence the lipid composition at<br />

the bud site by impos<strong>in</strong>g a high curvature onto the<br />

vesicle membrane. This would result <strong>in</strong> a preferential<br />

exclusion <strong>of</strong> those lipid species that contribute to the<br />

rigidity <strong>of</strong> flat bilayers (e.g., sph<strong>in</strong>golipids, sterols, and<br />

saturated glycerolipids). In this respect, it is <strong>of</strong> <strong>in</strong>terest<br />

to note that COPI assembly on liposomes is negatively<br />

<strong>in</strong>fluenced by acyl cha<strong>in</strong> saturation. 27 2) Segregation<br />

may occur because the coat mach<strong>in</strong>ery is specifically<br />

recruited to lipid doma<strong>in</strong>s <strong>in</strong> the Golgi bilayer.<br />

<strong>Sph<strong>in</strong>golipids</strong> have a strong <strong>in</strong>tr<strong>in</strong>sic tendency to segregate<br />

from unsaturated glycerolipids and display a<br />

high aff<strong>in</strong>ity for cholesterol (see sect. IV). Hence, sph<strong>in</strong>golipids<br />

synthesized <strong>in</strong> Golgi cisternae may trigger a<br />

phase separation, thus creat<strong>in</strong>g doma<strong>in</strong>s enriched <strong>in</strong><br />

unsaturated glycerolipids that function as donor sites<br />

for COPI vesicle biogenesis versus sph<strong>in</strong>golipid- and<br />

sterol-enriched doma<strong>in</strong>s that do not. <strong>The</strong>re is evidence<br />

that such lipid subdoma<strong>in</strong>s exist <strong>in</strong> early Golgi cisternae<br />

(108).<br />

Of the two lipid-sort<strong>in</strong>g mechanisms described<br />

above, the latter has the particular appeal that it is <strong>in</strong>herently<br />

self-organiz<strong>in</strong>g, thus escap<strong>in</strong>g the requirement for<br />

prote<strong>in</strong>s that to trigger a lateral segregation <strong>of</strong> lipids need<br />

themselves to be reta<strong>in</strong>ed <strong>in</strong> place. It is tempt<strong>in</strong>g to speculate<br />

that ongo<strong>in</strong>g sph<strong>in</strong>golipid synthesis <strong>in</strong> the Golgi acts<br />

as a s<strong>in</strong>k for ER-synthesized cholesterol and that a phase<br />

separation is nucleated once these lipids have reached a<br />

critical concentration <strong>in</strong> the cisternal bilayer (see sect. IV).<br />

Regardless <strong>of</strong> the actual mechanism <strong>of</strong> lipid segregation,<br />

the exclusion <strong>of</strong> sph<strong>in</strong>golipids and sterols from COPI<br />

vesicles would cause their progressive accumulation <strong>in</strong><br />

the matur<strong>in</strong>g cisternae. As a result, anterograde transport<br />

<strong>of</strong> sph<strong>in</strong>golipids and cholesterol would be coupled to a<br />

gradual depletion <strong>of</strong> unsaturated glycerolipids along the<br />

secretory pathway. A sph<strong>in</strong>golipid/sterol concentration<br />

gradient would form across the Golgi stack (26, 56, 57,<br />

271), caus<strong>in</strong>g an <strong>in</strong>crease <strong>in</strong> bilayer thickness toward the<br />

27 In a chemically def<strong>in</strong>ed <strong>in</strong> vitro assay, the assembly <strong>of</strong> COPI<br />

coats on synthetic liposomes was found to be strongly affected by acyl<br />

cha<strong>in</strong> saturation; diC18:1 PC/diC18:1 PE vesicles, which conta<strong>in</strong> unsaturated<br />

fatty acyl cha<strong>in</strong>s, allowed coat recruitment, whereas C16:0-C18:1<br />

PC/C16:0-C18:1 PE vesicles, carry<strong>in</strong>g one saturated and one unsaturated<br />

fatty acid, did not (355).


1710 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

TGN (114; Fig. 4). 28 Preferential <strong>in</strong>teractions between lipids<br />

and transmembrane prote<strong>in</strong>s with the best match<strong>in</strong>g hydrophobic<br />

length has been recognized as a potential mechanism<br />

for prote<strong>in</strong> sort<strong>in</strong>g <strong>in</strong> the Golgi (32, 255). This idea emerged<br />

with the observation that the transmembrane doma<strong>in</strong>s<br />

(TMDs) <strong>of</strong> Golgi-resident prote<strong>in</strong>s are on average five residues<br />

shorter than those <strong>of</strong> plasma membrane prote<strong>in</strong>s<br />

(32). 29 This phenomenon is well conserved among eukaryotic<br />

cells, from mammals (32) to yeast (195). It has been<br />

postulated that due to their shorter TMDs, Golgi-resident<br />

prote<strong>in</strong>s would be excluded from the thicker sph<strong>in</strong>golipid/<br />

sterol-enriched membrane regions dest<strong>in</strong>ed for the cell surface<br />

and hence be reta<strong>in</strong>ed <strong>in</strong> the Golgi (32, 255). 30 In support<br />

<strong>of</strong> this idea, lengthen<strong>in</strong>g the TMDs <strong>of</strong> several Golgi<br />

enzymes results <strong>in</strong> their movement to the plasma membrane<br />

(229, 253, 254), while shorten<strong>in</strong>g the TMD <strong>of</strong> a plasma membrane<br />

prote<strong>in</strong> causes its accumulation <strong>in</strong> the Golgi (60). In<br />

addition, the ER residency <strong>of</strong> several membrane prote<strong>in</strong>s<br />

can be disrupted by elongat<strong>in</strong>g their TMDs (282, 422). TMD<br />

length has also been recognized as a critical parameter <strong>in</strong> the<br />

sort<strong>in</strong>g <strong>of</strong> SNAREs (298), membrane prote<strong>in</strong>s whose specific<br />

<strong>in</strong>teractions contribute significantly to the specificity <strong>of</strong> vesicle<br />

dock<strong>in</strong>g and fusion (236, 311). Particularly <strong>in</strong>truig<strong>in</strong>g <strong>in</strong><br />

this respect is the f<strong>in</strong>d<strong>in</strong>g that the requirement <strong>of</strong> exocytic<br />

v-SNAREs (vesicular SNAREs) for secretion <strong>in</strong> yeast can be<br />

28 <strong>The</strong> shape <strong>of</strong> the thickness gradient is not known. In one extreme<br />

model, the phase separation between sph<strong>in</strong>golipids/cholesterol<br />

and unsaturated glycerophospholipids gives rise to a thick doma<strong>in</strong> that<br />

is transported to the plasma membrane and a th<strong>in</strong> doma<strong>in</strong> that is<br />

transported back to the ER. However, it is clear from the literature that<br />

glycerolipid membranes become thicker upon addition <strong>of</strong> cholesterol<br />

(see footnote 4). Also, it is clear that sph<strong>in</strong>golipid-rich membranes <strong>of</strong><br />

different thickness can leave the TGN (like the apical and basolateral<br />

transport vesicles <strong>in</strong> epithelial cells). We therefore hypothesize that the<br />

membrane thickness <strong>in</strong>creases gradually across the Golgi stack. Reasons<br />

for this may be the presence <strong>in</strong> cis-Golgi cisternae <strong>of</strong> sph<strong>in</strong>golipids<br />

at a concentration that is <strong>in</strong>sufficient to cause phase separation, a<br />

gradient <strong>in</strong> sph<strong>in</strong>golipid synthesis, and a cholesterol gradient. However,<br />

a proper understand<strong>in</strong>g <strong>of</strong> this phenomenon will require a quantitative<br />

analysis <strong>of</strong> these parameters.<br />

29 Previous studies had revealed that the steady-state localization<br />

<strong>of</strong> <strong>in</strong>tra-Golgi process<strong>in</strong>g enzymes is largely determ<strong>in</strong>ed not by coatb<strong>in</strong>d<strong>in</strong>g<br />

motifs but by their TMDs. In all cases exam<strong>in</strong>ed s<strong>of</strong>ar, the TMDs<br />

<strong>of</strong> glycosyltransferases are sufficient to direct localization <strong>of</strong> hybrid<br />

prote<strong>in</strong>s to the Golgi (reviewed <strong>in</strong> Ref. 109). <strong>The</strong>se TMDs lack obvious<br />

sequence motifs that could serve as sort<strong>in</strong>g determ<strong>in</strong>ants, and attempts<br />

to identify such motifs by mutagenesis have failed.<br />

30 It is important to note that the extent to which lipids <strong>in</strong> a bilayer<br />

can distort to match the length <strong>of</strong> a transmembrane -helix <strong>in</strong> a prote<strong>in</strong><br />

is limited. Although a short transmembrane -helix can <strong>in</strong>corporate <strong>in</strong>to<br />

a th<strong>in</strong> bilayer, it cannot <strong>in</strong>corporate <strong>in</strong>to a bilayer that is too thick, and<br />

<strong>in</strong>stead will form aggregates (164, 190). A long transmembrane -helix,<br />

on the other hand, can <strong>in</strong>corporate <strong>in</strong>to either a thick or a th<strong>in</strong> bilayer,<br />

<strong>in</strong> the latter case by tilt<strong>in</strong>g. Tilt<strong>in</strong>g <strong>of</strong> a transmembrane prote<strong>in</strong> may alter<br />

its conformation and function. <strong>The</strong> effect <strong>of</strong> bilayer thickness on prote<strong>in</strong><br />

function will probably be stronger <strong>in</strong> the case <strong>of</strong> prote<strong>in</strong>s conta<strong>in</strong><strong>in</strong>g a<br />

bundle <strong>of</strong> multiple transmembrane helices (e.g., an ion channel) as a<br />

slid<strong>in</strong>g <strong>of</strong> helices with<strong>in</strong> a bundle may be neccessary to achieve the most<br />

optimal hydrophobic match. Interest<strong>in</strong>gly, a coupl<strong>in</strong>g between hydrophobic<br />

membrane thickness and prote<strong>in</strong> activity has been observed for<br />

several transporter prote<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g ion pumps (63, 362).<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

bypassed by genetic mutations <strong>in</strong> enzymes responsible for<br />

the elongation <strong>of</strong> the long-cha<strong>in</strong> fatty acids found <strong>in</strong> ceramide<br />

and sph<strong>in</strong>golipids (67). 31<br />

Apart from be<strong>in</strong>g short, some Golgi TMDs display an<br />

unusual high content <strong>of</strong> the bulky residue phenylalan<strong>in</strong>e, a<br />

feature that may well promote a segregation from the ordered<br />

sph<strong>in</strong>golipid/sterol-rich membrane regions (32). Oligomerization<br />

<strong>in</strong>to multi-enzyme complexes (265) provides<br />

another factor that could <strong>in</strong>fluence phase behavior <strong>of</strong> Golgi<br />

enzymes. Collectively, the variation <strong>in</strong> such properties would<br />

<strong>of</strong>fer considerable scope for establish<strong>in</strong>g different steadystate<br />

distributions <strong>of</strong> enzymes with<strong>in</strong> the Golgi stack. Bidirectional<br />

transport mediated by percolat<strong>in</strong>g COPI vesicles or<br />

transient tubular connections would allow an enzyme to<br />

transiently explore the entire stack until it f<strong>in</strong>ds a cisterna<br />

whose lipid composition suits its TMD (283). Ongo<strong>in</strong>g sph<strong>in</strong>golipid<br />

synthesis and depletion <strong>of</strong> unsaturated glycerolipids<br />

will gradually remodel the lipid composition <strong>of</strong> the cisternal<br />

bilayer to that <strong>of</strong> the plasma membrane, and eventually drive<br />

all Golgi-resident prote<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g the sph<strong>in</strong>golipid-synthesiz<strong>in</strong>g<br />

enzymes themselves, <strong>in</strong>to recycl<strong>in</strong>g COPI vesicles.<br />

Likewise, plasma membrane prote<strong>in</strong>s whose rapid<br />

diffusion through the stack is mediated by percolat<strong>in</strong>g<br />

vesicles or tubules could achieve the desired directionality<br />

<strong>in</strong> transport if their membrane anchors would favor<br />

cisternal bilayers that have become thicker and more<br />

organized due to a progressive accumulation <strong>of</strong> sph<strong>in</strong>golipids<br />

and sterols. Indeed, GPI-anchored prote<strong>in</strong>s have a<br />

high aff<strong>in</strong>ity for glycosph<strong>in</strong>golipid/cholesterol-rich doma<strong>in</strong>s<br />

(see sect. IVB), a feature thought to be required for<br />

their efficient transport from the Golgi to the cell surface<br />

(233, 345). <strong>The</strong> same has been reported for <strong>in</strong>fluenza virus<br />

hemagglut<strong>in</strong><strong>in</strong> (see sect. IVB; Ref. 161).<br />

<strong>The</strong> notions that sort<strong>in</strong>g <strong>in</strong> the Golgi depends on transitions<br />

<strong>in</strong> bilayer thickness and that these transitions are the<br />

result <strong>of</strong> sph<strong>in</strong>golipid-<strong>in</strong>duced phase separations provide a<br />

compell<strong>in</strong>g explanation for why structural features render<br />

sph<strong>in</strong>golipids essential for the viabilty <strong>of</strong> cells; they form an<br />

<strong>in</strong>tegral part <strong>of</strong> the mechanisms by which cells generate the<br />

compositional and functional differences between their<br />

plasma membrane and <strong>in</strong>ternal organelles.<br />

2. <strong>Organiz<strong>in</strong>g</strong> specialized export sites<br />

for polarized secretion<br />

<strong>The</strong> TGN is a major branch<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> secretory<br />

traffic where apical and basolateral cell surface compo-<br />

31 <strong>Membrane</strong> fusion reconstitution experiments have revealed that<br />

v-SNAREs active <strong>in</strong> the lysosomal system <strong>of</strong> yeast can replace the<br />

exocytic v-SNAREs <strong>in</strong> a reaction that mimics fusion <strong>of</strong> secretory vesicles<br />

with the plasma membrane (236). With respect to the observed redundancy<br />

<strong>of</strong> exocytic v-SNAREs <strong>in</strong> a fatty acid elongation mutant (67), it is<br />

tempt<strong>in</strong>g to speculate that a shorten<strong>in</strong>g <strong>of</strong> sph<strong>in</strong>golipid-associated fatty<br />

acids would cause lysosomal v-SNAREs to leak <strong>in</strong>to secretory vesicles<br />

and take over the function <strong>of</strong> the exocytic v-SNAREs.


nents are segregated and delivered via separate transport<br />

routes. Although previously viewed as a special feature <strong>of</strong><br />

epithelial cells, it has become clear that apical and basolateral<br />

delivery pathways operate <strong>in</strong> both polarized and<br />

nonpolarized cell types (257, 425). However, only <strong>in</strong> epithelial<br />

cells, they would result <strong>in</strong> macroscopic doma<strong>in</strong>s<br />

laterally separated by a diffusion barrier at the tight junction.<br />

Recent studies have <strong>in</strong>dicated that the establishment<br />

<strong>of</strong> cell polarity is <strong>in</strong>itiated by signal<strong>in</strong>g pathways that are<br />

responsive to cell-cell and cell-matrix contacts (423). This<br />

would allow a molecular def<strong>in</strong>ition <strong>of</strong> contact<strong>in</strong>g and<br />

noncontact<strong>in</strong>g cell surfaces (the precursors <strong>of</strong> the basolateral<br />

and apical membrane doma<strong>in</strong>s, respectively). <strong>The</strong><br />

next step would then <strong>in</strong>volve a localized assembly <strong>of</strong><br />

cytoskeletal elements and a position<strong>in</strong>g <strong>of</strong> the TGN relative<br />

to the spatial cues. F<strong>in</strong>ally, the cell surface polarity<br />

that was <strong>in</strong>itially def<strong>in</strong>ed by the spatial cues would be<br />

re<strong>in</strong>forced by targeted delivery <strong>of</strong> apical and basolateral<br />

cell surface components that are constitutively sorted <strong>in</strong><br />

the TGN. 32<br />

As discussed <strong>in</strong> the previous section, the enrichment<br />

<strong>of</strong> sph<strong>in</strong>golipids and saturated glycerolipids along the<br />

secretory pathway could be expla<strong>in</strong>ed if COPI vesicles<br />

budd<strong>in</strong>g from the Golgi cisternae would select th<strong>in</strong>ner,<br />

unsaturated lipid-enriched membrane regions. Still an additional<br />

level <strong>of</strong> lipid sort<strong>in</strong>g must be <strong>in</strong>voked to expla<strong>in</strong><br />

the difference <strong>in</strong> lipid composition between the apical and<br />

basolateral surface <strong>of</strong> epithelial cells. <strong>The</strong> basolateral cell<br />

surface has a composition very similar to that <strong>of</strong> the<br />

plasma membrane <strong>of</strong> nonpolarized cells, but the apical<br />

surface is highly enriched <strong>in</strong> sph<strong>in</strong>golipids, either glycosph<strong>in</strong>golipids<br />

or SM (see sect. IVB; Ref. 341). It therefore<br />

appears that superimposed on the lateral segregation <strong>of</strong><br />

sph<strong>in</strong>golipids from unsaturated glycerolipids throughout<br />

the Golgi stack, a second lateral segregation <strong>in</strong> the TGN<br />

membrane would occur. This would give rise to doma<strong>in</strong>s<br />

highly enriched <strong>in</strong> glycosph<strong>in</strong>golipids or SM and with<br />

target<strong>in</strong>g <strong>in</strong>formation for the apical surface, and doma<strong>in</strong>s<br />

with a more moderate enrichment <strong>in</strong> sph<strong>in</strong>golipids that<br />

would conta<strong>in</strong> basolateral <strong>in</strong>formation (395). <strong>The</strong> segregation<br />

<strong>of</strong> apical from basolateral lipids could imply the<br />

existence <strong>of</strong> three phases <strong>in</strong> the TGN membrane. However,<br />

a simpler mechanism would be extension to the<br />

TGN <strong>of</strong> the segregation <strong>of</strong> the two fluid lipid phases<br />

occurr<strong>in</strong>g <strong>in</strong> the Golgi stack. Depletion <strong>of</strong> unsaturated<br />

lipids and ongo<strong>in</strong>g sph<strong>in</strong>golipid synthesis would result <strong>in</strong><br />

a gradual change <strong>in</strong> the composition <strong>of</strong> both subdoma<strong>in</strong>s,<br />

32 It should be noted that a fraction <strong>of</strong> the apical prote<strong>in</strong>s are<br />

transported to the apical surface via the basolateral surface <strong>in</strong> some<br />

cells (187, 230), but not <strong>in</strong> other cells (413). Interest<strong>in</strong>gly, the polarity <strong>of</strong><br />

apical and basolateral prote<strong>in</strong>s may alter with the physiological state <strong>of</strong><br />

a cell (2). In ret<strong>in</strong>al pigmented epithelial cells, developmental switches<br />

control apical and basolateral traffick<strong>in</strong>g <strong>of</strong> a number <strong>of</strong> prote<strong>in</strong>s (225).<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1711<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

culm<strong>in</strong>at<strong>in</strong>g <strong>in</strong> an apical doma<strong>in</strong> and a basolateral doma<strong>in</strong><br />

at the TGN.<br />

It is believed that apical prote<strong>in</strong> sort<strong>in</strong>g relies on the<br />

formation <strong>of</strong> glycosph<strong>in</strong>golipid and cholesterol-enriched<br />

doma<strong>in</strong>s <strong>in</strong> the lum<strong>in</strong>al leaflet <strong>of</strong> the TGN (341, 398). This<br />

idea is supported by the follow<strong>in</strong>g observations: 1) GPI<br />

prote<strong>in</strong>s use their lipid anchors as apical sort<strong>in</strong>g determ<strong>in</strong>ants<br />

(34, 200), while sort<strong>in</strong>g <strong>in</strong>formation <strong>in</strong> at least two<br />

apically expressed transmembrane prote<strong>in</strong>s (<strong>in</strong>fluenza<br />

hemagglut<strong>in</strong><strong>in</strong> and neuram<strong>in</strong>idase) resides <strong>in</strong> their transmembrane<br />

segments (175, 322); 2) <strong>in</strong>fluenza hemagglut<strong>in</strong><strong>in</strong><br />

and a GPI prote<strong>in</strong> acquire detergent resistance <strong>in</strong> the<br />

Golgi dur<strong>in</strong>g biosynthetic transport (38, 86); and 3) <strong>in</strong>hibition<br />

<strong>of</strong> sph<strong>in</strong>golipid synthesis or deprivation <strong>of</strong> cholesterol<br />

causes a reduction <strong>in</strong> detergent <strong>in</strong>solubility and randomizes<br />

the cell surface distribution <strong>of</strong> <strong>in</strong>fluenza<br />

hemagglut<strong>in</strong><strong>in</strong> and a GPI prote<strong>in</strong> without affect<strong>in</strong>g sort<strong>in</strong>g<br />

<strong>of</strong> basolateral prote<strong>in</strong>s (161, 233). A lipid-based sort<strong>in</strong>g<br />

mechanism similar to that reported for the apical delivery<br />

<strong>of</strong> prote<strong>in</strong>s <strong>in</strong> epithelial cells has been suggested to mediate<br />

axonal delivery <strong>of</strong> prote<strong>in</strong>s <strong>in</strong> neurons (80, 188, 189).<br />

In addition, it appears that carbohydrates <strong>in</strong> glycoprote<strong>in</strong>s<br />

also provide apical sort<strong>in</strong>g <strong>in</strong>formation (88). Several<br />

secretory and membrane prote<strong>in</strong>s have been reported<br />

to rely on their N- orO-glycans for apical delivery (3, 115,<br />

321), <strong>in</strong>clud<strong>in</strong>g GPI-anchored prote<strong>in</strong>s (19). <strong>The</strong> mechanism<br />

<strong>of</strong> carbohydrate-mediated apical sort<strong>in</strong>g is unclear<br />

(see Ref. 306). One potential mechanism <strong>in</strong>volves recognition<br />

<strong>of</strong> N-glycans by sort<strong>in</strong>g lect<strong>in</strong>s such as VIP36 (87,<br />

420), which is thought to partition <strong>in</strong>to glycosph<strong>in</strong>golipid/<br />

cholesterol-rich doma<strong>in</strong>s <strong>in</strong> the TGN along with other<br />

apical membrane prote<strong>in</strong>s. In summary, prote<strong>in</strong> sort<strong>in</strong>g to<br />

the apical membrane is variable and largely depends on<br />

target<strong>in</strong>g signals present <strong>in</strong> the lum<strong>in</strong>al doma<strong>in</strong> or membrane<br />

anchor.<br />

In contrast, basolateral sort<strong>in</strong>g is typically mediated<br />

by discrete target<strong>in</strong>g signals that are conf<strong>in</strong>ed to the cytoplasmic<br />

tails <strong>of</strong> transmembrane prote<strong>in</strong>s. <strong>The</strong>se signals<br />

<strong>of</strong>ten consist <strong>of</strong> tyros<strong>in</strong>e- or dileuc<strong>in</strong>e-based am<strong>in</strong>o acid<br />

motifs and resemble the signals that mediate endocytosis<br />

and prote<strong>in</strong> sort<strong>in</strong>g to endosomes and lysosomes. It has<br />

been well established that <strong>in</strong>teractions between tyros<strong>in</strong>eand<br />

leuc<strong>in</strong>e-based sort<strong>in</strong>g signals and AP coats are responsible<br />

for selective cargo uptake <strong>in</strong>to TGN- and<br />

plasma membrane-derived clathr<strong>in</strong>-coated vesicles (239).<br />

Basolateral sort<strong>in</strong>g is most likely based on a similar coatmediated<br />

mechanism. An epithelial cell type-specific is<strong>of</strong>orm<br />

<strong>of</strong> the AP-1 coat complex, designated AP-1B, has<br />

recently been identified and found to play a critical role <strong>in</strong><br />

the basolateral target<strong>in</strong>g <strong>of</strong> a number <strong>of</strong> membrane prote<strong>in</strong>s<br />

(91). Still, AP-1B-<strong>in</strong>dependent mechanisms for basolateral<br />

sort<strong>in</strong>g must exist as epithelial cells are capable <strong>of</strong><br />

correctly deliver<strong>in</strong>g some basolateral membrane prote<strong>in</strong>s<br />

<strong>in</strong> the absence <strong>of</strong> AP-1B (313). Moreover, AP-1B is not<br />

expressed <strong>in</strong> hepatocytes and neurons, yet these cell


1712 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

types rely on basolateral-type target<strong>in</strong>g signals for transport<br />

to their s<strong>in</strong>usoidal and somatodendritic surfaces,<br />

respectively (416, 424). A novel, ubiquitously expressed<br />

adaptor prote<strong>in</strong> complex, AP-4, localizes to the TGN (70)<br />

and may be <strong>in</strong>volved <strong>in</strong> basolateral sort<strong>in</strong>g as well, but<br />

this rema<strong>in</strong>s to be shown.<br />

Interest<strong>in</strong>gly, there appears to be a hierarchical readout<br />

<strong>of</strong> basolateral and apical sort<strong>in</strong>g signals. Basolateral<br />

sort<strong>in</strong>g signals are usually dom<strong>in</strong>ant; <strong>in</strong>fluenza hemagglut<strong>in</strong><strong>in</strong><br />

equipped with a tyros<strong>in</strong>e-based sort<strong>in</strong>g signal is converted<br />

from an apical to a basolateral prote<strong>in</strong> (33). On the<br />

other hand, <strong>in</strong>activation <strong>of</strong> basolateral signals does not<br />

always lead to apical delivery, even if the prote<strong>in</strong> is glycosylated.<br />

It has been suggested that some basolateral<br />

membrane prote<strong>in</strong>s are sorted by exclusion from glycosph<strong>in</strong>golipid<br />

rafts; such a scenario may apply to a number<br />

<strong>of</strong> prote<strong>in</strong>s whose efficient basolateral distribution is<br />

achieved <strong>in</strong> the absence <strong>of</strong> an active basolateral sort<strong>in</strong>g<br />

signal (233, 423).<br />

3. Apical sort<strong>in</strong>g by retention?<br />

In contrast to the high-aff<strong>in</strong>ity prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions<br />

<strong>in</strong>volved <strong>in</strong> the formation <strong>of</strong> basolateral vesicles,<br />

apical sort<strong>in</strong>g seems largely based on a cooperativity <strong>of</strong><br />

weak <strong>in</strong>teractions between lipids, prote<strong>in</strong>s, and sugars<br />

that occur predom<strong>in</strong>antly with<strong>in</strong> the bilayer doma<strong>in</strong> or<br />

lumen <strong>of</strong> the TGN. <strong>The</strong>refore, a role for vesicular coats <strong>in</strong><br />

the formation <strong>of</strong> apical transport carriers has rema<strong>in</strong>ed<br />

rather elusive. <strong>The</strong> production <strong>of</strong> apical transport vesicles<br />

has been proposed to <strong>in</strong>volve VIP21/caveol<strong>in</strong>, a membrane<br />

prote<strong>in</strong> with high aff<strong>in</strong>ity for cholesterol (256). It<br />

was suggested that oligomerization and <strong>in</strong>tercalation <strong>of</strong><br />

VIP21/caveol<strong>in</strong> <strong>in</strong>to the glycosph<strong>in</strong>golipid/cholesterol-enriched<br />

doma<strong>in</strong>s would cause the bilayer to bend <strong>in</strong>to<br />

apical transport vesicles (277). However, evidence <strong>in</strong> support<br />

<strong>of</strong> this hypothesis rema<strong>in</strong>s <strong>in</strong>direct. An alternative<br />

possibility is that the <strong>in</strong>clusion <strong>of</strong> basolateral molecules<br />

<strong>in</strong>to coated vesicles budd<strong>in</strong>g from the TGN provides the<br />

primary means by which apical and basolateral components<br />

are physically segregated <strong>in</strong>to different membrane<br />

carriers. Interest<strong>in</strong>gly, correlative light and electron microscopic<br />

studies have <strong>in</strong>dicated that the membrane carriers<br />

<strong>in</strong>volved <strong>in</strong> transport from the Golgi to the plasma<br />

membrane are not only small vesicles, but also larger<br />

tubulovesicular structures (136, 379), sometimes even as<br />

large as half a Golgi cisternea (288). It appears that these<br />

structures arise by a controlled draw<strong>in</strong>g out and progressive<br />

breakdown <strong>of</strong> TGN material from the Golgi complex<br />

accord<strong>in</strong>g to a mechanism that bears similarities with the<br />

formation and maturation <strong>of</strong> secretory storage granules <strong>in</strong><br />

neuroendocr<strong>in</strong>e cells (10, 288). An <strong>in</strong>truig<strong>in</strong>g possibility<br />

would be that apical transport <strong>in</strong>termediates are formed<br />

by means <strong>of</strong> a progressive maturation <strong>of</strong> TGN membranes<br />

via AP-dependent removal <strong>of</strong> endosomal/lysosomal and<br />

basolateral material (Fig. 4). Such a mechanism would<br />

escape the requirement <strong>of</strong> a specific apical coat complex<br />

as it would represent a term<strong>in</strong>al step <strong>in</strong> the cisternal<br />

maturation process. Analogous to the mechanism <strong>of</strong><br />

cargo sort<strong>in</strong>g <strong>in</strong> secretory storage granules (374), sort<strong>in</strong>g<br />

<strong>of</strong> apical cargo may rely on a “sort<strong>in</strong>g by retention” pr<strong>in</strong>ciple,<br />

based on the coaggregative properties <strong>of</strong> the apical<br />

prote<strong>in</strong>s and membrane lipids. To become a functional<br />

transport <strong>in</strong>termediate, a matur<strong>in</strong>g apical conta<strong>in</strong>er must<br />

recruit components <strong>of</strong> the dock<strong>in</strong>g and fusion mach<strong>in</strong>ery.<br />

Specific members <strong>of</strong> the SNARE family (TI-VAMP and<br />

syntax<strong>in</strong> 3) have been identified on apical membrane<br />

carriers and were shown to play a critical role <strong>in</strong> membrane<br />

traffick<strong>in</strong>g from the TGN to the apical cell surface<br />

(180). <strong>The</strong> MAL/VIP17 proteolipid may represent another<br />

part <strong>of</strong> the apical transport mach<strong>in</strong>ery (227, 291), but its<br />

mode <strong>of</strong> action rema<strong>in</strong>s to be clarified. All these components<br />

occurred <strong>in</strong> detergent-resistent membrane fractions<br />

along with prote<strong>in</strong> cargo dest<strong>in</strong>ed for the apical cell surface,<br />

suggest<strong>in</strong>g that both apical cargo and transport mach<strong>in</strong>ery<br />

are subject to the same lipid-based sort<strong>in</strong>g mechanism.<br />

VII. CONCLUDING REMARKS<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

A. <strong>Sph<strong>in</strong>golipids</strong> and Golgi Maturation<br />

Above, we have worked out the concept that a separation<br />

between two fluid phases <strong>of</strong> lipids lies at the heart<br />

<strong>of</strong> the sort<strong>in</strong>g potential <strong>of</strong> the Golgi complex. This phase<br />

separation would be based on the differential miscibility<br />

<strong>of</strong> sph<strong>in</strong>golipids, glycerolipids, and sterols. An essential<br />

feature <strong>of</strong> the model is that the Golgi membrane matures<br />

along the cis-trans axis, based on cisternal progression, a<br />

gradual change <strong>in</strong> sph<strong>in</strong>golipid composition by biosynthetic<br />

reactions, and cont<strong>in</strong>uous retrieval <strong>of</strong> the most fluid<br />

lipids. As a consequence, the Golgi membrane as a whole<br />

becomes less fluid and thickens, result<strong>in</strong>g <strong>in</strong> a sequential<br />

loss <strong>of</strong> Golgi-resident enzymes and transport mach<strong>in</strong>ery<br />

to recycl<strong>in</strong>g pathways that run from the cis-Golgi to the<br />

ER and from with<strong>in</strong> the Golgi stack to more proximal<br />

cisternae. After distillation, a membrane persists that is<br />

highly enriched <strong>in</strong> sph<strong>in</strong>golipids, cholesterol, and selected<br />

prote<strong>in</strong>s and forms the prototype “apical” membrane carrier.<br />

<strong>The</strong> ordered array <strong>of</strong> sph<strong>in</strong>golipid synthetic enzymes<br />

that extends from the ER to the trans-Golgi seems an<br />

ideal device to gradually convert the highly fluid and<br />

flexible ER bilayer <strong>in</strong>to a rigid and robust plasma membrane.<br />

In fact, it may form an <strong>in</strong>tegral part <strong>of</strong> the mechanistic<br />

framework by which the compartmental organization<br />

<strong>of</strong> the secretory pathway is established.


B. Doma<strong>in</strong>s <strong>of</strong> Saturated Lipids on the<br />

Cytosolic Surface<br />

Because SM and all glycosph<strong>in</strong>golipids with the exception<br />

<strong>of</strong> GlcCer are synthesized on the lum<strong>in</strong>al surface<br />

<strong>of</strong> the Golgi, sph<strong>in</strong>golipid doma<strong>in</strong>s would form <strong>in</strong> the<br />

lum<strong>in</strong>al leaflet <strong>of</strong> the Golgi membrane (398). We have<br />

recently obta<strong>in</strong>ed evidence that the pool <strong>of</strong> GlcCer <strong>in</strong> the<br />

cytosolic leaflet is regulated by the comb<strong>in</strong>ation <strong>of</strong> MDR1<br />

P-glycoprote<strong>in</strong>, a GlcCer translocator, and a nonlysosomal<br />

glucoceramidase (390). In addition, our studies show<br />

that glycosph<strong>in</strong>golipid synthesis is required for an <strong>in</strong>tact<br />

AP-3 pathway to melanosomes (H. Sprong, P. van der<br />

Sluijs, and G. van Meer, personal communication). <strong>The</strong><br />

data suggest that GlcCer on the cytosolic surface is <strong>in</strong>volved<br />

<strong>in</strong> the recruitment <strong>of</strong> specific coat prote<strong>in</strong>s at the<br />

level <strong>of</strong> the TGN. This could be by a direct <strong>in</strong>teraction <strong>of</strong><br />

GlcCer with a cytosolic prote<strong>in</strong> (complex). Alternatively,<br />

GlcCer could form (or be part <strong>of</strong>) a doma<strong>in</strong> on the cytosolic<br />

surface.<br />

Evidence for lipid phase separation <strong>in</strong> the cytosolic<br />

bilayer leaflet <strong>of</strong> Golgi membranes may be found <strong>in</strong> the<br />

fact that at least one type <strong>of</strong> lipid on the cytosolic surface<br />

<strong>of</strong> the plasma membrane is highly saturated compared<br />

with the same lipid class <strong>in</strong> the ER <strong>of</strong> rat liver (160) and<br />

yeast (325). Such a doma<strong>in</strong> would mature along with the<br />

lum<strong>in</strong>al sph<strong>in</strong>golipid/cholesterol doma<strong>in</strong>. One additional<br />

<strong>in</strong>dication that the lipid environment on the cytosolic<br />

leaflet opposed to a sph<strong>in</strong>golipid doma<strong>in</strong> <strong>in</strong> the noncytoplasmic<br />

leaflet may be special comes from studies on<br />

sph<strong>in</strong>golipid doma<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> signal<strong>in</strong>g <strong>in</strong> the plasma<br />

membrane (see sect. IVB). By various techniques, the coat<br />

prote<strong>in</strong> caveol<strong>in</strong> and signal<strong>in</strong>g prote<strong>in</strong>s that are anchored<br />

to the cytosolic surface via saturated fatty acids colocalize<br />

with the doma<strong>in</strong>s <strong>in</strong> the opposite noncytoplasmic leaflet<br />

(202, 237). Whether the opposed doma<strong>in</strong>s would be<br />

connected via transmembrane lipid-lipid <strong>in</strong>teractions (see<br />

sect. IIIB) or via membrane-spann<strong>in</strong>g prote<strong>in</strong>s is an open<br />

issue.<br />

C. Sph<strong>in</strong>golipid Doma<strong>in</strong>s as a General <strong>The</strong>me<br />

<strong>in</strong> Cellular <strong>Membrane</strong> Traffic<br />

Lipid segregation does not necessarily start <strong>in</strong> the<br />

cis-Golgi. As discussed <strong>in</strong> section IIIB, the possibility exists<br />

that ceramides <strong>in</strong> the ER, especially <strong>in</strong> yeast with its<br />

long-cha<strong>in</strong> hydroxylated ceramides, occur <strong>in</strong> doma<strong>in</strong>s<br />

(252). In cells that synthesize GalCer, this sph<strong>in</strong>golipid<br />

may organize <strong>in</strong> doma<strong>in</strong>s already <strong>in</strong> the lum<strong>in</strong>al leaflet <strong>of</strong><br />

the ER, where it is synthesized (328, 359, 360). Short-cha<strong>in</strong><br />

analogs <strong>of</strong> Cer and GalCer (45) and other (sph<strong>in</strong>go)lipids<br />

(133) readily translocate across the ER membrane. If true<br />

for natural lipids, doma<strong>in</strong>s <strong>of</strong> these lipids may be situated<br />

<strong>in</strong> either membrane leaflet.<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1713<br />

Moreover, the ultimate formation <strong>of</strong> an “apical”<br />

sph<strong>in</strong>golipid/cholesterol remnant <strong>in</strong> the TGN is a f<strong>in</strong>al<br />

stage <strong>in</strong> Golgi maturation but clearly is not a f<strong>in</strong>al stage <strong>in</strong><br />

cellular membrane transport. <strong>Membrane</strong> recycles from<br />

the plasma membrane via endosomes to the TGN, and<br />

evidence for lipid-based sort<strong>in</strong>g has been found <strong>in</strong> the<br />

endocytic recycl<strong>in</strong>g pathway (reviewed <strong>in</strong> Ref. 397). Although,<br />

unfortunately, essentially all evidence has been<br />

obta<strong>in</strong>ed us<strong>in</strong>g fluorescent analogs <strong>of</strong> membrane lipids,<br />

still it leads to the conclusion that certa<strong>in</strong> lipidic molecules<br />

can be sorted <strong>in</strong> this pathway. In short, fluorescent<br />

sph<strong>in</strong>golipids are concentrated dur<strong>in</strong>g the first step(s) <strong>of</strong><br />

endocytosis (52, 407). In some cells, fluorescent GlcCer<br />

segregates from fluorescent SM dur<strong>in</strong>g recycl<strong>in</strong>g from the<br />

plasma membrane (168, 393, 394). However, such sort<strong>in</strong>g<br />

was not observed <strong>in</strong> different cell types (386), and it<br />

cannot be assumed that these lipid analogs strictly monitor<br />

vesicular transport processes (226). Independent evidence<br />

for lipid sort<strong>in</strong>g via phase separation was obta<strong>in</strong>ed<br />

by study<strong>in</strong>g transport <strong>of</strong> lipid probes <strong>of</strong> different cha<strong>in</strong><br />

length and saturation (251). <strong>The</strong> data <strong>in</strong> the latter study<br />

suggest that lipids with longer or more saturated cha<strong>in</strong>s<br />

are preferentially transported to late endosomes versus<br />

the recycl<strong>in</strong>g endosome. Furthermore, cholesterol had a<br />

dramatic effect on endocytic lipid sort<strong>in</strong>g (293). Because<br />

endosome maturation has many parallels with the maturation<br />

<strong>of</strong> Golgi cisternae, a sph<strong>in</strong>golipid-driven sort<strong>in</strong>g<br />

device may also be central to the endocytic pathway.<br />

Because sph<strong>in</strong>golipid synthesis is limited to the Golgi (see<br />

sect. VA; Ref. 391), and all components are present at the<br />

start <strong>of</strong> the endosomal maturation process, <strong>in</strong> the plasma<br />

membrane, the endosomal lipid maturation can be considered<br />

to be an extension <strong>of</strong> the Golgi system.<br />

We thank the other members <strong>of</strong> our lipid cell biology group<br />

for many useful discussions. In addition, we are grateful to Rick<br />

Brown, Ken Hanada, Richard Pagano, Rob Parton, Rick Proia,<br />

Peter Slotte, Pentti Somerharju, Paul van Veldhoven, and Rob<br />

Zwaal for discuss<strong>in</strong>g dist<strong>in</strong>ct issues <strong>in</strong> the review and for send<strong>in</strong>g<br />

prepr<strong>in</strong>ts <strong>of</strong> unpublished work.<br />

We thank the follow<strong>in</strong>g organizations for f<strong>in</strong>ancial support:<br />

the Royal Netherlands Academy <strong>of</strong> Arts and Sciences (to J. C. M.<br />

Holthuis), the Netherlands Foundations for Chemical Research<br />

and for Life Sciences with f<strong>in</strong>ancial aid from the Netherlands<br />

Organization for Scientific Research (to R. J. Raggers and H.<br />

Sprong), and the European Molecular Biology Organization (to<br />

T. Pomorski).<br />

Address for repr<strong>in</strong>t requests and other correspondence: G.<br />

van Meer, Dept. <strong>of</strong> Cell Biology and Histology, Academic Medical<br />

Center L3, Meibergdreef 15, 1105 AZ Amsterdam, <strong>The</strong> Netherlands<br />

(E-mail: g.vanmeer@amc.uva.nl).<br />

REFERENCES<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

1. AHMED SN, BROWN DA, AND LONDON E. On the orig<strong>in</strong> <strong>of</strong> sph<strong>in</strong>golipid/<br />

cholesterol-rich detergent-<strong>in</strong>soluble cell membranes: physiological<br />

concentrations <strong>of</strong> cholesterol and sph<strong>in</strong>golipid <strong>in</strong>duce formation <strong>of</strong>


1714 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

a detergent-<strong>in</strong>soluble, liquid-ordered lipid phase <strong>in</strong> model membranes.<br />

Biochemistry 36: 10944–10953, 1997.<br />

2. AL-AWQATI Q. Plasticity <strong>in</strong> epithelial polarity <strong>of</strong> renal <strong>in</strong>tercalated<br />

cells: target<strong>in</strong>g <strong>of</strong> the H -ATPase and band 3. Am J Physiol Cell<br />

Physiol 270: C1571–C1580, 1996.<br />

3. ALFALAH M, JACOB R, PREUSS U, ZIMMER KP, NAIM H, AND NAIM HY.<br />

O-l<strong>in</strong>ked glycans mediate apical sort<strong>in</strong>g <strong>of</strong> human <strong>in</strong>test<strong>in</strong>al sucrase-isomaltase<br />

through association with lipid rafts. Curr Biol 9:<br />

593–596, 1999.<br />

4. ALLAN BB AND BALCH WE. Prote<strong>in</strong> sort<strong>in</strong>g by directed maturation <strong>of</strong><br />

Golgi compartments. Science 285: 63–66, 1999.<br />

5. ALLAN D AND QUINN P. Resynthesis <strong>of</strong> sph<strong>in</strong>gomyel<strong>in</strong> from plasmamembrane<br />

phosphatidylchol<strong>in</strong>e <strong>in</strong> BHK cells treated with Staphylococcus<br />

aureus sph<strong>in</strong>gomyel<strong>in</strong>ase. Biochem J 254: 765–771, 1988.<br />

6. AN S, ZHENG Y, AND BLEU T. Sph<strong>in</strong>gos<strong>in</strong>e 1-phosphate-<strong>in</strong>duced cell<br />

proliferation, survival, and related signal<strong>in</strong>g events mediated by G<br />

prote<strong>in</strong>-coupled receptors edg3 and edg5. J Biol Chem 275: 288–<br />

296, 2000.<br />

7. ANDERSON RGW. <strong>The</strong> caveolae membrane system. Annu Rev Biochem<br />

67: 199–225, 1998.<br />

8. NGSTRÖM J, BREIMER ME, FALK KE, GRIPH I, HANSSON GC, KARLSSON<br />

KA, AND LEFFLER H. Separation and characterization <strong>of</strong> hematosides<br />

with different sialic acids and ceramides from rat small <strong>in</strong>test<strong>in</strong>e.<br />

Different composition <strong>of</strong> epithelial cells versus non-epithelial tissue<br />

and <strong>of</strong> duodenum versus jejunum-ileum. J Biochem 90: 909–<br />

921, 1981.<br />

9. ANTES P, SCHWARZMANN G, AND SANDHOFF K. Detection <strong>of</strong> prote<strong>in</strong><br />

mediated glycosph<strong>in</strong>golipid cluster<strong>in</strong>g by the use <strong>of</strong> resonance<br />

energy transfer between fluorescent labelled lipids. A method established<br />

by apply<strong>in</strong>g the system ganglioside GM1 and cholera<br />

tox<strong>in</strong> B subunit. Chem Phys Lipids 62: 269–280, 1992.<br />

10. ARVAN P AND CASTLE D. Sort<strong>in</strong>g and storage dur<strong>in</strong>g secretory granule<br />

biogenesis: look<strong>in</strong>g backward and look<strong>in</strong>g forward. Biochem J 332:<br />

593–610, 1998.<br />

11. BAGNAT M, KERANEN S, SHEVCHENKO A, AND SIMONS K. Lipid rafts<br />

function <strong>in</strong> biosynthetic delivery <strong>of</strong> prote<strong>in</strong>s to the cell surface <strong>in</strong><br />

yeast. Proc Natl Acad Sci USA 97: 3254–3259, 2000.<br />

12. BARENHOLZ Y AND GATT S. Sph<strong>in</strong>gomyel<strong>in</strong>: metabolism, chemical<br />

synthesis, chemical and physical properties. In: Phospholipids.<br />

New Comprehensive Biochemistry, edited by Hawthorne JN and<br />

Ansell GB. Amsterdam: Elsevier, 1982, vol. 4, p. 129–177.<br />

13. BASU S AND KOLESNICK R. Stress signals for apoptosis: ceramide and<br />

c-Jun k<strong>in</strong>ase. Oncogene 17: 3277–3285, 1998.<br />

14. BEARER EL AND FRIEND DS. Morphology <strong>of</strong> mammalian sperm membranes<br />

dur<strong>in</strong>g differentiation, maturation, and capacitation. J Electron<br />

Microsc Tech 16: 281–297, 1990.<br />

15. BEELER T, BACIKOVA D, GABLE K, HOPKINS L, JOHNSON C, SLIFE H, AND<br />

DUNN T. <strong>The</strong> Saccharomyces cerevisiae TSC10/YBR265w gene<br />

encod<strong>in</strong>g 3-ketosph<strong>in</strong>gan<strong>in</strong>e reductase is identified <strong>in</strong> a screen for<br />

temperature-sensitive suppressors <strong>of</strong> the Ca 2 -sensitive csg2 mutant.<br />

J Biol Chem 273: 30688–30694, 1998.<br />

16. BEELER TJ, FU D, RIVERA J, MONAGHAN E, GABLE K, AND DUNN TM.<br />

SUR1 (CSG1/BCL21), a gene necessary for growth <strong>of</strong> Saccharomyces<br />

cerevisiae <strong>in</strong> the presence <strong>of</strong> high Ca 2 concentrations at<br />

37°C, is required for mannosylation <strong>of</strong> <strong>in</strong>ositolphosphorylceramide.<br />

Mol Gen Genet 255: 570–579, 1997.<br />

17. BEHNE M, UCHIDA Y, SEKI T, DE MONTELLANO PO, ELIAS PM, AND<br />

HOLLERAN WM. Omega-hydroxyceramides are required for corneocyte<br />

lipid envelope (CLE) formation and normal epidermal permeability<br />

barrier function. J Invest Dermatol 114: 185–192, 2000.<br />

18. BEN-PORAT T AND KAPLAN AS. Phospholipid metabolism <strong>of</strong> herpesvirus-<strong>in</strong>fected<br />

and un<strong>in</strong>fected rabbit kidney cells. Virology 45: 252–<br />

264, 1971.<br />

19. BENTING JH, RIETVELD AG, AND SIMONS K. N-glycans mediate the<br />

apical sort<strong>in</strong>g <strong>of</strong> a GPI-anchored, raft-associated prote<strong>in</strong> <strong>in</strong> Mad<strong>in</strong>-<br />

Darby can<strong>in</strong>e kidney cells. J Cell Biol 146: 313–320, 1999.<br />

20. BERGELSON LD, DYATLOVITSKAYA EV, SOROKINA IB, AND GORKOVA NP.<br />

Phospholipid compositon <strong>of</strong> mitochondria and microsomes from<br />

regenerat<strong>in</strong>g rat liver and hepatomas <strong>of</strong> different growth rate.<br />

Biochim Biophys Acta 360: 361–365, 1974.<br />

21. BERGELSON LD, DYATLOVITSKAYA EV, TORKHOVSKAYA TI, SOROKINA IB,<br />

AND GORKOVA NP. Phospholipid composition <strong>of</strong> membranes <strong>in</strong> the<br />

tumor cell. Biochim Biophys Acta 210: 287–298, 1970.<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

22. BEUTLER E. Enzyme replacement therapy for Gaucher’s disease.<br />

Baillieres Cl<strong>in</strong> Haematol 10: 751–763, 1997.<br />

23. BOGGS JM. Lipid <strong>in</strong>termolecular hydrogen bond<strong>in</strong>g: <strong>in</strong>fluence on<br />

structural organization and membrane function. Biochim Biophys<br />

Acta 906: 353–404, 1987.<br />

24. BONFANTI L, MARTELLA O, MIRONOV A, AND LUINI A. Comparative<br />

analysis <strong>of</strong> procollagen I and VSV G prote<strong>in</strong> transport <strong>in</strong> the same<br />

cell (Abstract). Mol Biol Cell Suppl 10: 114a, 1999.<br />

25. BONFANTI L, MIRONOV AA, MARTINEZ-MENARGUEZ JA, MARTELLA O,<br />

FUSELLA A, BALDASSARRE M, BUCCIONE R, GEUZE HJ, AND LUINI A.<br />

Procollagen traverses the Golgi stack without leav<strong>in</strong>g the lumen <strong>of</strong><br />

cisternae: evidence for cisternal maturation. Cell 95: 993–1003,<br />

1998.<br />

26. BORGESE N AND MELDOLESI J. Localization and biosynthesis <strong>of</strong><br />

NADH-cytochrome b5 reductase, an <strong>in</strong>tegral membrane prote<strong>in</strong>, <strong>in</strong><br />

rat liver cells. I. Distribution <strong>of</strong> the enzyme activity <strong>in</strong> microsomes,<br />

mitochondria, and Golgi complex. J Cell Biol 85: 501–515, 1980.<br />

27. BOSIO A, BINCZEK E, AND STOFFEL W. Functional breakdown <strong>of</strong> the<br />

lipid bilayer <strong>of</strong> the myel<strong>in</strong> membrane <strong>in</strong> central and peripheral<br />

nervous system by disrupted galactocerebroside synthesis. Proc<br />

Natl Acad Sci USA 93: 13280–13285, 1996.<br />

28. BOUHOURS JF AND GLICKMAN RM. Rat <strong>in</strong>test<strong>in</strong>al glycolipids. III. Fatty<br />

acids and long cha<strong>in</strong> bases <strong>of</strong> glycolipids from villus and crypt cells.<br />

Biochim Biophys Acta 487: 51–60, 1977.<br />

29. BRADY RO. Gaucher’s disease: past, present and future. Baillieres<br />

Cl<strong>in</strong> Haematol 10: 621–634, 1997.<br />

30. BRASITUS TA AND SCHACHTER D. Lipid dynamics and lipid-prote<strong>in</strong><br />

<strong>in</strong>teractions <strong>in</strong> the rat enterocyte basolateral and microvillus membranes.<br />

Biochemistry 19: 2763–2769, 1980.<br />

31. BREMSER M, NICKEL W, SCHWEIKERT M, RAVAZZOLA M, AMHERDT M,<br />

HUGHES CA, SÖLLNER TH, ROTHMAN JE, AND WIELAND FT. Coupl<strong>in</strong>g <strong>of</strong><br />

coat assembly and vesicle budd<strong>in</strong>g to packag<strong>in</strong>g <strong>of</strong> putative cargo<br />

receptors. Cell 96: 495–506, 1999.<br />

32. BRETSCHER MS AND MUNRO S. Cholesterol and the Golgi apparatus.<br />

Science 261: 1280–1281, 1993.<br />

33. BREWER CB AND ROTH MG. A s<strong>in</strong>gle am<strong>in</strong>o acid change <strong>in</strong> the<br />

cytoplasmic doma<strong>in</strong> alters the polarized delivery <strong>of</strong> <strong>in</strong>fluenza virus<br />

hemagglut<strong>in</strong><strong>in</strong>. J Cell Biol 114: 413–421, 1991.<br />

34. BROWN DA, CRISE B, AND ROSE JK. Mechanism <strong>of</strong> membrane anchor<strong>in</strong>g<br />

affects polarized expression <strong>of</strong> two prote<strong>in</strong>s <strong>in</strong> MDCK cells.<br />

Science 245: 1499–1501, 1989.<br />

35. BROWN DA AND LONDON E. Functions <strong>of</strong> lipid rafts <strong>in</strong> biological<br />

membranes. Annu Rev Cell Dev Biol 14: 111–136, 1998.<br />

36. BROWN DA AND LONDON E. Structure and orig<strong>in</strong> <strong>of</strong> ordered lipid<br />

doma<strong>in</strong>s <strong>in</strong> biological membranes. J Membr Biol 164: 103–114,<br />

1998.<br />

37. BROWN DA AND LONDON E. Structure and function <strong>of</strong> sph<strong>in</strong>golipidand<br />

cholesterol-rich membrane rafts. J Biol Chem 275: 17221–<br />

17224, 2000.<br />

38. BROWN DA AND ROSE JK. Sort<strong>in</strong>g <strong>of</strong> GPI-anchored prote<strong>in</strong>s to glycolipid-enriched<br />

membrane subdoma<strong>in</strong>s dur<strong>in</strong>g transport to the<br />

apical cell surface. Cell 68: 533–544, 1992.<br />

39. BROWN RE. Spontaneous lipid transfer between organized lipid<br />

assemblies. Biochim Biophys Acta 1113: 375–389, 1992.<br />

40. BROWN RE. Sph<strong>in</strong>golipid organization <strong>in</strong> biomembranes: what physical<br />

studies <strong>of</strong> model membranes reveal. J Cell Sci 111: 1–9, 1998.<br />

41. BRÜGGER B, SANDHOFF R, WEGEHINGEL S, GORGAS K, MALSAM J, HELMS<br />

JB, LEHMANN WD, NICKEL W, AND WIELAND FT. Evidence for segregation<br />

<strong>of</strong> sph<strong>in</strong>gomyel<strong>in</strong> and cholesterol dur<strong>in</strong>g formation <strong>of</strong> COPIcoated<br />

vesicles. J Cell Biol 151: 507–518, 2000.<br />

42. BUCKLAND RM, RADDA GK, AND SHENNAN CD. Accessibility <strong>of</strong> phospholipids<br />

<strong>in</strong> the chromaff<strong>in</strong> granule membrane. Biochim Biophys<br />

Acta 513: 321–337, 1978.<br />

43. BUEDE R, RINKER-SCHAFFER C, PINTO WJ, LESTER RL, AND DICKSON RC.<br />

Clon<strong>in</strong>g and characterization <strong>of</strong> LCB1, aSaccharomyces gene required<br />

for biosynthesis <strong>of</strong> the long-cha<strong>in</strong> base component <strong>of</strong> sph<strong>in</strong>golipids.<br />

J Bacteriol 173: 4325–4332, 1991.<br />

44. BUNOW MR AND LEVIN IW. Molecular conformations <strong>of</strong> cerebrosides<br />

<strong>in</strong> bilayers determ<strong>in</strong>ed by Raman spectroscopy. Biophys J 32:<br />

1007–1021, 1980.<br />

45. BURGER KNJ, VAN DER BIJL P, AND VAN MEER G. Topology <strong>of</strong> sph<strong>in</strong>golipid<br />

galactosyltransferases <strong>in</strong> ER and Golgi: transbilayer move-


ment <strong>of</strong> monohexosyl sph<strong>in</strong>golipids is required for higher glycosph<strong>in</strong>golipid<br />

biosynthesis. J Cell Biol 133: 15–28, 1996.<br />

46. BUTON X, MORROT G, FELLMANN P, AND SEIGNEURET M. Ultrafast<br />

glycerophospholipid-selective transbilayer motion mediated by a<br />

prote<strong>in</strong> <strong>in</strong> the endoplasmic reticulum membrane. J Biol Chem 271:<br />

6651–6657, 1996.<br />

47. BUTOR C, STELZER EH, SONNENBERG A, AND DAVOUST J. Apical and<br />

basal Forssman antigen <strong>in</strong> MDCK II cells: a morphological and<br />

quantitative study. Eur J Cell Biol 56: 269–285, 1991.<br />

48. CARMEL G, RODRIGUE F, CARRIÈRE S, AND LE GRIMELLEC C. Composition<br />

and physical properties <strong>of</strong> lipids from plasma membranes <strong>of</strong><br />

dog kidney. Biochim Biophys Acta 818: 149–157, 1985.<br />

49. CHAN KF AND LIU Y. Ganglioside-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s <strong>in</strong> skeletal and<br />

cardiac muscle. Glycobiology 1: 193–203, 1991.<br />

50. CHAPMAN D AND COLLIN DT. Differential thermal analysis <strong>of</strong> phospholipids.<br />

Nature 206: 189, 1965.<br />

51. CHATTERJEE S, HAN H, ROLLINS S, AND CLEVELAND T. Molecular clon<strong>in</strong>g,<br />

characterization, and expression <strong>of</strong> a novel human neutral<br />

sph<strong>in</strong>gomyel<strong>in</strong>ase. J Biol Chem 274: 37407–37412, 1999.<br />

52. CHEN CS, MARTIN OC, AND PAGANO RE. Changes <strong>in</strong> the spectral<br />

properties <strong>of</strong> a plasma membrane lipid analog dur<strong>in</strong>g the first<br />

seconds <strong>of</strong> endocytosis <strong>in</strong> liv<strong>in</strong>g cells. Biophys J 72: 37–50, 1997.<br />

53. CHESTER MA. IUPAC-IUB Jo<strong>in</strong>t Commission on Biochemical Nomenclature<br />

(JCBN). Nomenclature <strong>of</strong> glycolipids: recommendations<br />

1997. Eur J Biochem 257: 293–298, 1998.<br />

54. CHIGORNO V, VALSECCHI M, ACQUOTTI D, SONNINO S, AND TETTAMANTI G.<br />

Formation <strong>of</strong> a cytosolic ganglioside-prote<strong>in</strong> complex follow<strong>in</strong>g<br />

adm<strong>in</strong>istration <strong>of</strong> photoreactive ganglioside GM1 to human fibroblasts<br />

<strong>in</strong> culture. FEBS Lett 263: 329–331, 1990.<br />

55. CHITWOOD DJ, LUSBY WR, THOMPSON MJ, KOCHANSKY JP, AND HOWARTH<br />

OW. <strong>The</strong> glycosylceramides <strong>of</strong> the nematode Caenorhabditis elegans<br />

conta<strong>in</strong> an unusual, branched-cha<strong>in</strong> sph<strong>in</strong>goid base. Lipids<br />

30: 567–573, 1995.<br />

56. CLUETT EB, KUISMANEN E, AND MACHAMER CE. Heterogeneous distribution<br />

<strong>of</strong> the unusual phospholipid semilysobisphosphatidic acid<br />

through the Golgi complex. Mol Biol Cell 8: 2233–2240, 1997.<br />

57. CLUETT EB AND MACHAMER CE. <strong>The</strong> envelope <strong>of</strong> vacc<strong>in</strong>ia virus<br />

reveals an unusual phospholipid <strong>in</strong> Golgi complex membranes.<br />

J Cell Sci 109: 2121–2131, 1996.<br />

58. COETZEE T, FUJITA N, DUPREE J, SHI R, BLIGHT A, SUZUKI K, SUZUKI K,<br />

AND POPKO B. Myel<strong>in</strong>ation <strong>in</strong> the absence <strong>of</strong> galactocerebroside and<br />

sulfatide: normal structure with abnormal function and regional<br />

<strong>in</strong>stability. Cell 86: 209–219, 1996.<br />

59. COLBEAU A, NACHBAUR J, AND VIGNAIS PM. Enzymic characterization<br />

and lipid composition <strong>of</strong> rat liver subcellular membranes. Biochim<br />

Biophys Acta 249: 462–492, 1971.<br />

60. COLE NB, ELLENBERG J, SONG J, DIEULIIS D, AND LIPPINCOTT-SCHWARTZ<br />

J. Retrograde transport <strong>of</strong> Golgi-localized prote<strong>in</strong>s to the ER. J Cell<br />

Biol 140: 1–15, 1998.<br />

61. COLE NB, SCIAKY N, MAROTTA A, SONG J, AND LIPPINCOTT-SCHWARTZ J.<br />

Golgi dispersal dur<strong>in</strong>g microtubule disruption: regeneration <strong>of</strong><br />

Golgi stacks at peripheral endoplasmic reticulum sites. Mol Cell<br />

Biol 7: 631–650, 1996.<br />

62. COLLINS RN AND WARREN G. Sph<strong>in</strong>golipid transport <strong>in</strong> mitotic HeLa<br />

cells. J Biol Chem 267: 24906–24911, 1992.<br />

63. CORNEA RL AND THOMAS DD. Effects <strong>of</strong> membrane thickness on the<br />

molecular dynamics and enzymatic activity <strong>of</strong> reconstituted Ca-<br />

ATPase. Biochemistry 33: 2912–2920, 1994.<br />

64. COSSON P AND LETOURNEUR F. Coatomer <strong>in</strong>teraction with di-lys<strong>in</strong>e<br />

endoplasmic reticulum retention motifs. Science 263: 1629–1631,<br />

1994.<br />

65. COSTE H, MARTEL MB, AND GOT R. Topology <strong>of</strong> glucosylceramide<br />

synthesis <strong>in</strong> Golgi membranes from porc<strong>in</strong>e submaxillary glands.<br />

Biochim Biophys Acta 858: 6–12, 1986.<br />

66. DAUM G AND VANCE JE. Import <strong>of</strong> lipids <strong>in</strong>to mitochondria. Prog<br />

Lipid Res 36: 103–130, 1997.<br />

67. DAVID D, SUNDARABABU S, AND GERST JE. Involvement <strong>of</strong> long cha<strong>in</strong><br />

fatty acid elongation <strong>in</strong> the traffick<strong>in</strong>g <strong>of</strong> secretory vesicles <strong>in</strong> yeast.<br />

J Cell Biol 143: 1167–1182, 1998.<br />

68. DEAN N, ZHANG YB, AND POSTER JB. <strong>The</strong> VRG4 gene is required for<br />

GDP-mannose transport <strong>in</strong>to the lumen <strong>of</strong> the Golgi <strong>in</strong> the yeast,<br />

Saccharomyces cerevisiae. J Biol Chem 272: 31908–31914, 1997.<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1715<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

69. DE KRUIJFF B (Editor). Lipid-prote<strong>in</strong> <strong>in</strong>teractions. Biochim Biophys<br />

Acta 1376: 243–482, 1999.<br />

70. DELL’ANGELICA EC, MULLINS C, AND BONIFACINO JS. AP-4, a novel<br />

prote<strong>in</strong> complex related to clathr<strong>in</strong> adaptors. J Biol Chem 274:<br />

7278–7285, 1999.<br />

71. DEMEL RA AND DE KRUYFF B. <strong>The</strong> function <strong>of</strong> sterols <strong>in</strong> membranes.<br />

Biochim Biophys Acta 457: 109–132, 1976.<br />

72. DEMEL RA, PALTAUF F, AND HAUSER H. Monolayer characteristics and<br />

thermal behavior <strong>of</strong> natural and synthetic phosphatidylser<strong>in</strong>es.<br />

Biochemistry 26: 8659–8665, 1987.<br />

73. DE VRIES KJ, HEINRICHS AAJ, CUNNINGHAM E, BRUNINK F, WESTERMAN<br />

J, SOMERHARJU PJ, COCKCROFT S, WIRTZ KWA, AND SNOEK GT. An<br />

is<strong>of</strong>orm <strong>of</strong> the phosphatidyl<strong>in</strong>ositol-transfer prote<strong>in</strong> transfers<br />

sph<strong>in</strong>gomyel<strong>in</strong> and is associated with the Golgi system. Biochem J<br />

310: 643–649, 1995.<br />

74. DICKSON RC. Sph<strong>in</strong>golipid functions <strong>in</strong> Saccharomyces cerevisiae:<br />

comparison to mammals. Annu Rev Biochem 67: 27–48, 1998.<br />

75. DICKSON RC AND LESTER RL. Metabolism and selected functions <strong>of</strong><br />

sph<strong>in</strong>golipids <strong>in</strong> the yeast Saccharomyces cerevisiae. Biochim Biophys<br />

Acta 1438: 305–321, 1999.<br />

76. DICKSON RC, NAGIEC EE, SKRZYPEK M, TILLMAN P, WELLS GB, AND<br />

LESTER RL. <strong>Sph<strong>in</strong>golipids</strong> are potential heat stress signals <strong>in</strong> Saccharomyces.<br />

J Biol Chem 272: 30196–30200, 1997.<br />

77. DICKSON RC, NAGIEC EE, WELLS GB, NAGIEC MM, AND LESTER RL.<br />

Synthesis <strong>of</strong> mannose-(<strong>in</strong>ositol-P)2-ceramide, the major sph<strong>in</strong>golipid<br />

<strong>in</strong> Saccharomyces cerevisiae, requires the IPT1 (YDR072c)<br />

gene. J Biol Chem 272: 29620–29625, 1997.<br />

78. DIETZEN DJ, HASTINGS WR, AND LUBLIN DM. Caveol<strong>in</strong> is palmitoylated<br />

on multiple cyste<strong>in</strong>e residues. Palmitoylation is not necessary for<br />

localization <strong>of</strong> caveol<strong>in</strong> to caveolae. J Biol Chem 270: 6838–6842,<br />

1995.<br />

79. DOERING T, PROIA RL, AND SANDHOFF K. Accumulation <strong>of</strong> prote<strong>in</strong>bound<br />

epidermal glucosylceramides <strong>in</strong> beta-glucocerebrosidase deficient<br />

type 2 Gaucher mice. FEBS Lett 447: 167–170, 1999.<br />

80. DOTTI CG, PARTON RG, AND SIMONS K. Polarized sort<strong>in</strong>g <strong>of</strong> glypiated<br />

prote<strong>in</strong>s <strong>in</strong> hippocampal neurons. Nature 349: 158–161, 1991.<br />

81. DOUGLAS AP, KERLEY R, AND ISSELBACHER KJ. Preparation and characterization<br />

<strong>of</strong> the lateral and basal plasma membranes <strong>of</strong> the rat<br />

<strong>in</strong>test<strong>in</strong>al epithelial cell. Biochem J 128: 1329–1338, 1972.<br />

82. DUNN TM, HAAK D, MONAGHAN E, AND BEELER TJ. Synthesis <strong>of</strong><br />

monohydroxylated <strong>in</strong>ositolphosphorylceramide (IPC-C) <strong>in</strong> Saccharomyces<br />

cerevisiae requires Scs7p, a prote<strong>in</strong> with both a cytochrome<br />

b(5)-like doma<strong>in</strong> and a hydroxylase/desaturase doma<strong>in</strong>.<br />

Yeast 14: 311–321, 1998.<br />

83. DYATLOVITSKAYA EV, TIMOFEEVA NG, YAKIMENKO EF, BARSUKOV LI,<br />

MUZYA GI, AND BERGELSON LD. A sph<strong>in</strong>gomyel<strong>in</strong> transfer prote<strong>in</strong> <strong>in</strong><br />

rat tumors and fetal liver. Eur J Biochem 123: 311–315, 1982.<br />

84. ELLA KM, QI C, DOLAN JW, THOMPSON RP, AND MEIER KE. Characterization<br />

<strong>of</strong> a sph<strong>in</strong>gomyel<strong>in</strong>ase activity <strong>in</strong> Saccharomyces cerevisiae.<br />

Arch Biochem Biophys 340: 101–110, 1997.<br />

85. FENSOME AC, RODRIGUES-LIMA F, JOSEPHS M, PATERSON HF, AND KATAN<br />

M. A neutral magnesium-dependent sph<strong>in</strong>gomyel<strong>in</strong>ase is<strong>of</strong>orm associated<br />

with <strong>in</strong>tracellular membranes and reversibly <strong>in</strong>hibited by<br />

reactive oxygen species. J Biol Chem 275: 1128–1136, 2000.<br />

86. FIEDLER K, KOBAYASHI T, KURZCHALIA TV, AND SIMONS K. Glycosph<strong>in</strong>golipid-enriched,<br />

detergent-<strong>in</strong>soluble complexes <strong>in</strong> prote<strong>in</strong> sort<strong>in</strong>g<br />

<strong>in</strong> epithelial cells. Biochemistry 32: 6365–6373, 1993.<br />

87. FIEDLER K, PARTON RG, KELLNER R, ETZOLD T, AND SIMONS K. Vip36, a<br />

novel component <strong>of</strong> glycolipid rafts and exocytic carrier vesicles <strong>in</strong><br />

epithelial cells. EMBO J 13: 1729–1740, 1994.<br />

88. FIEDLER K AND SIMONS K. <strong>The</strong> role <strong>of</strong> N-glycans <strong>in</strong> the secretory<br />

pathway. Cell 81: 309–312, 1995.<br />

89. FISHMAN MA, MADYASTHA P, AND PRENSKY AL. <strong>The</strong> effect <strong>of</strong> undernutrition<br />

on the development <strong>of</strong> myel<strong>in</strong> <strong>in</strong> the rat central nervous<br />

system. Lipids 6: 458–465, 1971.<br />

90. FLEISCHER B, ZAMBRANO F, AND FLEISCHER S. Biochemical characterization<br />

<strong>of</strong> the Golgi complex <strong>of</strong> mammalian cells. J Supramol<br />

Struct 2: 737–750, 1974.<br />

91. FOLSCH H, OHNO H, BONIFACINO JS, AND MELLMAN I. A novel clathr<strong>in</strong><br />

adaptor complex mediates basolateral target<strong>in</strong>g <strong>in</strong> polarized epithelial<br />

cells. Cell 99: 189–198, 1999.<br />

92. FORSTNER GG, TANAKA K, AND ISSELBACHER KJ. Lipid composition <strong>of</strong>


1716 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

the isolated rat <strong>in</strong>test<strong>in</strong>al microvillus membrane. Biochem J 109:<br />

51–59, 1968.<br />

93. FRIANT S, ZANOLARI B, AND RIEZMAN H. Increased prote<strong>in</strong> k<strong>in</strong>ase or<br />

decreased PP2A activity bypasses sph<strong>in</strong>goid base requirement <strong>in</strong><br />

endocytosis. EMBO J 19: 2834–2844, 2000.<br />

94. FRIEDRICHSON T AND KURZCHALIA TV. Microdoma<strong>in</strong>s <strong>of</strong> GPI-anchored<br />

prote<strong>in</strong>s <strong>in</strong> liv<strong>in</strong>g cells revealed by crossl<strong>in</strong>k<strong>in</strong>g. Nature 394: 802–<br />

805, 1998.<br />

95. FUJIMOTO H, TADANO-ARITOMI K, TOKUMASU A, ITO K, HIKITA T, SUZUKI<br />

K, AND ISHIZUKA I. Requirement <strong>of</strong> sem<strong>in</strong>olipid <strong>in</strong> spermatogenesis<br />

revealed by UDP-galactose: ceramide galactosyltransferase-deficient<br />

mice. J Biol Chem 275: 22623–22626, 2000.<br />

96. FUJIMOTO T. GPI-anchored prote<strong>in</strong>s, glycosph<strong>in</strong>golipids, and sph<strong>in</strong>gomyel<strong>in</strong><br />

are sequestered to caveolae only after crossl<strong>in</strong>k<strong>in</strong>g.<br />

J Histochem Cytochem 44: 929–941, 1996.<br />

97. FUKASAWA M, NISHIJIMA M, AND HANADA K. Genetic evidence for<br />

ATP-dependent endoplasmic reticulum-to-Golgi apparatus traffick<strong>in</strong>g<br />

<strong>of</strong> ceramide for sph<strong>in</strong>gomyel<strong>in</strong> synthesis <strong>in</strong> Ch<strong>in</strong>ese hamster<br />

ovary cells. J Cell Biol 144: 673–685, 1999.<br />

98. FUNAKOSHI T, YASUDA S, FUKASAWA M, NISHIJIMA M, AND HANADA K.<br />

Reconstitution <strong>of</strong> ATP- and cytosol-dependent transport <strong>of</strong> de novo<br />

synthesized ceramide to the site <strong>of</strong> sph<strong>in</strong>gomyel<strong>in</strong> synthesis <strong>in</strong><br />

semi-<strong>in</strong>tact cells. J Biol Chem 275: 29938–29945, 2000.<br />

99. FUTERMAN AH, KHANIN R, AND SEGEL LA. Lipid diffusion <strong>in</strong> neurons.<br />

Nature 362: 119, 1993.<br />

100. FUTERMAN AH AND PAGANO RE. Determ<strong>in</strong>ation <strong>of</strong> the <strong>in</strong>tracellular<br />

sites and topology <strong>of</strong> glucosylceramide synthesis <strong>in</strong> rat liver. Biochem<br />

J 280: 295–302, 1991.<br />

101. FUTERMAN AH, STIEGER B, HUBBARD AL, AND PAGANO RE. Sph<strong>in</strong>gomyel<strong>in</strong><br />

synthesis <strong>in</strong> rat liver occurs predom<strong>in</strong>antly at the cis and<br />

medial cisternae <strong>of</strong> the Golgi apparatus. J Biol Chem 265: 8650–<br />

8657, 1990.<br />

102. GADELLA BM, GADELLA TWJ JR, COLENBRANDER B, VAN GOLDE LMG,<br />

AND LOPES-CARDOZO M. Visualization and quantification <strong>of</strong> glycolipid<br />

polarity dynamics <strong>in</strong> the plasma membrane <strong>of</strong> the mammalian<br />

spermatozoon. J Cell Sci 107: 2151–2163, 1994.<br />

103. GALBIATI F, VOLONTE D, MEANI D, MILLIGAN G, LUBLIN DM, LISANTI MP,<br />

AND PARENTI M. <strong>The</strong> dually acylated NH 2-term<strong>in</strong>al doma<strong>in</strong> <strong>of</strong> G(i1<br />

alpha) is sufficient to target a green fluorescent prote<strong>in</strong> reporter to<br />

caveol<strong>in</strong>-enriched plasma membrane doma<strong>in</strong>s: palmitoylation <strong>of</strong><br />

caveol<strong>in</strong>-1 is required for the recognition <strong>of</strong> dually acylated Gprote<strong>in</strong><br />

alpha subunits <strong>in</strong> vivo. J Biol Chem 274: 5843–5850, 1999.<br />

104. GARCIA-ARRANZ M, MALDONADO AM, MAZON MJ, AND PORTILLO F. Transcriptional<br />

control <strong>of</strong> yeast plasma membrane H()-ATPase by<br />

glucose. Clon<strong>in</strong>g and characterization <strong>of</strong> a new gene <strong>in</strong>volved <strong>in</strong><br />

this regulation. J Biol Chem 269: 18076–18082, 1994.<br />

105. GERDT S, LOCHNIT G, DENNIS RD, AND GEYER R. Isolation and structural<br />

analysis <strong>of</strong> three neutral glycosph<strong>in</strong>golipids from a mixed<br />

population <strong>of</strong> Caenorhabditis elegans (Nematoda: Rhabditida).<br />

Glycobiology 7: 265–275, 1997.<br />

106. GILLARD BK, HEATH JP, THURMON LT, AND MARCUS DM. Association <strong>of</strong><br />

glycosph<strong>in</strong>golipids with <strong>in</strong>termediate filaments <strong>of</strong> human umbilical<br />

ve<strong>in</strong> endothelial cells. Exp Cell Res 192: 433–444, 1991.<br />

107. GILLARD BK, THURMON LT, AND MARCUS DM. Association <strong>of</strong> glycosph<strong>in</strong>golipids<br />

with <strong>in</strong>termediate filaments <strong>of</strong> mesenchymal, epithelial,<br />

glial, and muscle cells. Cell Motil Cytoskeleton 21: 255–271,<br />

1992.<br />

108. GKANTIRAGAS I, BRÜGGER B, STÜVEN E, KALOYANOVA D, LI XY, LÖHR K,<br />

LOTTSPEICH F, WIELAND FT, AND HELMS JB. Sph<strong>in</strong>gomyel<strong>in</strong>-enriched<br />

microdoma<strong>in</strong>s at the Golgi complex. Mol Biol Cell. In press.<br />

109. GLEESON PA. Target<strong>in</strong>g <strong>of</strong> prote<strong>in</strong>s to the Golgi apparatus. Histochem<br />

Cell Biol 109: 517–532, 1998.<br />

110. GLICK BS AND MALHOTRA V. <strong>The</strong> curious status <strong>of</strong> the Golgi apparatus.<br />

Cell 95: 883–889, 1998.<br />

111. GRASSÉ MPP. Ultrastructure, polarite et reproduction de l’appareil<br />

de Golgi. CR Acad Sci Paris 245: 1278–1281, 1957.<br />

112. GRIFFITHS G, BACK R, AND MARSH M. A quantitative analysis <strong>of</strong> the<br />

endocytic pathway <strong>in</strong> baby hamster kidney cells. J Cell Biol 109:<br />

2703–2720, 1989.<br />

113. GROSS SK, LYERLA TA, EVANS JE, AND MCCLUER RH. Expression <strong>of</strong><br />

glycosph<strong>in</strong>golipids <strong>in</strong> serum-free primary cultures <strong>of</strong> mouse kidney<br />

cells: male-female differences and androgen sensitivity. Mol Cell<br />

Biochem 137: 25–31, 1994.<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

114. GROVE SN, BRACKER CE, AND MORRÉ DJ. Cytomembrane differentiation<br />

<strong>in</strong> the endoplasmic reticulum-Golgi apparatus-vesicle complex.<br />

Science 161: 171–173, 1968.<br />

115. GUT A, KAPPELER F, HYKA N, BALDA MS, HAURI HP, AND MATTER K.<br />

Carbohydrate-mediated Golgi to cell surface transport and apical<br />

target<strong>in</strong>g <strong>of</strong> membrane prote<strong>in</strong>s. EMBO J 17: 1919–1929, 1998.<br />

116. HAAK D, GABLE K, BEELER T, AND DUNN T. Hydroxylation <strong>of</strong> Saccharomyces<br />

cerevisiae ceramides requires Sur2p and Scs7p. J Biol<br />

Chem 272: 29704–29710, 1997.<br />

117. HAGMANN J AND FISHMAN PH. Detergent extraction <strong>of</strong> cholera tox<strong>in</strong><br />

and gangliosides from cultured cells and isolated membranes. Biochim<br />

Biophys Acta 720: 181–187, 1982.<br />

118. HAKOMORI S, HANDA K, IWABUCHI K, YAMAMURA S, AND PRINETTI A. New<br />

<strong>in</strong>sights <strong>in</strong> glycosph<strong>in</strong>golipid function: “glycosignal<strong>in</strong>g doma<strong>in</strong>,” a<br />

cell surface assembly <strong>of</strong> glycosph<strong>in</strong>golipids with signal transducer<br />

molecules, <strong>in</strong>volved <strong>in</strong> cell adhesion coupled with signal<strong>in</strong>g. Glycobiology<br />

8: xi-xix, 1998.<br />

119. HAKOMORI SI AND IGARASHI Y. Functional role <strong>of</strong> glycosph<strong>in</strong>golipids<br />

<strong>in</strong> cell recognition and signal<strong>in</strong>g. J Biochem 118: 1091–1103, 1995.<br />

120. HALDAR K. Sph<strong>in</strong>golipid synthesis and membrane formation by<br />

Plasmodium. Trends Cell Biol 6: 398–405, 1996.<br />

121. HANADA K, HARA T, FUKASAWA M, YAMAJI A, UMEDA M, AND NISHIJIMA<br />

M. Mammalian cell mutants resistant to a sph<strong>in</strong>gomyel<strong>in</strong>-directed<br />

cytolys<strong>in</strong>. Genetic and biochemical evidence for complex formation<br />

<strong>of</strong> the LCB1 prote<strong>in</strong> with the LCB2 prote<strong>in</strong> for ser<strong>in</strong>e palmitoyltransferase.<br />

J Biol Chem 273: 33787–33794, 1998.<br />

122. HANADA K, HARA T, AND NISHIJIMA M. Purification <strong>of</strong> the ser<strong>in</strong>e<br />

palmitoyltransferase complex responsible for sph<strong>in</strong>goid base synthesis<br />

by us<strong>in</strong>g aff<strong>in</strong>ity peptide chromatography techniques. J Biol<br />

Chem 275: 8409–8415, 2000.<br />

123. HANADA K, NISHIJIMA M, KISO M, HASEGAWA A, FUJITA S, OGAWA T, AND<br />

AKAMATSU Y. <strong>Sph<strong>in</strong>golipids</strong> are essential for the growth <strong>of</strong> Ch<strong>in</strong>ese<br />

hamster ovary cells. Restoration <strong>of</strong> the growth <strong>of</strong> a mutant defective<br />

<strong>in</strong> sph<strong>in</strong>goid base biosynthesis by exogenous sph<strong>in</strong>golipids.<br />

J Biol Chem 267: 23527–23533, 1992.<br />

124. HANNAN LA AND EDIDIN M. Traffic, polarity, and detergent solubility<br />

<strong>of</strong> a glycosylphosphatidyl<strong>in</strong>ositol-anchored prote<strong>in</strong> after LDL-deprivation<br />

<strong>of</strong> MDCK cells. J Cell Biol 133: 1265–1276, 1996.<br />

125. HANNAN LA, LISANTI MP, RODRIGUEZ-BOULAN E, AND EDIDIN M. Correctly<br />

sorted molecules <strong>of</strong> a GPI-anchored prote<strong>in</strong> are clustered<br />

and immobile when they arrive at the apical surface <strong>of</strong> MDCK cells.<br />

J Cell Biol 120: 353–358, 1993.<br />

126. HANNUN YA. Functions <strong>of</strong> ceramide <strong>in</strong> coord<strong>in</strong>at<strong>in</strong>g cellular responses<br />

to stress. Science 274: 1855–1859, 1996.<br />

127. HANNUN YA AND OBEID LM. Ceramide and the eukaryotic stress<br />

response. Biochem Soc Trans 25: 1171–1175, 1997.<br />

128. HARDER T, SCHEIFFELE P, VERKADE P, AND SIMONS K. Lipid doma<strong>in</strong><br />

structure <strong>of</strong> the plasma membrane revealed by patch<strong>in</strong>g <strong>of</strong> membrane<br />

components. J Cell Biol 141: 929–942, 1998.<br />

129. HARRIS JS, EPPS DE, DAVIO SR, AND KEZDY FJ. Evidence for transbilayer,<br />

tail-to-tail cholesterol dimers <strong>in</strong> dipalmitoylglycerophosphochol<strong>in</strong>e<br />

liposomes. Biochemistry 34: 3851–3857, 1995.<br />

130. HAY JC, KLUMPERMAN J, OORSCHOT V, STEEGMAIER M, KUO CS, AND<br />

SCHELLER RH. Localization, dynamics, and prote<strong>in</strong> <strong>in</strong>teractions reveal<br />

dist<strong>in</strong>ct roles for ER and Golgi SNAREs. J Cell Biol 141:<br />

1489–1502, 1998.<br />

131. HECHTBERGER P, ZINSER E, SAF R, HUMMEL K, PALTAUF F, AND DAUM G.<br />

Characterization, quantification and subcellular localization <strong>of</strong> <strong>in</strong>ositol-conta<strong>in</strong><strong>in</strong>g<br />

sph<strong>in</strong>golipids <strong>of</strong> the yeast, Saccharomyces cerevisiae.<br />

Eur J Biochem 225: 641–649, 1994.<br />

132. HEIDLER SA AND RADDING JA. Inositol phosphoryl transferases from<br />

human pathogenic fungi. Biochim Biophys Acta 1500: 147–152,<br />

2000.<br />

133. HERRMANN A, ZACHOWSKI A, AND DEVAUX PF. Prote<strong>in</strong>-mediated phospholipid<br />

translocation <strong>in</strong> the endoplasmic reticulum with a low<br />

lipid specificity. Biochemistry 29: 2023–2027, 1990.<br />

134. HERSCHKOWITZ N, MCKHANN GM, SAXENA S, AND SHOOTER EM. Characterization<br />

<strong>of</strong> sulphatide-conta<strong>in</strong><strong>in</strong>g lipoprote<strong>in</strong>s <strong>in</strong> rat bra<strong>in</strong>.<br />

J Neurochem 15: 1181–1188, 1968.<br />

135. HIGASHI H, OMORI A, AND YAMAGATA T. Calmodul<strong>in</strong>, a gangliosideb<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong>. B<strong>in</strong>d<strong>in</strong>g <strong>of</strong> gangliosides to calmodul<strong>in</strong> <strong>in</strong> the presence<br />

<strong>of</strong> calcium. J Biol Chem 267: 9831–9838, 1992.<br />

136. HIRSCHBERG K, MILLER CM, ELLENBERG J, PRESLEY JF, SIGGIA ED,


PHAIR RD, AND LIPPINCOTT-SCHWARTZ J. K<strong>in</strong>etic analysis <strong>of</strong> secretory<br />

prote<strong>in</strong> traffic and characterization <strong>of</strong> Golgi to plasma membrane<br />

transport <strong>in</strong>termediates <strong>in</strong> liv<strong>in</strong>g cells. J Cell Biol 143: 1485–1503,<br />

1998.<br />

137. HISE MK, MANTULIN WW, AND WEINMAN EJ. Fluidity and composition<br />

<strong>of</strong> brush border and basolateral membranes from rat kidney. Am J<br />

Physiol Renal Fluid Electrolyte Physiol 247: F434–F439, 1984.<br />

138. HOFMANN K AND DIXIT VM. Ceramide <strong>in</strong> apoptosis: does it really<br />

matter? Trends Biochem Sci 23: 374–377, 1998.<br />

139. HOFMANN K AND DIXIT VM. Reply to Kolesnick and Hannun, and<br />

Perry and Hannun. Trends Biochem Sci 24: 227, 1999.<br />

140. HOFMANN K, TOMIUK S, WOLFF G, AND STOFFEL W. Clon<strong>in</strong>g and characterization<br />

<strong>of</strong> the mammalian bra<strong>in</strong>-specific, Mg 2 -dependent neutral<br />

sph<strong>in</strong>gomyel<strong>in</strong>ase. Proc Natl Acad Sci USA 97: 5895–5900, 2000.<br />

141. HOLOPAINEN JM, LEHTONEN JY, AND KINNUNEN PK. Lipid microdoma<strong>in</strong>s<br />

<strong>in</strong> dimyristoylphosphatidylchol<strong>in</strong>e-ceramide liposomes.<br />

Chem Phys Lipids 88: 1–13, 1997.<br />

142. HOSTETLER KY, ZENNER BD, AND MORRIS HP. Phospholipid content <strong>of</strong><br />

mitochondrial and microsomal membranes from Morris hepatomas<br />

<strong>of</strong> vary<strong>in</strong>g growth rates. Cancer Res 39: 2978–2983, 1979.<br />

143. IBER H, VAN ECHTEN G, AND SANDHOFF K. Fractionation <strong>of</strong> primary<br />

cultured cerebellar neurons: distribution <strong>of</strong> sialyltransferases <strong>in</strong>volved<br />

<strong>in</strong> ganglioside biosynthesis. J Neurochem 58: 1533–1537,<br />

1992.<br />

144. ICHIKAWA S AND HIRABAYASHI Y. Glucosylceramide synthase and glycosph<strong>in</strong>golipid<br />

synthesis. Trends Cell Biol 8: 198–202, 1998.<br />

145. ICHIKAWA S, NAKAJO N, SAKIYAMA H, AND HIRABAYASHI Y. A mouse B16<br />

melanoma mutant deficient <strong>in</strong> glycolipids. Proc Natl Acad Sci USA<br />

91: 2703–2707, 1994.<br />

146. ITIN C, SCHINDLER R, AND HAURI HP. Target<strong>in</strong>g <strong>of</strong> prote<strong>in</strong> ERGIC-53<br />

to the ER/ERGIC/cis-Golgi recycl<strong>in</strong>g pathway. J Cell Biol 131:<br />

57–67, 1995.<br />

147. IWABUCHI K, HANDA K, AND HAKOMORI S. Separation <strong>of</strong> “glycosph<strong>in</strong>golipid<br />

signal<strong>in</strong>g doma<strong>in</strong>” from caveol<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g membrane fraction<br />

<strong>in</strong> mouse melanoma B16 cells and its role <strong>in</strong> cell adhesion<br />

coupled with signal<strong>in</strong>g. J Biol Chem 273: 33766–33773, 1998.<br />

148. JAIN MK AND WHITE HBD. Long-range order <strong>in</strong> biomembranes. Adv<br />

Lipid Res 15: 1–60, 1977.<br />

149. JASINSKA R, ZHANG QX, PILQUIL C, SINGH I, XU J, DEWALD J, DILLON DA,<br />

BERTHIAUME LG, CARMAN GM, WAGGONER DW, AND BRINDLEY DN.<br />

Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid<br />

and sph<strong>in</strong>golipid phosphate esters. Biochem J 340: 677–686,<br />

1999.<br />

150. JECKEL D, KARRENBAUER A, BIRK R, SCHMIDT RR, AND WIELAND F.<br />

Sph<strong>in</strong>gomyel<strong>in</strong> is synthesized <strong>in</strong> the cis Golgi. FEBS Lett 261:<br />

155–157, 1990.<br />

151. JECKEL D, KARRENBAUER A, BURGER KNJ, VAN MEER G, AND WIELAND F.<br />

Glucosylceramide is synthesized at the cytosolic surface <strong>of</strong> various<br />

Golgi subfractions. J Cell Biol 117: 259–267, 1992.<br />

152. JENKINS GM, RICHARDS A, WAHL T, MAO C, OBEID L, AND HANNUN Y.<br />

Involvement <strong>of</strong> yeast sph<strong>in</strong>golipids <strong>in</strong> the heat stress response <strong>of</strong><br />

Saccharomyces cerevisiae. J Biol Chem 272: 32566–32572, 1997.<br />

153. JEYAKUMAR M, BUTTERS TD, CORTINA-BORJA M, HUNNAM V, PROIA RL,<br />

PERRY VH, DWEK RA, AND PLATT FM. Delayed symptom onset and<br />

<strong>in</strong>creased life expectancy <strong>in</strong> Sandh<strong>of</strong>f disease mice treated with<br />

N-butyldeoxynojirimyc<strong>in</strong>. Proc Natl Acad Sci USA 96: 6388–6393,<br />

1999.<br />

154. KARLSSON KA. On the chemistry and occurrence <strong>of</strong> sph<strong>in</strong>golipid<br />

long-cha<strong>in</strong> bases. Chem Phys Lipids 5: 6–43, 1970.<br />

155. KARLSSON KA, SAMUELSSON BE, AND STEEN GO. <strong>The</strong> sph<strong>in</strong>golipid<br />

composition <strong>of</strong> bov<strong>in</strong>e kidney cortex, medulla and papilla. Biochim<br />

Biophys Acta 316: 317–335, 1973.<br />

156. KARLSSON KA, SAMUELSSON BE, AND STEEN GO. Detailed structure <strong>of</strong><br />

sph<strong>in</strong>gomyel<strong>in</strong>s and ceramides from different regions <strong>of</strong> bov<strong>in</strong>e<br />

kidney with special reference to long-cha<strong>in</strong> bases. Biochim Biophys<br />

Acta 316: 336–362, 1973.<br />

157. KARNOVSKY MJ, KLEINFELD AM, HOOVER RL, AND KLAUSNER RD. <strong>The</strong><br />

concept <strong>of</strong> lipid doma<strong>in</strong>s <strong>in</strong> membranes. J Cell Biol 94: 1–6, 1982.<br />

158. KAWAI H, ALLENDE ML, WADA R, KONO M, SANGO K, DENG C, MIYAKAWA<br />

T, CRAWLEY JN, WERTH N, BIERFREUND U, SANDHOFF K, AND PROIA RL.<br />

Mice express<strong>in</strong>g only monosialoganglioside GM3 exhibit lethal audiogenic<br />

seizures. J Biol Chem 276: 6885–6888, 2001.<br />

159. KAWAI K, FUJITA M, AND NAKAO M. Lipid components <strong>of</strong> two different<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1717<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

regions <strong>of</strong> an <strong>in</strong>test<strong>in</strong>al epithelial cell membrane <strong>of</strong> mouse. Biochim<br />

Biophys Acta 369: 222–233, 1974.<br />

160. KEENAN TW AND MORRÉ DJ. Phospholipid class and fatty acid composition<br />

<strong>of</strong> Golgi apparatus isolated from rat liver and comparison<br />

with other cell fractions. Biochemistry 9: 19–25, 1970.<br />

161. KELLER P AND SIMONS K. Cholesterol is required for surface transport<br />

<strong>of</strong> <strong>in</strong>fluenza virus hemagglut<strong>in</strong><strong>in</strong>. J Cell Biol 140: 1357–1367, 1998.<br />

162. KENWORTHY AK AND EDIDIN M. Distribution <strong>of</strong> a glycosylphosphatidyl<strong>in</strong>ositol-anchored<br />

prote<strong>in</strong> at the apical surface <strong>of</strong> MDCK cells<br />

exam<strong>in</strong>ed at a resolution <strong>of</strong> 100 A us<strong>in</strong>g imag<strong>in</strong>g fluorescence<br />

resonance energy transfer. J Cell Biol 142: 69–84, 1998.<br />

163. KENWORTHY AK, PETRANOVA N, AND EDIDIN M. High-resolution FRET<br />

microscopy <strong>of</strong> cholera tox<strong>in</strong> B-subunit and GPI-anchored prote<strong>in</strong>s<br />

<strong>in</strong> cell plasma membranes. Mol Biol Cell 11: 1645–1655, 2000.<br />

164. KILLIAN JA. Hydrophobic mismatch between prote<strong>in</strong>s and lipids <strong>in</strong><br />

membranes. Biochim Biophys Acta 1376: 401–415, 1998.<br />

165. KOBAYASHI T, STORRIE B, SIMONS K, AND DOTTI CG. A functional<br />

barrier to movement <strong>of</strong> lipids <strong>in</strong> polarized neurons. Nature 359:<br />

647–650, 1992.<br />

166. KOCH J, GARTNER S, LI CM, QUINTERN LE, BERNARDO K, LEVRAN O,<br />

SCHNABEL D, DESNICK RJ, SCHUCHMAN EH, AND SANDHOFF K. Molecular<br />

clon<strong>in</strong>g and characterization <strong>of</strong> a full-length complementary<br />

DNA encod<strong>in</strong>g human acid ceramidase. Identification <strong>of</strong> the first<br />

molecular lesion caus<strong>in</strong>g Farber disease. J Biol Chem 271: 33110–<br />

33115, 1996.<br />

167. KOHAMA T, OLIVERA A, EDSALL L, NAGIEC MM, DICKSON R, AND SPIEGEL<br />

S. Molecular clon<strong>in</strong>g and functional characterization <strong>of</strong> mur<strong>in</strong>e<br />

sph<strong>in</strong>gos<strong>in</strong>e k<strong>in</strong>ase. J Biol Chem 273: 23722–23728, 1998.<br />

168. KOK JW, BABIA T, AND HOEKSTRA D. Sort<strong>in</strong>g <strong>of</strong> sph<strong>in</strong>golipids <strong>in</strong> the<br />

endocytic pathway <strong>of</strong> HT29 cells. J Cell Biol 114: 231–239, 1991.<br />

169. KOK JW, BABIA T, KLAPPE K, EGEA G, AND HOEKSTRA D. Ceramide<br />

transport from endoplasmic reticulum to Golgi apparatus is not<br />

vesicle-mediated. Biochem J 333: 779–786, 1998.<br />

170. KOLESNICK R AND HANNUN YA. Ceramide and apoptosis. Trends<br />

Biochem Sci 24: 224–225, 1999.<br />

171. KOLTER T AND SANDHOFF K. <strong>Sph<strong>in</strong>golipids</strong>: their metabolic pathways<br />

and the pathobiochemistry <strong>of</strong> neurodegenerative diseases. Angew<br />

Chem Int Ed 38: 1532–1568, 1999.<br />

172. KOYNOVA R AND CAFFREY M. Phases and phase transitions <strong>of</strong> the<br />

sph<strong>in</strong>golipids. Biochim Biophys Acta 1255: 213–236, 1995.<br />

173. KOYNOVA R AND CAFFREY M. Phases and phase transitions <strong>of</strong> the<br />

phosphatidylchol<strong>in</strong>es. Biochim Biophys Acta 1376: 91–145, 1998.<br />

174. KÜBLER E, DOHLMAN HG, AND LISANTI MP. Identification <strong>of</strong> Triton<br />

X-100 <strong>in</strong>soluble membrane doma<strong>in</strong>s <strong>in</strong> the yeast Saccharomyces<br />

cerevisiae. Lipid requirements for target<strong>in</strong>g <strong>of</strong> heterotrimeric Gprote<strong>in</strong><br />

subunits. J Biol Chem 271: 32975–32980, 1996.<br />

175. KUNDU A, AVALOS RT, SANDERSON CM, AND NAYAK DP. Transmembrane<br />

doma<strong>in</strong> <strong>of</strong> <strong>in</strong>fluenza virus neuram<strong>in</strong>idase, a type II prote<strong>in</strong>,<br />

possesses an apical sort<strong>in</strong>g signal <strong>in</strong> polarized MDCK cells. J Virol<br />

70: 6508–6515, 1996.<br />

176. KURODA M, HASHIDA-OKADO T, YASUMOTO R, GOMI K, KATO I, AND<br />

TAKESAKO K. An aureobasid<strong>in</strong> A resistance gene isolated from Aspergillus<br />

is a homolog <strong>of</strong> yeast AUR1, a gene responsible for<br />

<strong>in</strong>ositol phosphorylceramide (IPC) synthase activity. Mol Gen<br />

Genet 261: 290–296, 1999.<br />

177. KURZCHALIA TV, DUPREE P, PARTON RG, KELLNER R, VIRTA H, LEHNERT<br />

M, AND SIMONS K. VIP21, a 21-kD membrane prote<strong>in</strong> is an <strong>in</strong>tegral<br />

component <strong>of</strong> trans-Golgi-network-derived transport vesicles.<br />

J Cell Biol 118: 1003–1014, 1992.<br />

178. KURZCHALIA TV AND PARTON RG. <strong>Membrane</strong> microdoma<strong>in</strong>s and<br />

caveolae. Curr Op<strong>in</strong> Cell Biol 11: 424–431, 1999.<br />

179. LADBROOKE BD, WILLIAMS RM, AND CHAPMAN D. Studies on lecith<strong>in</strong>cholesterol-water<br />

<strong>in</strong>teractions by differential scann<strong>in</strong>g calorimetry<br />

and X-ray diffraction. Biochim Biophys Acta 150: 333–340, 1968.<br />

180. LAFONT F, VERKADE P, GALLI T, WIMMER C, LOUVARD D, AND SIMONS K.<br />

Raft association <strong>of</strong> SNAP receptors act<strong>in</strong>g <strong>in</strong> apical traffick<strong>in</strong>g <strong>in</strong><br />

Mad<strong>in</strong>-Darby can<strong>in</strong>e kidney cells. Proc Natl Acad Sci USA 96:<br />

3734–3738, 1999.<br />

181. LANGE Y, D’ALESSANDRO JS, AND SMALL DM. <strong>The</strong> aff<strong>in</strong>ity <strong>of</strong> cholesterol<br />

for phosphatidylchol<strong>in</strong>e and sph<strong>in</strong>gomyel<strong>in</strong>. Biochim Biophys<br />

Acta 556: 388–398, 1979.<br />

182. LANGE Y, SWAISGOOD MH, RAMOS BV, AND STECK TL. Plasma membranes<br />

conta<strong>in</strong> half the phospholipid and 90% <strong>of</strong> the cholesterol


1718 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

and sph<strong>in</strong>gomyel<strong>in</strong> <strong>in</strong> cultured human fibroblasts. J Biol Chem 264:<br />

3786–3793, 1989.<br />

183. LANNERT H, BÜNNING C, JECKEL D, AND WIELAND FT. Lactosylceramide<br />

is synthesized <strong>in</strong> the lumen <strong>of</strong> the Golgi apparatus. FEBS Lett<br />

342: 91–96, 1994.<br />

184. LANNERT H, GORGAS K, MEIßNER I, WIELAND FT, AND JECKEL D. Functional<br />

organization <strong>of</strong> the Golgi apparatus <strong>in</strong> glycosph<strong>in</strong>golipid<br />

biosynthesis. Lactosylceramide and subsequent glycosph<strong>in</strong>golipids<br />

are formed <strong>in</strong> the lumen <strong>of</strong> the late Golgi. J Biol Chem 273:<br />

2939–2946, 1998.<br />

185. LANOIX J, OUWENDIJK J, LIN CC, STARK A, LOVE HD, OSTERMANN J, AND<br />

NILSSON T. GTP hydrolysis by Arf-1 mediates sort<strong>in</strong>g and concentration<br />

<strong>of</strong> Golgi resident enzymes <strong>in</strong>to functional COP I vesicles.<br />

EMBO J 18: 4935–4948, 1999.<br />

186. LANTERMAN MM AND SABA JD. Characterization <strong>of</strong> sph<strong>in</strong>gos<strong>in</strong>e k<strong>in</strong>ase<br />

(SK) activity <strong>in</strong> Saccharomyces cerevisiae and isolation <strong>of</strong><br />

SK-deficient mutants. Biochem J 332: 525–531, 1998.<br />

187. LE BIVIC A, QUARONI A, NICHOLS B, AND RODRIGUEZ-BOULAN E. Biogenetic<br />

pathways <strong>of</strong> plasma membrane prote<strong>in</strong>s <strong>in</strong> Caco-2, a human<br />

<strong>in</strong>test<strong>in</strong>al epithelial cell l<strong>in</strong>e. J Cell Biol 111: 1351–1361, 1990.<br />

188. LEDESMA MD, BRÜGGER B, BÜNNING C, WIELAND FT, AND DOTTI CG.<br />

Maturation <strong>of</strong> the axonal plasma membrane requires upregulation<br />

<strong>of</strong> sph<strong>in</strong>gomyel<strong>in</strong> synthesis and formation <strong>of</strong> prote<strong>in</strong>-lipid complexes.<br />

EMBO J 18: 1761–1771, 1999.<br />

189. LEDESMA MD, SIMONS K, AND DOTTI CG. Neuronal polarity: essential<br />

role <strong>of</strong> prote<strong>in</strong>-lipid complexes <strong>in</strong> axonal sort<strong>in</strong>g. Proc Natl Acad<br />

Sci USA 95: 3966–3971, 1998.<br />

190. LEE AG. How lipids <strong>in</strong>teract with an <strong>in</strong>tr<strong>in</strong>sic membrane prote<strong>in</strong>:<br />

the case <strong>of</strong> the calcium pump. Biochim Biophys Acta 1376: 381–<br />

390, 1998.<br />

191. LEE MJ, VAN BROCKLYN JR, THANGADA S, LIU CH, HAND AR, MEN-<br />

ZELEEV R, SPIEGEL S, AND HLA T. Sph<strong>in</strong>gos<strong>in</strong>e-1-phosphate as a ligand<br />

for the G prote<strong>in</strong> coupled receptor EDG-1. Science 279: 1552–1555,<br />

1998.<br />

192. LESTER RL AND DICKSON RC. <strong>Sph<strong>in</strong>golipids</strong> with <strong>in</strong>ositolphosphateconta<strong>in</strong><strong>in</strong>g<br />

head groups. Adv Lipid Res 26: 253–274, 1993.<br />

193. LESTER RL, WELLS GB, OXFORD G, AND DICKSON RC. Mutant stra<strong>in</strong>s <strong>of</strong><br />

Saccharomyces cerevisiae lack<strong>in</strong>g sph<strong>in</strong>golipids synthesize novel<br />

<strong>in</strong>ositol glycerophospholipids that mimic sph<strong>in</strong>golipid structures.<br />

J Biol Chem 268: 845–856, 1993.<br />

194. LETOURNEUR F, GAYNOR EC, HENNECKE S, DEMOLLIERE C, DUDEN R,<br />

EMR SD, RIEZMAN H, AND COSSON P. Coatomer is essential for retrieval<br />

<strong>of</strong> dilys<strong>in</strong>e-tagged prote<strong>in</strong>s to the endoplasmic reticulum.<br />

Cell 79: 1199–1207, 1994.<br />

195. LEVINE TP, WIGGINS CA, AND MUNRO S. Inositol phosphorylceramide<br />

synthase is located <strong>in</strong> the Golgi apparatus <strong>of</strong> Saccharomyces cerevisiae.<br />

Mol Biol Cell 11: 2267–2281, 2000.<br />

196. LEWIS MJ AND PELHAM HR. SNARE-mediated retrograde traffic from<br />

the Golgi complex to the endoplasmic reticulum. Cell 85: 205–215,<br />

1996.<br />

197. LIN CC, LOVE HD, GUSHUE JN, BERGERON JJ, AND OSTERMANN J.<br />

ER/Golgi <strong>in</strong>termediates acquire Golgi enzymes by brefeld<strong>in</strong> A-sensitive<br />

retrograde transport <strong>in</strong> vitro. J Cell Biol 147: 1457–1472, 1999.<br />

198. LIN X, MATTJUS P, PIKE HM, WINDEBANK AJ, AND BROWN RE. Clon<strong>in</strong>g<br />

and expression <strong>of</strong> glycolipid transfer prote<strong>in</strong> from bov<strong>in</strong>e and<br />

porc<strong>in</strong>e bra<strong>in</strong>. J Biol Chem 275: 5104–5110, 2000.<br />

199. LININGTON C AND RUMSBY MG. Accessibility <strong>of</strong> galactosyl ceramides<br />

to probe reagents <strong>in</strong> central nervous system myel<strong>in</strong>. J Neurochem<br />

35: 983–992, 1980.<br />

200. LISANTI MP, CARAS IW, DAVITZ MA, AND RODRIGUEZ-BOULAN E. A<br />

glycophospholipid membrane anchor acts as an apical target<strong>in</strong>g<br />

signal <strong>in</strong> polarized epithelial cells. J Cell Biol 109: 2145–2156, 1989.<br />

201. LISANTI MP, SARGIACOMO M, GRAEVE L, SALTIEL AR, AND RODRIGUEZ-<br />

BOULAN E. Polarized apical distribution <strong>of</strong> glycosyl-phosphatidyl<strong>in</strong>ositol-anchored<br />

prote<strong>in</strong>s <strong>in</strong> a renal epithelial cell l<strong>in</strong>e. Proc Natl<br />

Acad Sci USA 85: 9557–9561, 1988.<br />

202. LISANTI MP, SCHERER PE, TANG ZL, AND SARGIACOMO M. Caveolae,<br />

caveol<strong>in</strong> and caveol<strong>in</strong>-rich membrane doma<strong>in</strong>s: a signall<strong>in</strong>g hypothesis.<br />

Trends Cell Biol 4: 231–235, 1994.<br />

203. LISCUM L AND MUNN NJ. <strong>Intracellular</strong> cholesterol transport. Biochim<br />

Biophys Acta 1438: 19–37, 1999.<br />

204. LÖFGREN H AND PASCHER I. Molecular arrangements <strong>of</strong> sph<strong>in</strong>golipids.<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

<strong>The</strong> monolayer behaviour <strong>of</strong> ceramides. Chem Phys Lipids 20:<br />

273–284, 1977.<br />

205. LOURA LM AND PRIETO M. Dehydroergosterol structural organization<br />

<strong>in</strong> aqueous medium and <strong>in</strong> a model system <strong>of</strong> membranes. Biophys<br />

J 72: 2226–2236, 1997.<br />

206. LOVE HD, LIN CC, SHORT CS, AND OSTERMANN J. Isolation <strong>of</strong> functional<br />

Golgi-derived vesicles with a possible role <strong>in</strong> retrograde<br />

transport. J Cell Biol 140: 541–551, 1998.<br />

207. LUETTERFORST R, STANG E, ZORZI N, CAROZZI A, WAY M, AND PARTON<br />

RG. Molecular characterization <strong>of</strong> caveol<strong>in</strong> association with the<br />

Golgi complex: identification <strong>of</strong> a cis-Golgi target<strong>in</strong>g doma<strong>in</strong> <strong>in</strong> the<br />

caveol<strong>in</strong> molecule. J Cell Biol 145: 1443–1459, 1999.<br />

208. LUND-KATZ S, LABODA HM, MCLEAN LR, AND PHILLIPS MC. Influence <strong>of</strong><br />

molecular pack<strong>in</strong>g and phospholipid type on rates <strong>of</strong> cholesterol<br />

exchange. Biochemistry 27: 3416–3423, 1988.<br />

209. MACCIONI HJ, DANIOTTI JL, AND MARTINA JA. Organization <strong>of</strong> ganglioside<br />

synthesis <strong>in</strong> the Golgi apparatus. Biochim Biophys Acta<br />

1437: 101–118, 1999.<br />

210. MACEYKA M AND MACHAMER CE. Ceramide accumulation uncovers a<br />

cycl<strong>in</strong>g pathway for the cis-Golgi network marker, <strong>in</strong>fectious bronchitis<br />

virus M prote<strong>in</strong>. J Cell Biol 139: 1411–1418, 1997.<br />

211. MADORE N, SMITH KL, GRAHAM CH, JEN A, BRADY K, HALL S, AND<br />

MORRIS R. Functionally different GPI prote<strong>in</strong>s are organized <strong>in</strong><br />

different doma<strong>in</strong>s on the neuronal surface. EMBO J 18: 6917–6926,<br />

1999.<br />

212. MAGGIO B, CUMAR FA, AND CAPUTTO R. Interactions <strong>of</strong> gangliosides<br />

with phospholipids and glycosph<strong>in</strong>golipids <strong>in</strong> mixed monolayers.<br />

Biochem J 175: 1113–1118, 1978.<br />

213. MALGAT M, MAURICE A, AND BARAUD J. Sph<strong>in</strong>gomyel<strong>in</strong> and ceramidephosphoethanolam<strong>in</strong>e<br />

synthesis by microsomes and plasma membranes<br />

from rat liver and bra<strong>in</strong>. J Lipid Res 27: 251–260, 1986.<br />

214. MANDALA SM, FROMMER BR, THORNTON RA, KURTZ MB, YOUNG NM,<br />

CABELLO MA, GENILLOUD O, LIESCH JM, SMITH JL, AND HORN WS.<br />

Inhibition <strong>of</strong> ser<strong>in</strong>e palmitoyl-transferase activity by lipoxamyc<strong>in</strong>. J<br />

Antibiotics 47: 376–379, 1994.<br />

215. MANDALA SM, THORNTON R, TU Z, KURTZ MB, NICKELS J, BROACH J,<br />

MENZELEEV R, AND SPIEGEL S. Sph<strong>in</strong>goid base 1-phosphate phosphatase:<br />

a key regulator <strong>of</strong> sph<strong>in</strong>golipid metabolism and stress response.<br />

Proc Natl Acad Sci USA 95: 150–155, 1998.<br />

216. MANDALA SM, THORNTON RA, FROMMER BR, CUROTTO JE, ROZDILSKY W,<br />

KURTZ MB, GIACOBBE RA, BILLS GF, CABELLO MA, AND MARTIN I. <strong>The</strong><br />

discovery <strong>of</strong> australifung<strong>in</strong>, a novel <strong>in</strong>hibitor <strong>of</strong> sph<strong>in</strong>gan<strong>in</strong>e Nacyltransferase<br />

from Sporormiella australis produc<strong>in</strong>g organism,<br />

fermentation, isolation, and biological activity. J Antibiotics 48:<br />

349–356, 1995.<br />

217. MANDALA SM, THORNTON RA, FROMMER BR, DREIKORN S, AND KURTZ<br />

MB. Viridi<strong>of</strong>ung<strong>in</strong>s, novel <strong>in</strong>hibitors <strong>of</strong> sph<strong>in</strong>golipid synthesis. J<br />

Antibiotics 50: 339–343, 1997.<br />

218. MANDALA SM, THORNTON RA, MILLIGAN J, ROSENBACH M, GARCIA-CALVO<br />

M, BULL HG, HARRIS G, ABRUZZO GK, FLATTERY AM, GILL CJ, BARTIZAL<br />

K, DREIKORN S, AND KURTZ MB. Rustmic<strong>in</strong>, a potent antifungal agent,<br />

<strong>in</strong>hibits sph<strong>in</strong>golipid synthesis at <strong>in</strong>ositol phosphoceramide synthase.<br />

J Biol Chem 273: 14942–14949, 1998.<br />

219. MANDALA SM, THORNTON RA, ROSENBACH M, MILLIGAN J, GARCIA-CALVO<br />

M, BULL HG, AND KURTZ MB. Khafrefung<strong>in</strong>, a novel <strong>in</strong>hibitor <strong>of</strong><br />

sph<strong>in</strong>golipid synthesis. J Biol Chem 272: 32709–32714, 1997.<br />

220. MANDON EC, EHSES I, ROTHER J, VAN ECHTEN G, AND SANDHOFF K.<br />

Subcellular localization and membrane topology <strong>of</strong> ser<strong>in</strong>e palmitoyltransferase,<br />

3-dehydrosph<strong>in</strong>gan<strong>in</strong>e reductase, and sph<strong>in</strong>gan<strong>in</strong>e<br />

N-acyltransferase <strong>in</strong> mouse liver. J Biol Chem 267: 11144–11148,<br />

1992.<br />

221. MAO C, WADLEIGH M, JENKINS GM, HANNUN YA, AND OBEID LM.<br />

Identification and characterization <strong>of</strong> Saccharomyces cerevisiae<br />

dihydrosph<strong>in</strong>gos<strong>in</strong>e-1-phosphate phosphatase. J Biol Chem 272:<br />

28690–28694, 1997.<br />

222. MAO C, XU R, BIELAWSKA A, AND OBEID LM. Clon<strong>in</strong>g <strong>of</strong> an alkal<strong>in</strong>e<br />

ceramidase from Saccharomyces cerevisiae. An enzyme with reverse<br />

(CoA-<strong>in</strong>dependent) ceramide synthase activity. J Biol Chem<br />

275: 6876–6884, 2000.<br />

223. MAO C, XU R, BIELAWSKA A, SZULC ZM, AND OBEID LM. Clon<strong>in</strong>g and<br />

characterization <strong>of</strong> a Saccharomyces cerevisiae alkal<strong>in</strong>e ceramidase<br />

with specificity for dihydroceramide. J Biol Chem 275: 31369–<br />

31378, 2000.


224. MARKS DL, WU KJ, PAUL P, KAMISAKA Y, WATANABE R, AND PAGANO RE.<br />

Oligomerization and topology <strong>of</strong> the Golgi membrane prote<strong>in</strong> glucosylceramide<br />

synthase. J Biol Chem 274: 451–456, 1999.<br />

225. MARRS JA, ANDERSSON-FISONE C, JEONG MC, COHEN-GOULD L, ZURZOLO<br />

C, NABI IR, RODRIGUEZ-BOULAN E, AND NELSON WJ. Plasticity <strong>in</strong><br />

epithelial cell phenotype: modulation by expression <strong>of</strong> different<br />

cadher<strong>in</strong> cell adhesion molecules. J Cell Biol 129: 507–519, 1995.<br />

226. MARTIN OC AND PAGANO RE. Internalization and sort<strong>in</strong>g <strong>of</strong> a fluorescent<br />

analogue <strong>of</strong> glucosylceramide to the Golgi apparatus <strong>of</strong><br />

human sk<strong>in</strong> fibroblasts: utilization <strong>of</strong> endocytic and nonendocytic<br />

transport mechanisms. J Cell Biol 125: 769–781, 1994.<br />

227. MARTIN-BELMONTE F, PUERTOLLANO R, MILLAN J, AND ALONSO MA. <strong>The</strong><br />

MAL proteolipid is necessary for the overall apical delivery <strong>of</strong><br />

membrane prote<strong>in</strong>s <strong>in</strong> the polarized epithelial Mad<strong>in</strong>-Darby can<strong>in</strong>e<br />

kidney and Fischer rat thyroid cell l<strong>in</strong>es. Mol Biol Cell 11: 2033–<br />

2045, 2000.<br />

228. MARTINEZ-MENARGUEZ JA, GEUZE HJ, SLOT JW, AND KLUMPERMAN J.<br />

Vesicular tubular clusters between the ER and Golgi mediate concentration<br />

<strong>of</strong> soluble secretory prote<strong>in</strong>s by exclusion from COPIcoated<br />

vesicles. Cell 98: 81–90, 1999.<br />

229. MASIBAY AS, BALAJI PV, BOEGGEMAN EE, AND QASBA PK. Mutational<br />

analysis <strong>of</strong> the Golgi retention signal <strong>of</strong> bov<strong>in</strong>e beta-1,4-galactosyltransferase.<br />

J Biol Chem 268: 9908–9916, 1993.<br />

230. MATTER K, BRAUCHBAR M, BUCHER K, AND HAURI HP. Sort<strong>in</strong>g <strong>of</strong><br />

endogenous plasma membrane prote<strong>in</strong>s occurs from two sites <strong>in</strong><br />

cultured human <strong>in</strong>test<strong>in</strong>al epithelial cells (Caco-2). Cell 60: 429–<br />

437, 1990.<br />

231. MATYAS GR AND MORRÉ DJ. Subcellular distribution and biosynthesis<br />

<strong>of</strong> rat liver gangliosides. Biochim Biophys Acta 921: 599–614,<br />

1987.<br />

232. MAULIK PR AND SHIPLEY GG. Interactions <strong>of</strong> N-stearoyl sph<strong>in</strong>gomyel<strong>in</strong><br />

with cholesterol and dipalmitoylphosphatidylchol<strong>in</strong>e <strong>in</strong> bilayer<br />

membranes. Biophys J 70: 2256–2265, 1996.<br />

233. MAYS RW, SIEMERS KA, FRITZ BA, LOWE AW, VAN MEER G, AND NELSON<br />

WJ. Hierarchy <strong>of</strong> mechanisms <strong>in</strong>volved <strong>in</strong> generat<strong>in</strong>g Na/K-ATPase<br />

polarity <strong>in</strong> MDCK epithelial cells. J Cell Biol 130: 1105–1115, 1995.<br />

234. MCCONNELL HM, WRIGHT KL, AND MCFARLAND BG. <strong>The</strong> fraction <strong>of</strong> the<br />

lipid <strong>in</strong> a biological membrane that is <strong>in</strong> a fluid state: a sp<strong>in</strong> label<br />

assay. Biochem Biophys Res Commun 47: 273–281, 1972.<br />

235. MCINTOSH TJ, SIMON SA, NEEDHAM D, AND HUANG C. Structure and<br />

cohesive properties <strong>of</strong> sph<strong>in</strong>gomyel<strong>in</strong>/cholesterol bilayers. Biochemistry<br />

31: 2012–2020, 1992.<br />

236. MCNEW JA, PARLATI F, FUKUDA R, JOHNSTON RJ, PAZ K, PAUMET F,<br />

SOLLNER TH, AND ROTHMAN JE. Compartmental specificity <strong>of</strong> cellular<br />

membrane fusion encoded <strong>in</strong> SNARE prote<strong>in</strong>s. Nature 407: 153–<br />

159, 2000.<br />

237. MELKONIAN KA, OSTERMEYER AG, CHEN JZ, ROTH MG, AND BROWN DA.<br />

Role <strong>of</strong> lipid modifications <strong>in</strong> target<strong>in</strong>g prote<strong>in</strong>s to detergent-resistant<br />

membrane rafts. Many raft prote<strong>in</strong>s are acylated, while few are<br />

prenylated. J Biol Chem 274: 3910–3917, 1999.<br />

238. MELKONIAN M, BECKER B, AND BECKER D. Scale formation <strong>in</strong> algae. J<br />

Electron Microsc Tech 17: 165–178, 1991.<br />

239. MELLMAN I. Endocytosis and molecular sort<strong>in</strong>g. Annu Rev Cell Dev<br />

Biol 12: 575–625, 1996.<br />

240. MERRILL AH JR AND SWEELEY CC. <strong>Sph<strong>in</strong>golipids</strong>: metabolism and cell<br />

signall<strong>in</strong>g. In: Biochemistry <strong>of</strong> Lipids, Lipoprote<strong>in</strong>s and <strong>Membrane</strong>s,<br />

edited by Vance D and Vance JE. Amsterdam: Elsevier,<br />

1996, p. 309–339, 1996.<br />

241. MICHEL C, VAN ECHTEN-DECKERT G, ROTHER J, SANDHOFF K, WANG E,<br />

AND MERRILL AH JR. Characterization <strong>of</strong> ceramide synthesis: a dihydroceramide<br />

desaturase <strong>in</strong>troduces the 4,5-trans-double bond <strong>of</strong><br />

sph<strong>in</strong>gos<strong>in</strong>e at the level <strong>of</strong> dihydroceramide. J Biol Chem 272:<br />

22432–22437, 1997.<br />

242. MILLER-PODRAZA H, BRADLEY RM, AND FISHMAN PH. Biosynthesis and<br />

localization <strong>of</strong> gangliosides <strong>in</strong> cultured cells. Biochemistry 21:<br />

3260–3265, 1982.<br />

243. MILLER-PODRAZA H AND FISHMAN PH. Soluble gangliosides <strong>in</strong> cultured<br />

neurotumor cells. J Neurochem 41: 860–867, 1983.<br />

244. MILLER-PRODRAZA H AND FISHMAN PH. Effect <strong>of</strong> drugs and temperature<br />

on biosynthesis and transport <strong>of</strong> glycosph<strong>in</strong>golipids <strong>in</strong> cultured<br />

neurotumor cells. Biochim Biophys Acta 804: 44–51, 1984.<br />

245. MIYAKE Y, KOZUTSUMI Y, NAKAMURA S, FUJITA T, AND KAWASAKI T.<br />

Ser<strong>in</strong>e palmitoyltransferase is the primary target <strong>of</strong> a sph<strong>in</strong>gos<strong>in</strong>e-<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1719<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

like immunosuppressant, ISP-1/myrioc<strong>in</strong>. Biochem Biophys Res<br />

Commun 211: 396–403, 1995.<br />

246. MÖBIUS W, HERZOG V, SANDHOFF K, AND SCHWARZMANN G. <strong>Intracellular</strong><br />

distribution <strong>of</strong> a biot<strong>in</strong>-labeled ganglioside, GM1, by immunoelectron<br />

microscopy after endocytosis <strong>in</strong> fibroblasts. J Histochem Cytochem<br />

47: 1005–1014, 1999.<br />

247. MOLITORIS BA AND SIMON FR. Renal cortical brush-border and basolateral<br />

membranes: cholesterol and phospholipid composition and<br />

relative turnover. J Membr Biol 83: 207–215, 1985.<br />

248. MOLLENHAUER HH AND MORRE DJ. Perspectives on Golgi apparatus<br />

form and function. J Electron Microsc Tech 17: 2–14, 1991.<br />

249. MOREAU P, CASSAGNE C, KEENAN TW, AND MORRÉ DJ. Ceramide<br />

excluded from cell-free vesicular lipid transfer from endoplasmic<br />

reticulum to Golgi apparatus: evidence for lipid sort<strong>in</strong>g. Biochim<br />

Biophys Acta 1146: 9–16, 1993.<br />

250. MUKHERJEE S AND CHATTOPADHYAY A. <strong>Membrane</strong> organization at low<br />

cholesterol concentrations: a study us<strong>in</strong>g 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled<br />

cholesterol. Biochemistry 35: 1311–1322, 1996.<br />

251. MUKHERJEE S, SOE TT, AND MAXFIELD FR. Endocytic sort<strong>in</strong>g <strong>of</strong> lipid<br />

analogues differ<strong>in</strong>g solely <strong>in</strong> the chemistry <strong>of</strong> their hydrophobic<br />

tails. J Cell Biol 144: 1271–1284, 1999.<br />

252. MUNIZ M AND RIEZMAN H. <strong>Intracellular</strong> transport <strong>of</strong> GPI-anchored<br />

prote<strong>in</strong>s. EMBO J 19: 10–15, 2000.<br />

253. MUNRO S. Sequences with<strong>in</strong> and adjacent to the transmembrane<br />

segment <strong>of</strong> alpha-2,6-sialyltransferase specify Golgi retention.<br />

EMBO J 10: 3577–3588, 1991.<br />

254. MUNRO S. An <strong>in</strong>vestigation <strong>of</strong> the role <strong>of</strong> transmembrane doma<strong>in</strong>s <strong>in</strong><br />

Golgi prote<strong>in</strong> retention. EMBO J 14: 4695–4704, 1995.<br />

255. MUNRO S. Localization <strong>of</strong> prote<strong>in</strong>s to the Golgi apparatus. Trends<br />

Cell Biol 8: 11–15, 1998.<br />

256. MURATA M, PERÄNEN J, SCHREINER R, WIELAND F, KURZCHALIA TV, AND<br />

SIMONS K. VIP21/caveol<strong>in</strong> is a cholesterol-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>. Proc Natl<br />

Acad Sci USA 92: 10339–10343, 1995.<br />

257. MUSCH A, XU H, SHIELDS D, AND RODRIGUEZ-BOULAN E. Transport <strong>of</strong><br />

vesicular stomatitis virus G prote<strong>in</strong> to the cell surface is signal<br />

mediated <strong>in</strong> polarized and nonpolarized cells. J Cell Biol 133:<br />

543–558, 1996.<br />

258. NAGIEC MM, BALTISBERGER JA, WELLS GB, LESTER RL, AND DICKSON<br />

RC. <strong>The</strong> LCB2 gene <strong>of</strong> Saccharomyces and the related LCB1 gene<br />

encode subunits <strong>of</strong> ser<strong>in</strong>e palmitoyltransferase, the <strong>in</strong>itial enzyme<br />

<strong>in</strong> sph<strong>in</strong>golipid synthesis. Proc Natl Acad Sci USA 91: 7899–7902,<br />

1994.<br />

259. NAGIEC MM, NAGIEC EE, BALTISBERGER JA, WELLS GB, LESTER RL, AND<br />

DICKSON RC. Sph<strong>in</strong>golipid synthesis as a target for antifungal drugs.<br />

Complementation <strong>of</strong> the <strong>in</strong>ositol phosphorylceramide synthase defect<br />

<strong>in</strong> a mutant stra<strong>in</strong> <strong>of</strong> Saccharomyces cerevisiae by the AUR1<br />

gene. J Biol Chem 272: 9809–9817, 1997.<br />

260. NAGIEC MM, SKRZYPEK M, NAGIEC EE, LESTER RL, AND DICKSON RC.<br />

<strong>The</strong> LCB4 (YOR171c) and LCB5 (YLR260w) genes <strong>of</strong> Saccharomyces<br />

encode sph<strong>in</strong>goid long cha<strong>in</strong> base k<strong>in</strong>ases. J Biol Chem 273:<br />

19437–19442, 1998.<br />

261. NAGIEC MM, WELLS GB, LESTER RL, AND DICKSON RC. A suppressor<br />

gene that enables Saccharomyces cerevisiae to grow without mak<strong>in</strong>g<br />

sph<strong>in</strong>golipids encodes a prote<strong>in</strong> that resembles an Escherichia<br />

coli fatty acyltransferase. J Biol Chem 268: 22156–22163, 1993.<br />

262. NEZIL FA AND BLOOM M. Comb<strong>in</strong>ed <strong>in</strong>fluence <strong>of</strong> cholesterol and<br />

synthetic amphiphillic peptides upon bilayer thickness <strong>in</strong> model<br />

membranes. Biophys J 61: 1176–1183, 1992.<br />

263. NILSSON OS AND DALLNER G. Enzyme and phospholipid asymmetry <strong>in</strong><br />

liver microsomal membranes. J Cell Biol 72: 568–583, 1977.<br />

264. NILSSON OS AND DALLNER G. Transverse asymmetry <strong>of</strong> phospholipids<br />

<strong>in</strong> subcellular membranes <strong>of</strong> rat liver. Biochim Biophys Acta 464:<br />

453–458, 1977.<br />

265. NILSSON T AND WARREN GB. Retention and retrieval <strong>in</strong> the endoplasmic<br />

reticulum and the Golgi apparatus. Curr Op<strong>in</strong> Cell Biol 6:<br />

517–521, 1994.<br />

266. NISHIMURA K. Phytosph<strong>in</strong>gos<strong>in</strong>e is a characteristic component <strong>of</strong> the<br />

glycolipids <strong>in</strong> the vertebrate <strong>in</strong>test<strong>in</strong>e. Comp Biochem Physiol 86:<br />

149–154, 1987.<br />

267. NOMURA T, TAKIZAWA M, AOKI J, ARAI H, INOUE K, WAKISAKA E,<br />

YOSHIZUKA N, IMOKAWA G, DOHMAE N, TAKIO K, HATTORI M, AND<br />

MATSUO N. Purification, cDNA clon<strong>in</strong>g, and expression <strong>of</strong> UDP-Gal:


1720 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

glucosylceramide beta-1,4-galactosyltransferase from rat bra<strong>in</strong>.<br />

J Biol Chem 273: 13570–13577, 1998.<br />

268. O’BRIEN JS, SAMPSON EL, AND STERN MB. Lipid composition <strong>of</strong><br />

myel<strong>in</strong> from the peripheral nervous system. Intradural sp<strong>in</strong>al roots.<br />

J Neurochem 14: 357–365, 1967.<br />

269. OH CS, TOKE DA, MANDALA S, AND MARTIN CE. ELO2 and ELO3,<br />

homologues <strong>of</strong> the Saccharomyces cerevisiae ELO1 gene, function<br />

<strong>in</strong> fatty acid elongation and are required for sph<strong>in</strong>golipid formation.<br />

J Biol Chem 272: 17376–17384, 1997.<br />

270. ORCI L, MALHOTRA V, AMHERDT M, SERAFINI T, AND ROTHMAN JE.<br />

Dissection <strong>of</strong> a s<strong>in</strong>gle round <strong>of</strong> vesicular transport: sequential<br />

<strong>in</strong>termediates for <strong>in</strong>tercisternal movement <strong>in</strong> the Golgi stack. Cell<br />

56: 357–368, 1989.<br />

271. ORCI L, MONTESANO R, MEDA P, MALAISSE-LAGAE F, BROWN D, PERRE-<br />

LET A, AND VASSALLI P. Heterogeneous distribution <strong>of</strong> filip<strong>in</strong>-cholesterol<br />

complexes across the cisternae <strong>of</strong> the Golgi apparatus. Proc<br />

Natl Acad Sci USA 78: 293–297, 1981.<br />

272. ORCI L, RAVAZZOLA M, VOLCHUK A, ENGEL T, GMACHL M, AMHERDT M,<br />

PERRELET A, SÖLLNER TH, AND ROTHMAN JE. Anterograde flow <strong>of</strong><br />

cargo across the Golgi stack potentially mediated via bidirectional<br />

“percolat<strong>in</strong>g” COPI vesicles. Proc Natl Acad Sci USA 97: 10400–<br />

10405, 2000.<br />

273. ORCI L, SCHEKMAN R, AND PERRELET A. Interleaflet clear space is<br />

reduced <strong>in</strong> the membrane <strong>of</strong> COP I and COP II-coated buds/vesicles.<br />

Proc Natl Acad Sci USA 93: 8968–8970, 1996.<br />

274. ORCI L, STAMNES M, RAVAZZOLA M, AMHERDT M, PERRELET A, SOLLNER<br />

TH, AND ROTHMAN JE. Bidirectional transport by dist<strong>in</strong>ct populations<br />

<strong>of</strong> COPI-coated vesicles. Cell 90: 335–349, 1997.<br />

275. OSTERMANN J, ORCI L, TANI K, AMHERDT M, RAVAZZOLA M, ELAZAR Z,<br />

AND ROTHMAN JE. Stepwise assembly <strong>of</strong> functionally active transport<br />

vesicles. Cell 75: 1015–1025, 1993.<br />

276. PARTON RG. Ultrastructural localization <strong>of</strong> gangliosides; GM1 is<br />

concentrated <strong>in</strong> caveolae. J Histochem Cytochem 42: 155–166,<br />

1994.<br />

277. PARTON RG. Caveolae and caveol<strong>in</strong>s. Curr Op<strong>in</strong> Cell Biol 8: 542–<br />

548, 1996.<br />

278. PASCHER I. Molecular arrangements <strong>in</strong> sph<strong>in</strong>golipids. Conformation<br />

and hydrogen bond<strong>in</strong>g <strong>of</strong> ceramide and their implication on membrane<br />

stability and permeability. Biochim Biophys Acta 455: 433–<br />

451, 1976.<br />

279. PASTOR RW, VENABLE RM, AND KARPLUS M. Model for the structure <strong>of</strong><br />

the lipid bilayer. Proc Natl Acad Sci USA 88: 892–896, 1991.<br />

280. PATTON JL AND LESTER RL. <strong>The</strong> phospho<strong>in</strong>ositol sph<strong>in</strong>golipids <strong>of</strong><br />

Saccharomyces cerevisiae are highly localized <strong>in</strong> the plasma membrane.<br />

J Bacteriol 173: 3101–3108, 1991.<br />

281. PATTON JL, SRINIVASAN B, DICKSON RC, AND LESTER RL. Phenotypes <strong>of</strong><br />

sph<strong>in</strong>golipid-dependent stra<strong>in</strong>s <strong>of</strong> Saccharomyces cerevisiae. J<br />

Bacteriol 174: 7180–7184, 1992.<br />

282. PEDRAZZINI E, VILLA A, AND BORGESE N. A mutant cytochrome b5 with<br />

a lengthened membrane anchor escapes from the endoplasmic<br />

reticulum and reaches the plasma membrane. Proc Natl Acad Sci<br />

USA 93: 4207–4212, 1996.<br />

283. PELHAM H. Gett<strong>in</strong>g stuck <strong>in</strong> the Golgi. Traffic 1: 191–192, 2000.<br />

284. PELHAM HR. Sort<strong>in</strong>g and retrieval between the endoplasmic reticulum<br />

and Golgi apparatus. Curr Op<strong>in</strong> Cell Biol 7: 530–535, 1995.<br />

285. PELHAM HR. Gett<strong>in</strong>g through the Golgi complex. Trends Cell Biol 8:<br />

45–49, 1998.<br />

286. PELHAM HR AND ROTHMAN JE. <strong>The</strong> debate about transport <strong>in</strong> the<br />

Golgi. Two sides <strong>of</strong> the same co<strong>in</strong>? Cell 102: 713–719, 2000.<br />

287. PLATT FM, NEISES GR, REINKENSMEIER G, TOWNSEND MJ, PERRY VH,<br />

PROIA RL, WINCHESTER B, DWEK RA, AND BUTTERS TD. Prevention <strong>of</strong><br />

lysosomal storage <strong>in</strong> Tay-Sachs mice treated with N-butyldeoxynojirimyc<strong>in</strong>.<br />

Science 276: 428–431, 1997.<br />

288. POLISHCHUK RS, POLISHCHUK EV, MARRA P, ALBERTI S, BUCCIONE R,<br />

LUINI A, AND MIRONOV AA. Correlative light-electron microscopy<br />

reveals the tubular-saccular ultrastructure <strong>of</strong> carriers operat<strong>in</strong>g<br />

between Golgi apparatus and plasma membrane. J Cell Biol 148:<br />

45–58, 2000.<br />

289. PRALLE A, KELLER P, FLORIN EL, SIMONS K, AND HORBER JK. Sph<strong>in</strong>golipid-cholesterol<br />

rafts diffuse as small entities <strong>in</strong> the plasma membrane<br />

<strong>of</strong> mammalian cells. J Cell Biol 148: 997–1008, 2000.<br />

290. PRALLE A, PRUMMER M, FLORIN EL, STELZER EHK, AND HORBER JKH.<br />

Three-dimensional high-resolution particle track<strong>in</strong>g for optical<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

tweezers by forward scattered light. Microsc Res Tech 44: 378–386,<br />

1999.<br />

291. PUERTOLLANO R, MARTIN-BELMONTE F, MILLAN J, DE MARCO MC, ALBAR<br />

JP, KREMER L, AND ALONSO MA. <strong>The</strong> MAL proteolipid is necessary for<br />

normal apical transport and accurate sort<strong>in</strong>g <strong>of</strong> the <strong>in</strong>fluenza virus<br />

hemagglut<strong>in</strong><strong>in</strong> <strong>in</strong> Mad<strong>in</strong>-Darby can<strong>in</strong>e kidney cells. J Cell Biol 145:<br />

141–151, 1999.<br />

292. PUOTI A, DESPONDS C, AND CONZELMANN A. Biosynthesis <strong>of</strong> mannosyl<strong>in</strong>ositolphosphoceramide<br />

<strong>in</strong> Saccharomyces cerevisiae is dependent<br />

on genes controll<strong>in</strong>g the flow <strong>of</strong> secretory vesicles from<br />

the endoplasmic reticulum to the Golgi. J Cell Biol 113: 515–525,<br />

1991.<br />

293. PURI V, WATANABE R, DOMINGUEZ M, SUN X, WHEATLEY CL, MARKS DL,<br />

AND PAGANO RE. Cholesterol modulates membrane traffic along the<br />

endocytic pathway <strong>in</strong> sph<strong>in</strong>golipid-storage diseases. Nature Cell<br />

Biol 1: 386–388, 1999.<br />

294. RADHAKRISHNAN A, ANDERSON TG, AND MCCONNELL HM. Condensed<br />

complexes, rafts, and the chemical activity <strong>of</strong> cholesterol <strong>in</strong> membranes.<br />

Proc Natl Acad Sci USA 97: 12422–12427, 2000.<br />

295. RAGGERS RJ, POMORSKI T, HOLTHUIS JCM, KAELIN N, AND VAN MEER G.<br />

Lipid traffic: the ABC <strong>of</strong> transbilayer movement. Traffic 1: 226–234,<br />

2000.<br />

296. RAMSTEDT B AND SLOTTE JP. Interaction <strong>of</strong> cholesterol with sph<strong>in</strong>gomyel<strong>in</strong>s<br />

and acyl-cha<strong>in</strong>-matched phosphatidylchol<strong>in</strong>es: a comparative<br />

study <strong>of</strong> the effect <strong>of</strong> the cha<strong>in</strong> length. Biophys J 76:<br />

908–915, 1999.<br />

297. RAWYLER AJ, ROELOFSEN B, OP DEN KAMP JAF, AND VAN DEENEN LLM.<br />

Isolation and characterization <strong>of</strong> plasma membranes from Friend<br />

erythroleukaemic cells. A study with sph<strong>in</strong>gomyel<strong>in</strong>ase C. Biochim<br />

Biophys Acta 730: 130–138, 1983.<br />

298. RAYNER JC AND PELHAM HR. Transmembrane doma<strong>in</strong>-dependent<br />

sort<strong>in</strong>g <strong>of</strong> prote<strong>in</strong>s to the ER and plasma membrane <strong>in</strong> yeast. EMBO<br />

J 16: 1832–1841, 1997.<br />

299. RECKTENWALD DJ AND MCCONNELL HM. Phase equilibria <strong>in</strong> b<strong>in</strong>ary<br />

mixtures <strong>of</strong> phosphatidylchol<strong>in</strong>e and cholesterol. Biochemistry 20:<br />

4505–4510, 1981.<br />

300. REISS-HUSSON F. Structure <strong>of</strong> liquid-crystall<strong>in</strong>e phases <strong>of</strong> different<br />

phospholipids, monoglycerides, sph<strong>in</strong>golipids <strong>in</strong> the absence or<br />

presence <strong>of</strong> water. J Mol Biol 25: 363–382, 1967.<br />

301. REITZ RC, THOMPSON JA, AND MORRIS HP. Mitochondrial and microsomal<br />

phospholipids <strong>of</strong> Morris hepatoma 7777. Cancer Res 37:<br />

561–567, 1977.<br />

302. RENKONEN O, GAHMBERG CG, SIMONS K, AND KÄÄRIÄINEN L. <strong>The</strong> lipids<br />

<strong>of</strong> the plasma membranes and endoplasmic reticulum from cultured<br />

baby hamster kidney cells (BHK21). Biochim Biophys Acta<br />

255: 66–78, 1972.<br />

303. REVARDEL E, BONNEAU M, DURRENS P, AND AIGLE M. Characterization<br />

<strong>of</strong> a new gene family develop<strong>in</strong>g pleiotropic phenotypes upon<br />

mutation <strong>in</strong> Saccharomyces cerevisiae. Biochim Biophys Acta<br />

1263: 261–265, 1995.<br />

304. RIETVELD A, NEUTZ S, SIMONS K, AND EATON S. Association <strong>of</strong> steroland<br />

glycosylphosphatidyl<strong>in</strong>ositol-l<strong>in</strong>ked prote<strong>in</strong>s with Drosophila<br />

raft lipid microdoma<strong>in</strong>s. J Biol Chem 274: 12049–12054, 1999.<br />

305. RIETVELD A AND SIMONS K. <strong>The</strong> differential miscibility <strong>of</strong> lipids as the<br />

basis for the formation <strong>of</strong> functional membrane rafts. Biochim<br />

Biophys Acta 1376: 467–479, 1998.<br />

306. RODRIGUEZ-BOULAN E AND GONZALEZ A. Glycans <strong>in</strong> post-Golgi apical<br />

target<strong>in</strong>g: sort<strong>in</strong>g signals or structural props? Trends Cell Biol 9:<br />

291–294, 1999.<br />

307. ROPER K, CORBEIL D, AND HUTTNER WB. Retention <strong>of</strong> prom<strong>in</strong><strong>in</strong> <strong>in</strong><br />

microvilli reveals dist<strong>in</strong>ct cholesterol-based lipid micro-doma<strong>in</strong>s <strong>in</strong><br />

the apical plasma membrane. Nature Cell Biol 2: 582–592, 2000.<br />

308. ROSALES FRITZ VM AND MACCIONI HJ. Effects <strong>of</strong> brefeld<strong>in</strong> A on<br />

synthesis and <strong>in</strong>tracellular transport <strong>of</strong> ganglioside GT3 by chick<br />

embryo ret<strong>in</strong>a cells. J Neurochem 65: 1859–1864, 1995.<br />

309. ROTHMAN JE. Mechanism <strong>of</strong> <strong>in</strong>tracellular prote<strong>in</strong> transport. Nature<br />

372: 55–63, 1994.<br />

310. ROTHMAN JE. <strong>The</strong> prote<strong>in</strong> mach<strong>in</strong>ery <strong>of</strong> vesicle budd<strong>in</strong>g and fusion.<br />

Prote<strong>in</strong> Sci 5: 185–194, 1996.<br />

311. ROTHMAN JE AND SÖLLNER TH. Throttles and dampers: controll<strong>in</strong>g<br />

the eng<strong>in</strong>e <strong>of</strong> membrane fusion. Science 276: 1212–1213, 1997.<br />

312. ROTHMAN JE AND WIELAND FT. Prote<strong>in</strong> sort<strong>in</strong>g by transport vesicles.<br />

Science 272: 227–234, 1996.


313. ROUSH DL, GOTTARDI CJ, NAIM HY, ROTH MG, AND CAPLAN MJ. Tyros<strong>in</strong>e-based<br />

membrane prote<strong>in</strong> sort<strong>in</strong>g signals are differentially<br />

<strong>in</strong>terpreted by polarized Mad<strong>in</strong>-Darby can<strong>in</strong>e kidney and LLC-PK 1<br />

epithelial cells. J Biol Chem 273: 26862–26869, 1998.<br />

314. ROWE T, DASCHER C, BANNYKH S, PLUTNER H, AND BALCH WE. Role <strong>of</strong><br />

vesicle-associated syntax<strong>in</strong> 5 <strong>in</strong> the assembly <strong>of</strong> pre-Golgi <strong>in</strong>termediates.<br />

Science 279: 696–700, 1998.<br />

315. SABA JD, NARA F, BIELAWSKA A, GARRETT S, AND HANNUN YA. <strong>The</strong><br />

BST1 gene <strong>of</strong> Saccharomyces cerevisiae is the sph<strong>in</strong>gos<strong>in</strong>e-1-phosphate<br />

lyase. J Biol Chem 272: 26087–26090, 1997.<br />

316. SAITO M, SAITO M, AND ROSENBERG A. Action <strong>of</strong> monens<strong>in</strong>, a monovalent<br />

cationophore, on cultured human fibroblasts: evidence that<br />

it <strong>in</strong>duces high cellular accumulation <strong>of</strong> glucosyl- and lactosylceramide<br />

(gluco- and lactocerebroside). Biochemistry 23: 1043–1046,<br />

1984.<br />

317. SAITO M, SAITO M, AND ROSENBERG A. Influence <strong>of</strong> monovalent cation<br />

transport on anabolism <strong>of</strong> glycosph<strong>in</strong>golipids <strong>in</strong> cultured human<br />

fibroblasts. Biochemistry 24: 3054–3059, 1985.<br />

318. SAKAKIBARA K, MOMOI T, UCHIDA T, AND NAGAI Y. Evidence for association<br />

<strong>of</strong> glycosph<strong>in</strong>golipid with a colchic<strong>in</strong>e-sensitive microtubule-like<br />

cytoskeletal structure <strong>of</strong> cultured cells. Nature 293: 76–<br />

79, 1981.<br />

319. SANKARAM MB AND THOMPSON TE. Cholesterol-<strong>in</strong>duced fluid-phase<br />

immiscibility <strong>in</strong> membranes. Proc Natl Acad Sci USA 88: 8686–<br />

8690, 1991.<br />

320. SAWAI H, OKAMOTO Y, LUBERTO C, MAO C, BIELAWSKA A, DOMAE N, AND<br />

HANNUN YA. Identification <strong>of</strong> ISC1 (YER019w) as <strong>in</strong>ositol phosphosph<strong>in</strong>golipid<br />

phospholipase C <strong>in</strong> Saccharomyces cerevisiae.<br />

J Biol Chem 275: 39793–39798, 2000.<br />

321. SCHEIFFELE P, PERÄNEN J, AND SIMONS K. N-glycans as apical sort<strong>in</strong>g<br />

signals <strong>in</strong> epithelial cells. Nature 378: 96–98, 1995.<br />

322. SCHEIFFELE P, ROTH MG, AND SIMONS K. Interaction <strong>of</strong> <strong>in</strong>fluenza virus<br />

haemagglut<strong>in</strong><strong>in</strong> with sph<strong>in</strong>golipid-cholesterol membrane doma<strong>in</strong>s<br />

via its transmembrane doma<strong>in</strong>. EMBO J 16: 5501–5508, 1997.<br />

323. SCHIFFMANN R, MURRAY GJ, TRECO D, DANIEL P, SELLOS-MOURA M,<br />

MYERS M, QUIRK JM, ZIRZOW GC, BOROWSKI M, LOVEDAY K, ANDERSON<br />

T, GILLESPIE F, OLIVER KL, JEFFRIES NO, DOO E, LIANG TJ, KREPS C,<br />

GUNTER K, FREI K, CRUTCHFIELD K, SELDEN RF, AND BRADY RO.<br />

Infusion <strong>of</strong> alpha-galactosidase A reduces tissue globotriaosylceramide<br />

storage <strong>in</strong> patients with fabry disease. Proc Natl Acad Sci<br />

USA 97: 365–370, 2000.<br />

324. SCHMIDT CF, BARENHOLZ Y, HUANG C, AND THOMPSON TE. Monolayer<br />

coupl<strong>in</strong>g <strong>in</strong> sph<strong>in</strong>gomyel<strong>in</strong> bilayer systems. Nature 271: 775–777,<br />

1978.<br />

325. SCHNEITER R, BRUGGER B, SANDHOFF R, ZELLNIG G, LEBER A, LAMPL M,<br />

ATHENSTAEDT K, HRASTNIK C, EDER S, DAUM G, PALTAUF F, WIELAND<br />

FT, AND KOHLWEIN SD. Electrospray ionization tandem mass spectrometry<br />

(ESI-MS/MS) analysis <strong>of</strong> the lipid molecular species composition<br />

<strong>of</strong> yeast subcellular membranes reveals acyl cha<strong>in</strong>-based<br />

sort<strong>in</strong>g/remodel<strong>in</strong>g <strong>of</strong> dist<strong>in</strong>ct molecular species en route to the<br />

plasma membrane. J Cell Biol 146: 741–754, 1999.<br />

326. SCHNITZER JE, MCINTOSH DP, DVORAK AM, LIU J, AND OH P. Separation<br />

<strong>of</strong> caveolae from associated microdoma<strong>in</strong>s <strong>of</strong> GPI-anchored prote<strong>in</strong>s.<br />

Science 269: 1435–1439, 1995.<br />

327. SCHUCHMAN EH, SUCHI M, TAKAHASHI T, SANDHOFF K, AND DESNICK RJ.<br />

Human acid sph<strong>in</strong>gomyel<strong>in</strong>ase. Isolation, nucleotide sequence and<br />

expression <strong>of</strong> the full-length and alternatively spliced cDNAs.<br />

J Biol Chem 266: 8531–8539, 1991.<br />

328. SCHULTE S AND STOFFEL W. Ceramide UDPgalactosyltransferase<br />

from myel<strong>in</strong>at<strong>in</strong>g rat bra<strong>in</strong>: purification, clon<strong>in</strong>g, and expression.<br />

Proc Natl Acad Sci USA 90: 10265–10269, 1993.<br />

329. SCHÜTZ GJ, KADA G, PASTUSHENKO VP, AND SCHINDLER H. Properties <strong>of</strong><br />

lipid microdoma<strong>in</strong>s <strong>in</strong> a muscle cell membrane visualized by s<strong>in</strong>gle<br />

molecule microscopy. EMBO J 19: 892–901, 2000.<br />

330. SCHWERTZ DW, KREISBERG JI, AND VENKATACHALAM MA. Characterization<br />

<strong>of</strong> rat kidney proximal tubule brush border membrane-associated<br />

phosphatidyl<strong>in</strong>ositol phosphodiesterase. Arch Biochem Biophys<br />

224: 555–567, 1983.<br />

331. SHEETS ED, LEE GM, SIMSON R, AND JACOBSON K. Transient conf<strong>in</strong>ement<br />

<strong>of</strong> a glycosylphosphatidyl<strong>in</strong>ositol-anchored prote<strong>in</strong> <strong>in</strong> the<br />

plasma membrane. Biochemistry 36: 12449–12458, 1997.<br />

332. SHEIKH KA, SUN J, LIU Y, KAWAI H, CRAWFORD TO, PROIA RL, GRIFFIN<br />

JW, AND SCHNAAR RL. Mice lack<strong>in</strong>g complex gangliosides develop<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1721<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

Wallerian degeneration and myel<strong>in</strong>ation defects. Proc Natl Acad<br />

Sci USA 96: 7532–7537, 1999.<br />

333. SHERWOOD AL AND HOLMES EH. Brefeld<strong>in</strong> A <strong>in</strong>duced <strong>in</strong>hibition <strong>of</strong> de<br />

novo globo- and neolacto-series glycolipid core cha<strong>in</strong> biosynthesis<br />

<strong>in</strong> human cells. Evidence for an effect on beta 134 galactosyltransferase<br />

activity. J Biol Chem 267: 25328–25336, 1992.<br />

334. SHIAO YJ AND VANCE JE. Sph<strong>in</strong>gomyel<strong>in</strong> transport to the cell surface<br />

occurs <strong>in</strong>dependently <strong>of</strong> prote<strong>in</strong> secretion <strong>in</strong> rat hepatocytes. J Biol<br />

Chem 268: 26085–26092, 1993.<br />

335. SHOGOMORI H, BURACK MA, BANKER G, AND FUTERMAN AH. Gangliosides<br />

GM1 and GD1b are not polarized <strong>in</strong> mature hippocampal<br />

neurons. FEBS Lett 458: 107–111, 1999.<br />

336. SILLENCE DJ, RAGGERS RJ, AND VAN MEER G. Assays for transmembrane<br />

movement <strong>of</strong> sph<strong>in</strong>golipids. Methods Enzymol 312: 562–579,<br />

2000.<br />

337. SILVIUS JR. Cholesterol modulation <strong>of</strong> lipid <strong>in</strong>termix<strong>in</strong>g <strong>in</strong> phospholipid<br />

and glycosph<strong>in</strong>golipid mixtures. Evaluation us<strong>in</strong>g fluorescent<br />

lipid probes and brom<strong>in</strong>ated lipid quenchers. Biochemistry 31:<br />

3398–3408, 1992.<br />

338. SILVIUS JR, DEL GIUDICE D, AND LAFLEUR M. Cholesterol at different<br />

bilayer concentrations can promote or antagonize lateral segregation<br />

<strong>of</strong> phospholipids <strong>of</strong> differ<strong>in</strong>g acyl cha<strong>in</strong> length. Biochemistry<br />

35: 15198–15208, 1996.<br />

339. SIMONS K AND IKONEN E. Functional rafts <strong>in</strong> cell membranes. Nature<br />

387: 569–572, 1997.<br />

340. SIMONS K AND TOOMRE D. Lipid rafts and signal transduction. Nature<br />

Rev Mol Cell Biol 1: 31–39, 2000.<br />

341. SIMONS K AND VAN MEER G. Lipid sort<strong>in</strong>g <strong>in</strong> epithelial cells. Biochemistry<br />

27: 6197–6202, 1988.<br />

342. SIMONS M, KRAMER EM, THIELE C, STOFFEL W, AND TROTTER J. Assembly<br />

<strong>of</strong> myel<strong>in</strong> by association <strong>of</strong> proteolipid prote<strong>in</strong> with cholesteroland<br />

galactosylceramide-rich membrane doma<strong>in</strong>s. J Cell Biol 151:<br />

143–154, 2000.<br />

343. SINGER SJ AND NICOLSON GL. <strong>The</strong> fluid mosaic model <strong>of</strong> the structure<br />

<strong>of</strong> cell membranes. Science 175: 720–731, 1972.<br />

344. SKIBBENS JE, ROTH MG, AND MATLIN KS. Differential extractability <strong>of</strong><br />

<strong>in</strong>fluenza virus hemagglut<strong>in</strong><strong>in</strong> dur<strong>in</strong>g <strong>in</strong>tracellular transport <strong>in</strong> polarized<br />

epithelial cells and non-polar fibroblasts. J Cell Biol 108:<br />

821–832, 1989.<br />

345. SKRZYPEK M, LESTER RL, AND DICKSON RC. Suppressor gene analysis<br />

reveals an essential role for sph<strong>in</strong>golipids <strong>in</strong> transport <strong>of</strong> glycosylphosphatidyl<strong>in</strong>ositol-anchored<br />

prote<strong>in</strong>s <strong>in</strong> Saccharomyces cerevisiae.<br />

J Bacteriol 179: 1513–1520, 1997.<br />

346. SKRZYPEK MS, NAGIEC MM, LESTER RL, AND DICKSON RC. Analysis <strong>of</strong><br />

phosphorylated sph<strong>in</strong>golipid long-cha<strong>in</strong> bases reveals potential<br />

roles <strong>in</strong> heat stress and growth control <strong>in</strong> Saccharomyces. J Bacteriol<br />

181: 1134–1140, 1999.<br />

347. SLOTTE JP, HÄRMÄLÄ AS, JANSSON C, AND PÖRN MI. Rapid turn-over <strong>of</strong><br />

plasma membrane sph<strong>in</strong>gomyel<strong>in</strong> and cholesterol <strong>in</strong> baby hamster<br />

kidney cells after exposure to sph<strong>in</strong>gomyel<strong>in</strong>ase. Biochim Biophys<br />

Acta 1030: 251–257, 1990.<br />

348. SMART EJ, YING YS, MINEO C, AND ANDERSON RGW. A detergent-free<br />

method for purify<strong>in</strong>g caveolae membrane from tissue culture cells.<br />

Proc Natl Acad Sci USA 92: 10104–10108, 1995.<br />

349. SOMERHARJU P, VIRTANEN JA, AND CHENG KH. Lateral organisation <strong>of</strong><br />

membrane lipids. <strong>The</strong> superlattice view. Biochim Biophys Acta<br />

1440: 32–48, 1999.<br />

350. SOMERHARJU PJ, VIRTANEN JA, EKLUND KK, VAINIO P, AND KINNUNEN<br />

PK. 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane<br />

probes: evidence for regular distribution <strong>in</strong> liquid-crystall<strong>in</strong>e<br />

phosphatidylchol<strong>in</strong>e bilayers. Biochemistry 24: 2773–2781, 1985.<br />

351. SONG KS, LI S, OKAMOTO T, QUILLIAM LA, SARGIACOMO M, AND LISANTI<br />

MP. Co-purification and direct <strong>in</strong>teraction <strong>of</strong> Ras with caveol<strong>in</strong>, an<br />

<strong>in</strong>tegral membrane prote<strong>in</strong> <strong>of</strong> caveolae microdoma<strong>in</strong>s. Detergentfree<br />

purification <strong>of</strong> caveolae membranes. J Biol Chem 271: 9690–<br />

9697, 1996.<br />

352. SONNINO S, GHIDONI R, FIORILLI A, VENERANDO B, AND TETTAMANTI G.<br />

Cytosolic gangliosides <strong>of</strong> rat bra<strong>in</strong>: their fractionation <strong>in</strong>to prote<strong>in</strong>bound<br />

complexes <strong>of</strong> different ganglioside compositions. J Neurosci<br />

Res 12: 193–204, 1984.<br />

353. SONNINO S, GHIDONI R, MARCHESINI S, AND TETTAMANTI G. Cytosolic<br />

gangliosides: occurrence <strong>in</strong> calf bra<strong>in</strong> as ganglioside-prote<strong>in</strong> complexes.<br />

J Neurochem 33: 117–121, 1979.


1722 HOLTHUIS, POMORSKI, RAGGERS, SPRONG, AND VAN MEER<br />

354. SORICE M, PAROLINI I, SANSOLINI T, GAROFALO T, DOLO V, SARGIACOMO<br />

M, TAI T, PESCHLE C, TORRISI MR, AND PAVAN A. Evidence for the<br />

existence <strong>of</strong> ganglioside-enriched plasma membrane doma<strong>in</strong>s <strong>in</strong><br />

human peripheral lymphocytes. J Lipid Res 38: 969–980, 1997.<br />

355. SPANG A, MATSUOKA K, HAMAMOTO S, SCHEKMAN R, AND ORCI L.<br />

Coatomer, Arf1p, and nucleotide are required to bud coat prote<strong>in</strong><br />

complex I-coated vesicles from large synthetic liposomes. Proc<br />

Natl Acad Sci USA 95: 11199–11204, 1998.<br />

356. SPIEGEL S. Sph<strong>in</strong>gos<strong>in</strong>e 1-phosphate: a prototype <strong>of</strong> a new class <strong>of</strong><br />

second messengers. J Leukocyte Biol 65: 341–344, 1999.<br />

357. SPIEGEL S, KASSIS S, WILCHEK M, AND FISHMAN PH. Direct visualization<br />

<strong>of</strong> redistribution and capp<strong>in</strong>g <strong>of</strong> fluorescent gangliosides on lymphocytes.<br />

J Cell Biol 99: 1575–1581, 1984.<br />

358. SPIEGEL S, MATYAS GR, CHENG L, AND SACKTOR B. Asymmetric distribution<br />

<strong>of</strong> gangliosides <strong>in</strong> rat renal brush-border and basolateral<br />

membranes. Biochim Biophys Acta 938: 270–278, 1988.<br />

359. SPRONG H, KRUITHOF B, LEIJENDEKKER R, SLOT JW, VAN MEER G, AND<br />

VAN DER SLUIJS P. UDP-galactose:ceramide galactosyltransferase is a<br />

class I <strong>in</strong>tegral membrane prote<strong>in</strong> <strong>of</strong> the endoplasmic reticulum.<br />

J Biol Chem 273: 25880–25888, 1998.<br />

360. STAHL N, JUREVICS H, MORELL P, SUZUKI K, AND POPKO B. Isolation,<br />

characterization, and expression <strong>of</strong> cDNA clones that encode rat<br />

UDP-galactose: ceramide galactosyltransferase. J Neurosci Res 38:<br />

234–242, 1994.<br />

361. STAN RV, ROBERTS WG, PREDESCU D, IHIDA K, SAUCAN L, GHITESCU L,<br />

AND PALADE GE. Immunoisolation and partial characterization <strong>of</strong><br />

endothelial plasmalemmal vesicles (caveolae). Mol Biol Cell 8:<br />

595–605, 1997.<br />

362. STARLING AP, EAST JM, AND LEE AG. Effects <strong>of</strong> phosphatidylchol<strong>in</strong>e<br />

fatty acyl cha<strong>in</strong> length on calcium b<strong>in</strong>d<strong>in</strong>g and other functions <strong>of</strong><br />

the (Ca 2 -Mg 2 )-ATPase. Biochemistry 32: 1593–1600, 1993.<br />

363. STEIM JM, TOURTELLOTTE ME, REINERT JC, MCELHANEY RN, AND RADER<br />

RL. Calorimetric evidence for the liquid-crystall<strong>in</strong>e state <strong>of</strong> lipids <strong>in</strong><br />

a biomembrane. Proc Natl Acad Sci USA 63: 104–109, 1969.<br />

364. STIER A AND SACKMANN E. Sp<strong>in</strong> labels as enzyme substrates. Heterogeneous<br />

lipid distribution <strong>in</strong> liver microsomal membranes. Biochim<br />

Biophys Acta 311: 400–408, 1973.<br />

365. STOFFEL W, ANDERSON R, AND STAHL J. Studies on the asymmetric<br />

arrangement <strong>of</strong> membrane-lipid-enveloped virions as a model system.<br />

Hoppe-Seylers Z Physiol Chem 356: 1123–1129, 1975.<br />

366. STOFFEL W AND BOSIO A. Myel<strong>in</strong> glycolipids and their functions. Curr<br />

Op<strong>in</strong> Neurobiol 7: 654–661, 1997.<br />

367. STOFFEL W AND SORGO W. Asymmetry <strong>of</strong> the lipid-bilayer <strong>of</strong> S<strong>in</strong>dbis<br />

virus. Chem Phys Lipids 17: 324–335, 1976.<br />

368. STORRIE B, WHITE J, ROTTGER S, STELZER EHK, SUGANUMA T, AND<br />

NILSSON T. Recycl<strong>in</strong>g <strong>of</strong> Golgi-resident glycosyltransferases through<br />

the ER reveals a novel pathway and provides an explanation for<br />

nocodazole-<strong>in</strong>duced Golgi scatter<strong>in</strong>g. J Cell Biol 143: 1505–1521,<br />

1998.<br />

369. STUBBS CD, KETTERER B, AND HICKS RM. <strong>The</strong> isolation and analysis <strong>of</strong><br />

the lum<strong>in</strong>al plasma membrane <strong>of</strong> calf ur<strong>in</strong>ary bladder epithelium.<br />

Biochim Biophys Acta 558: 58–72, 1979.<br />

370. SUZUKI K, STERBA RE, AND SHEETZ MP. Outer membrane monolayer<br />

doma<strong>in</strong>s from two-dimensional surface scann<strong>in</strong>g resistance measurements.<br />

Biophys J 79: 448–459, 2000.<br />

371. TAKAMIYA K, YAMAMOTO A, FURUKAWA K, YAMASHIRO S, SHIN M, OKADA<br />

M, FUKUMOTO S, HARAGUCHI M, TAKEDA N, FUJIMURA K, SAKAE M,<br />

KISHIKAWA M, SHIKU H, FURUKAWA K, AND AIZAWA S. Mice with disrupted<br />

GM2/GD2 synthase gene lack complex gangliosides but<br />

exhibit only subtle defects <strong>in</strong> their nervous system. Proc Natl Acad<br />

Sci USA 93: 10662–10667, 1996.<br />

372. TANG D, AND CHONG PL-G. E/M dips: evidence for lipids regularly<br />

distributed <strong>in</strong>to hexagonal super-lattices <strong>in</strong> pyrene-PC/DMPC b<strong>in</strong>ary<br />

mixtures at specific concentrations. Biophys J 63: 903–910,<br />

1992.<br />

373. TENNEKOON G, ZARUBA M, AND WOLINSKY J. Topography <strong>of</strong> cerebroside<br />

sulfotransferase <strong>in</strong> Golgi-enriched vesicles from rat bra<strong>in</strong>.<br />

J Cell Biol 97: 1107–1112, 1983.<br />

374. THIELE C AND HUTTNER WB. Prote<strong>in</strong> and lipid sort<strong>in</strong>g from the<br />

trans-Golgi network to secretory granules. Recent developments.<br />

Sem<strong>in</strong> Cell Dev Biol 9: 511–516, 1998.<br />

375. THOMPSON TE, BARENHOLZ Y, BROWN RE, CORREA-FREIRE M, YOUNG<br />

WW JR, AND TILLACK TW. Molecular organization <strong>of</strong> glycosph<strong>in</strong>go-<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

lipids <strong>in</strong> phosphatidylchol<strong>in</strong>e bilayers and biological membranes.<br />

In: Enzymes <strong>of</strong> Lipid Metabolism, edited by Freysz L. New York:<br />

Plenum, 1986, p. 387–396.<br />

376. THUDICHUM JLW. A Treatise on the Chemical Constitution <strong>of</strong><br />

Bra<strong>in</strong>. London: Balliere, T<strong>in</strong>dall, and Cox, 1884.<br />

377. TILLACK TW, ALLIETTA M, MORAN RE, AND YOUNG WW JR. Localization<br />

<strong>of</strong> globoside and Forssman glycolipids on erythrocyte membranes.<br />

Biochim Biophys Acta 733: 15–24, 1983.<br />

378. TOMIUK S, HOFMANN K, NIX M, ZUMBANSEN M, AND STOFFEL W. Cloned<br />

mammalian neutral sph<strong>in</strong>gomyel<strong>in</strong>ase. Functions <strong>in</strong> sph<strong>in</strong>golipid<br />

signal<strong>in</strong>g. Proc Natl Acad Sci USA 95: 3638–3643, 1998.<br />

379. TOOMRE D, KELLER P, WHITE J, OLIVO JC, AND SIMONS K. Dual-color<br />

visualization <strong>of</strong> trans-Golgi network to plasma membrane traffic<br />

along microtubules <strong>in</strong> liv<strong>in</strong>g cells. J Cell Sci 112: 21–33, 1999.<br />

380. TRINCHERA M AND GHIDONI R. Two glycosph<strong>in</strong>golipid sialyltransferases<br />

are localized <strong>in</strong> different sub-Golgi compartments <strong>in</strong> rat<br />

liver. J Biol Chem 264: 15766–15769, 1989.<br />

381. TRINCHERA M, PIROVANO B, AND GHIDONI R. Sub-Golgi distribution <strong>in</strong><br />

rat liver <strong>of</strong> CMP-NeuAc GM3- and CMP-NeuAc:GT1b238 sialyltransferases<br />

and comparison with the distribution <strong>of</strong> the other<br />

glycosyltransferase activities <strong>in</strong>volved <strong>in</strong> ganglioside biosynthesis.<br />

J Biol Chem 265: 18242–18247, 1990.<br />

382. TVRDIK P, ASADI A, KOZAK LP, NEDERGAARD J, CANNON B, AND JACOB-<br />

SSON A. Cig30, a mouse member <strong>of</strong> a novel membrane prote<strong>in</strong> gene<br />

family, is <strong>in</strong>volved <strong>in</strong> the recruitment <strong>of</strong> brown adipose tissue.<br />

J Biol Chem 272: 31738–31746, 1997.<br />

383. TVRDIK P, WESTERBERG R, SILVE S, ASADI A, JAKOBSSON A, CANNON B,<br />

LOISON G, AND JACOBSSON A. Role <strong>of</strong> a new mammalian gene family<br />

<strong>in</strong> the biosynthesis <strong>of</strong> very long cha<strong>in</strong> fatty acids and sph<strong>in</strong>golipids.<br />

J Cell Biol 149: 707–718, 2000.<br />

384. VAN ECHTEN G, IBER H, STOTZ H, TAKATSUKI A, AND SANDHOFF K.<br />

Uncoupl<strong>in</strong>g <strong>of</strong> ganglioside biosynthesis by Brefeld<strong>in</strong> A. Eur J Cell<br />

Biol 51: 135–139, 1990.<br />

385. VAN ECHTEN G AND SANDHOFF K. Modulation <strong>of</strong> ganglioside biosynthesis<br />

<strong>in</strong> primary cultured neurons. J Neurochem 52: 207–214, 1989.<br />

386. VAN GENDEREN I AND VAN MEER G. Differential target<strong>in</strong>g <strong>of</strong> glucosylceramide<br />

and galactosylceramide analogues after synthesis but not<br />

dur<strong>in</strong>g transcytosis <strong>in</strong> Mad<strong>in</strong>-Darby can<strong>in</strong>e kidney cells. J Cell Biol<br />

131: 645–654, 1995.<br />

387. VAN GENDEREN IL, VAN MEER G, SLOT JW, GEUZE HJ, AND VOORHOUT<br />

WF. Subcellular localization <strong>of</strong> Forssman glycolipid <strong>in</strong> epithelial<br />

MDCK cells by immuno-electronmicroscopy after freeze-substitution.<br />

J Cell Biol 115: 1009–1019, 1991.<br />

388. VAN HELVOORT A, DE BROUWER A, OTTENHOFF R, BROUWERS JF, WIJN-<br />

HOLDS J, BEIJNEN JH, RIJNEVELD A, VAN DER POLL T, VAN DER VALK MA,<br />

MAJOOR D, VOORHOUT W, WIRTZ KW, ELFERINK RP, AND BORST P. Mice<br />

without phosphatidylchol<strong>in</strong>e transfer prote<strong>in</strong> have no defects <strong>in</strong> the<br />

secretion <strong>of</strong> phosphatidylchol<strong>in</strong>e <strong>in</strong>to bile or <strong>in</strong>to lung airspaces.<br />

Proc Natl Acad Sci USA 96: 11501–11506, 1999.<br />

389. VAN HELVOORT A, GIUDICI ML, THIELEMANS M, AND VAN MEER G.<br />

Transport <strong>of</strong> sph<strong>in</strong>gomyel<strong>in</strong> to the cell surface is <strong>in</strong>hibited by<br />

brefeld<strong>in</strong> A and <strong>in</strong> mitosis, where C 6-NBD-sph<strong>in</strong>gomyel<strong>in</strong> is translocated<br />

across the plasma membrane by a multidrug transporter<br />

activity. J Cell Sci 110: 75–83, 1997.<br />

390. VAN HELVOORT A, SMITH AJ, SPRONG H, FRITZSCHE I, SCHINKEL AH,<br />

BORST P, AND VAN MEER G. MDR1 P-glycoprote<strong>in</strong> is a lipid translocase<br />

<strong>of</strong> broad specificity, while MDR3 P-glycoprote<strong>in</strong> specifically<br />

translocates phosphatidylchol<strong>in</strong>e. Cell 87: 507–517, 1996.<br />

391. VAN HELVOORT A, STOORVOGEL W, VAN MEER G, AND BURGER KNJ.<br />

Sph<strong>in</strong>gomyel<strong>in</strong> synthase is absent from endosomes. J Cell Sci 110:<br />

781–788, 1997.<br />

392. VAN HELVOORT A, VAN’T HOF W, RITSEMA T, SANDRA A, AND VAN MEER<br />

G. Conversion <strong>of</strong> diacylglycerol to phosphatidylchol<strong>in</strong>e on the basolateral<br />

surface <strong>of</strong> epithelial (Mad<strong>in</strong>-Darby can<strong>in</strong>e kidney) cells.<br />

Evidence for the reverse action <strong>of</strong> a sph<strong>in</strong>gomyel<strong>in</strong> synthase. J Biol<br />

Chem 269: 1763–1769, 1994.<br />

393. VAN IJZENDOORN SCD AND HOEKSTRA D. (Glyco)sph<strong>in</strong>golipids are<br />

sorted <strong>in</strong> sub-apical compartments <strong>in</strong> HepG2 cells: a role for non-<br />

Golgi-related <strong>in</strong>tracellular sites <strong>in</strong> the polarized distribution <strong>of</strong> (glyco)sph<strong>in</strong>golipids.<br />

J Cell Biol 142: 683–696, 1998.<br />

394. VAN IJZENDOORN SCD, ZEGERS MMP, KOK JW, AND HOEKSTRA D. Segregation<br />

<strong>of</strong> glucosylceramide and sph<strong>in</strong>gomyel<strong>in</strong> occurs <strong>in</strong> the


apical to basolateral transcytotic route <strong>in</strong> HepG2 cells. J Cell Biol<br />

137: 347–357, 1997.<br />

395. VAN MEER G. Lipid traffic <strong>in</strong> animal cells. Annu Rev Cell Biol 5:<br />

247–275, 1989.<br />

396. VAN MEER G. Lipids <strong>of</strong> the Golgi membrane. Trends Cell Biol 8:<br />

29–33, 1998.<br />

397. VAN MEER G AND HOLTHUIS JCM. Sph<strong>in</strong>golipid transport <strong>in</strong> eukaryotic<br />

cells. Biochim Biophys Acta 1486: 145–170, 2000.<br />

398. VAN MEER G, STELZER EHK, WIJNAENDTS-VAN-RESANDT RW, AND SI-<br />

MONS K. Sort<strong>in</strong>g <strong>of</strong> sph<strong>in</strong>golipids <strong>in</strong> epithelial (Mad<strong>in</strong>-Darby can<strong>in</strong>e<br />

kidney) cells. J Cell Biol 105: 1623–1635, 1987.<br />

399. VAN VELDHOVEN PP AND MANNAERTS GP. Sph<strong>in</strong>gan<strong>in</strong>e 1-phosphate<br />

metabolism <strong>in</strong> cultured sk<strong>in</strong> fibroblasts: evidence for the existence<br />

<strong>of</strong> a sph<strong>in</strong>gos<strong>in</strong>e phosphatase. Biochem J 299: 597–601, 1994.<br />

400. VAN WEELY S, BRANDSMA M, STRIJLAND A, TAGER JM, AND AERTS JM.<br />

Demonstration <strong>of</strong> the existence <strong>of</strong> a second, non-lysosomal glucocerebrosidase<br />

that is not deficient <strong>in</strong> Gaucher disease. Biochim<br />

Biophys Acta 1181: 55–62, 1993.<br />

401. VARMA R AND MAYOR S. GPI-anchored prote<strong>in</strong>s are organized <strong>in</strong><br />

submicron doma<strong>in</strong>s at the cell surface. Nature 394: 798–801, 1998.<br />

402. VENIEN C AND LE GRIMELLEC C. Phospholipid asymmetry <strong>in</strong> renal<br />

brush-border membranes. Biochim Biophys Acta 942: 159–168,<br />

1988.<br />

403. VERKLEIJ AJ, VERVERGAERT PHJT, VAN DEENEN LLM, AND ELBERS PF.<br />

Phase transitions <strong>of</strong> phospholipid bilayers and membranes <strong>of</strong> Acholeplasma<br />

laidlawii B visualized by freeze fractur<strong>in</strong>g electron microscopy.<br />

Biochim Biophys Acta 288: 326–332, 1972.<br />

404. VERKLEIJ AJ, ZWAAL RFA, ROELOFSEN B, COMFURIUS P, KASTELIJN D,<br />

AND VAN DEENEN LLM. <strong>The</strong> asymmetric distribution <strong>of</strong> phospholipids<br />

<strong>in</strong> the human red cell membrane. A comb<strong>in</strong>ed study us<strong>in</strong>g<br />

phospholipases and freeze-etch electron microscopy. Biochim<br />

Biophys Acta 323: 178–193, 1973.<br />

405. WANG E, NORRED WP, BACON CW, RILEY RT, AND MERRILL AH JR.<br />

Inhibition <strong>of</strong> sph<strong>in</strong>golipid biosynthesis by fumonis<strong>in</strong>s. Implications<br />

for diseases associated with Fusarium moniliforme. J Biol Chem<br />

266: 14486–14490, 1991.<br />

406. WARNOCK DE, LUTZ MS, BLACKBURN WA, YOUNG WW JR, AND BAEN-<br />

ZIGER JU. Transport <strong>of</strong> newly synthesized glucosylceramide to the<br />

plasma membrane by a non-Golgi pathway. Proc Natl Acad Sci USA<br />

91: 2708–2712, 1994.<br />

407. WATANABE R, ASAKURA K, RODRIGUEZ M, AND PAGANO RE. Internalization<br />

and sort<strong>in</strong>g <strong>of</strong> plasma membrane sph<strong>in</strong>golipid analogues <strong>in</strong><br />

differentiat<strong>in</strong>g oligodendrocytes. J Neurochem 73: 1375–1383, 1999.<br />

408. WATTENBERG BW AND SILBERT DF. Sterol partition<strong>in</strong>g among <strong>in</strong>tracellular<br />

membranes. Test<strong>in</strong>g a model for cellular sterol distribution.<br />

J Biol Chem 258: 2284–2289, 1983.<br />

409. WATTS JD, AEBERSOLD R, POLVERINO AJ, PATTERSON SD, AND GU M.<br />

Ceramide second messengers and ceramide assays. Trends Biochem<br />

Sci 24: 228, 1999.<br />

410. WEIDMAN PJ. Anterograde transport through the Golgi complex: do<br />

Golgi tubules hold the key? Trends Cell Biol 5: 302–305, 1995.<br />

411. WELLS GB AND LESTER RL. <strong>The</strong> isolation and characterization <strong>of</strong> a<br />

mutant stra<strong>in</strong> <strong>of</strong> Saccharomyces cerevisiae that requires a long<br />

cha<strong>in</strong> base for growth and for synthesis <strong>of</strong> phosphosph<strong>in</strong>golipids.<br />

J Biol Chem 258: 10200–10203, 1983.<br />

412. WERTZ PW AND DOWNING DT. Covalently bound omega-hydroxyacylsph<strong>in</strong>gos<strong>in</strong>e<br />

<strong>in</strong> the stratum corneum. Biochim Biophys Acta 917:<br />

108–111, 1987.<br />

413. WESSELS HP, HANSEN GH, FUHRER C, LOOK AT, SJÖSTRÖM H, NORÉN O,<br />

AND SPIESS M. Am<strong>in</strong>opeptidase N is directly sorted to the apical<br />

doma<strong>in</strong> <strong>in</strong> MDCK cells. J Cell Biol 111: 2923–2930, 1990.<br />

414. WIEGANDT H. Insect glycolipids. Biochim Biophys Acta 1123: 117–<br />

126, 1992.<br />

415. WIELAND FT, GLEASON ML, SERAFINI TA, AND ROTHMAN JE. <strong>The</strong> rate <strong>of</strong><br />

bulk flow from the endoplasmic reticulum to the cell surface. Cell<br />

50: 289–300, 1987.<br />

416. WINCKLER B AND MELLMAN I. Neuronal polarity: controll<strong>in</strong>g the sort<strong>in</strong>g<br />

and diffusion <strong>of</strong> membrane components. Neuron 23: 637–640,<br />

1999.<br />

ORGANIZING POTENTIAL OF SPHINGOLIPIDS 1723<br />

Physiol Rev • VOL 81 • OCTOBER 2001 • www.prv.org<br />

417. WIRTZ KW AND ZILVERSMIT DB. Participation <strong>of</strong> soluble liver prote<strong>in</strong>s<br />

<strong>in</strong> the exchange <strong>of</strong> membrane phospholipids. Biochim Biophys<br />

Acta 193: 105–116, 1969.<br />

418. WOODING S AND PELHAM HR. <strong>The</strong> dynamics <strong>of</strong> Golgi prote<strong>in</strong> traffic<br />

visualized <strong>in</strong> liv<strong>in</strong>g yeast cells. Mol Biol Cell 9: 2667–2680, 1998.<br />

419. XIAO Z AND DEVREOTES PN. Identification <strong>of</strong> detergent-resistant<br />

plasma membrane microdoma<strong>in</strong>s <strong>in</strong> Dictyostelium: enrichment <strong>of</strong><br />

signal transduction prote<strong>in</strong>s. Mol Biol Cell 8: 855–869, 1997.<br />

420. YAMASHITA K, HARA-KUGE S, AND OHKURA T. <strong>Intracellular</strong> lect<strong>in</strong>s<br />

associated with N-l<strong>in</strong>ked glycoprote<strong>in</strong> traffic. Biochim Biophys<br />

Acta 1473: 147–160, 1999.<br />

421. YAMASHITA T, WADA R, SASAKI T, DENG C, BIERFREUND U, SANDHOFF K,<br />

AND PROIA RL. A vital role for glycosph<strong>in</strong>golipid synthesis dur<strong>in</strong>g<br />

development and differentiation. Proc Natl Acad Sci USA 96: 9142–<br />

9147, 1999.<br />

422. YANG M, ELLENBERG J, BONIFACINO JS, AND WEISSMAN AM. <strong>The</strong> transmembrane<br />

doma<strong>in</strong> <strong>of</strong> a carboxyl-term<strong>in</strong>al anchored prote<strong>in</strong> determ<strong>in</strong>es<br />

localization to the endoplasmic reticulum. J Biol Chem 272:<br />

1970–1975, 1997.<br />

423. YEAMAN C, GRINDSTAFF KK, AND NELSON WJ. New perspectives on<br />

mechanisms <strong>in</strong>volved <strong>in</strong> generat<strong>in</strong>g epithelial cell polarity. Physiol<br />

Rev 79: 73–98, 1999.<br />

424. YOKODE M, PATHAK RK, HAMMER RE, BROWN MS, GOLDSTEIN JL, AND<br />

ANDERSON RG. Cytoplasmic sequence required for basolateral target<strong>in</strong>g<br />

<strong>of</strong> LDL receptor <strong>in</strong> livers <strong>of</strong> transgenic mice. J Cell Biol 117:<br />

39–46, 1992.<br />

425. YOSHIMORI T, KELLER P, ROTH MG, AND SIMONS K. Different biosynthetic<br />

transport routes to the plasma membrane <strong>in</strong> BHK and CHO<br />

cells. J Cell Biol 133: 247–256, 1996.<br />

426. YOUNG WW JR, ALLENDE ML, AND JASKIEWICZ E. Reevaluat<strong>in</strong>g the<br />

effect <strong>of</strong> brefeld<strong>in</strong> A (BFA) on ganglioside synthesis: the location <strong>of</strong><br />

GM2 synthase cannot be deduced from the <strong>in</strong>hibition <strong>of</strong> GM2<br />

synthesis by BFA. Glycobiology 9: 689–695, 1999.<br />

427. YOUNG WW JR, LUTZ MS, MILLS SE, AND LECHLER-OSBORN S. Use <strong>of</strong><br />

brefeld<strong>in</strong> A to def<strong>in</strong>e sites <strong>of</strong> glycosph<strong>in</strong>golipid synthesis: GA2/<br />

GM2/GD2 synthase is trans to the brefeld<strong>in</strong> A block. Proc Natl Acad<br />

Sci USA 87: 6838–6842, 1990.<br />

428. ZAAL KJ, SMITH CL, POLISHCHUK RS, ALTAN N, COLE NB, ELLENBERG J,<br />

HIRSCHBERG K, PRESLEY JF, ROBERTS TH, SIGGIA E, PHAIR RD, AND<br />

LIPPINCOTT-SCHWARTZ J. Golgi membranes are absorbed <strong>in</strong>to and<br />

reemerge from the ER dur<strong>in</strong>g mitosis. Cell 99: 589–601, 1999.<br />

429. ZANOLARI B, FRIANT S, FUNATO K, SUTTERLIN C, STEVENSON BJ, AND<br />

RIEZMAN H. Sph<strong>in</strong>goid base synthesis requirement for endocytosis<br />

<strong>in</strong> Saccharomyces cerevisiae. EMBO J 19: 2824–2833, 2000.<br />

430. ZHANG X AND THOMPSON GA JR. An apparent association between<br />

glycosylphosphatidyl<strong>in</strong>ositol-anchored prote<strong>in</strong>s and a sph<strong>in</strong>golipid<br />

<strong>in</strong> Tetrahymena mimbres. Biochem J 323: 197–206, 1997.<br />

431. ZHANG Y, YAO B, DELIKAT S, BAYOUMY S, LIN XH, BASU S, MCGINLEY M,<br />

CHAN-HUI PY, LICHENSTEIN H, AND KOLESNICK R. K<strong>in</strong>ase suppressor <strong>of</strong><br />

Ras is ceramide-activated prote<strong>in</strong> k<strong>in</strong>ase. Cell 89: 63–72, 1997.<br />

432. ZHAO C, BEELER T, AND DUNN T. Suppressors <strong>of</strong> the Ca 2 -sensitive<br />

yeast mutant (csg2) identify genes <strong>in</strong>volved <strong>in</strong> sph<strong>in</strong>golipid biosynthesis.<br />

Clon<strong>in</strong>g and characterization <strong>of</strong> SCS1, a gene required for<br />

ser<strong>in</strong>e palmitoyltransferase activity. J Biol Chem 269: 21480–21488,<br />

1994.<br />

433. ZHOU J AND SABA JD. Identification <strong>of</strong> the first mammalian sph<strong>in</strong>gos<strong>in</strong>e<br />

phosphate lyase gene and its functional expression <strong>in</strong> yeast.<br />

Biochem Biophys Res Commun 242: 502–507, 1998.<br />

434. ZHOU Q, ZHAO J, STOUT JG, LUHM RA, WIEDMER T, AND SIMS PJ.<br />

Molecular clon<strong>in</strong>g <strong>of</strong> human plasma membrane phospholipid<br />

scramblase. A prote<strong>in</strong> mediat<strong>in</strong>g transbilayer movement <strong>of</strong> plasma<br />

membrane phospholipids. J Biol Chem 272: 18240–18244, 1997.<br />

435. ZIEGLER RJ, YEW NS, LI C, CHERRY M, BERTHELETTE P, ROMANCZUK H,<br />

IOANNOU YA, ZEIDNER KM, DESNICK RJ, AND CHENG SH. Correction <strong>of</strong><br />

enzymatic and lysosomal storage defects <strong>in</strong> Fabry mice by adenovirus-mediated<br />

gene transfer. Hum Gene <strong>The</strong>r 10: 1667–1682, 1999.<br />

436. ZWEERINK MM, EDISON AM, WELLS GB, PINTO W, AND LESTER RL.<br />

Characterization <strong>of</strong> a novel, potent, and specific <strong>in</strong>hibitor <strong>of</strong> ser<strong>in</strong>e<br />

palmitoyltransferase. J Biol Chem 267: 25032–25038, 1992.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!