Optoelectronics with Carbon Nanotubes

Optoelectronics with Carbon Nanotubes Optoelectronics with Carbon Nanotubes

dspace.sunyconnect.suny.edu
from dspace.sunyconnect.suny.edu More from this publisher
07.08.2013 Views

16. O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E., Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science 2002, 297 (5581), 593-596. 17. Capaz, R. B.; Spataru, C. D.; Ismail-Beigi, S.; Louie, S. G., Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys. Rev. B 2006, 74 (12), 121401. 18. Dukovic, G.; Wang, F.; Song, D.; Sfeir, M. Y.; Heinz, T. F.; Brus, L. E., Structural Dependence of Excitonic Optical Transitions and Band-Gap Energies in Carbon Nanotubes. Nano Lett. 2005, 5 (11), 2314-2318. 19. Zhao, H.; Mazumdar, S., Electron-Electron Interaction Effects on the Optical Excitations of Semiconducting Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 2004, 93 (15), 157402. 20. Lin, H.; Lagoute, J.; Repain, V.; Chacon, C.; Girard, Y.; Lauret, J. S.; Ducastelle, F.; Loiseau, A.; Rousset, S., Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy. Nat. Mater. 9 (3), 235-238. 21. Hybertsen, M. S.; Louie, S. G., Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 1986, 34 (8), 5390. 22. Kane, C. L.; Mele, E. J., Electron Interactions and Scaling Relations for Optical Excitations in Carbon Nanotubes. Phys. Rev. Lett. 2004, 93 (19), 197402. 23. Ando, T., Excitons in Carbon Nanotubes. J. Phys. Soc. Jpn. 1997, 66, 1066-1073. 24. Perebeinos, V.; Tersoff, J.; Avouris, P., Scaling of Excitons in Carbon Nanotubes. Phys. Rev. Lett. 2004, 92 (25), 257402. 25. Spataru, C. D.; Ismail-Beigi, S.; Benedict, L. X.; Louie, S. G., Excitonic Effects and Optical Spectra of Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 2004, 92 (7), 077402-4. 26. Maultzsch, J.; Pomraenke, R.; Reich, S.; Chang, E.; Prezzi, D.; Ruini, A.; Molinari, E.; Strano, M. S.; Thomsen, C.; Lienau, C., Exciton binding energies in carbon nanotubes from twophoton photoluminescence. Phys. Rev. B 2005, 72 (24), 241402-4. 27. Qiu, X.; Freitag, M.; Perebeinos, V.; Avouris, P., Photoconductivity Spectra of Single-Carbon Nanotubes:  Implications on the Nature of Their Excited States. Nano Lett. 2005, 5 (4), 749-752. 28. Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F., The Optical Resonances in Carbon Nanotubes Arise from Excitons. Science 2005, 308 (5723), 838-841. 29. Plentz, F.; Ribeiro, H. B.; Jorio, A.; Strano, M. S.; Pimenta, M. A., Direct Experimental Evidence of Exciton-Phonon Bound States in Carbon Nanotubes. Phys. Rev. Lett. 2005, 95 (24), 247401. 111

30. Miyauchi, Y.; Maruyama, S., Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes. Phys. Rev. B 2006, 74 (3), 035415. 31. Scholes, G. D.; Tretiak, S.; McDonald, T. J.; Metzger, W. K.; Engtrakul, C.; Rumbles, G.; Heben, M. J., Low-Lying Exciton States Determine the Photophysics of Semiconducting Single Wall Carbon Nanotubes. J. Phys. Chem. C 2007, 111 (30), 11139-11149. 32. Kilina, S.; Tretiak, S.; Doorn, S. K.; Luo, Z.; Papadimitrakopoulos, F.; Piryatinski, A.; Saxena, A.; Bishop, A. R., Cross-polarized excitons in carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (19), 6797-6802. 33. Perebeinos, V.; Tersoff, J.; Avouris, P., Radiative Lifetime of Excitons in Carbon Nanotubes. Nano Lett. 2005, 5 (12), 2495-2499. 34. Spataru, C. D.; Ismail-Beigi, S.; Capaz, R. B.; Louie, S. G., Theory and Ab Initio Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes. Phys. Rev. Lett. 2005, 95 (24), 247402. 35. Mortimer, I. B.; Nicholas, R. J., Role of Bright and Dark Excitons in the Temperature- Dependent Photoluminescence of Carbon Nanotubes. Phys. Rev. Lett. 2007, 98 (2), 027404. 36. Spataru, C. D.; Léonard, F., Tunable Band Gaps and Excitons in Doped Semiconducting Carbon Nanotubes Made Possible by Acoustic Plasmons. Phys. Rev. Lett. 2010, 104 (17), 177402. 37. Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S., Structural ( n, m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering. Phys. Rev. Lett. 2001, 86 (6), 1118. 38. Saito, R.; Fantini, C.; Jiang, J., Excitonic States and Resonance Raman Spectroscopy of single-Wall Carbon Nanotubes. In Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Jorio, A., Dresselhaus, M. S., Dresselhaus, G., Ed. Springer-Verlag: Berlin, Heidelberg, 2008; Vol. 111. 39. Perebeinos, V.; Tersoff, J.; Avouris, P., Effect of Exciton-Phonon Coupling in the Calculated Optical Absorption of Carbon Nanotubes. Phys. Rev. Lett. 2005, 94 (2), 027402. 40. Piscanec, S.; Lazzeri, M.; Robertson, J.; Ferrari, A. C.; Mauri, F., Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 2007, 75 (3), 035427. 41. Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; Saito, R., G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 2002, 65 (15), 155412. 42. Doorn, S. K.; Zheng, L.; O'Connell, M. J.; Zhu, Y.; Huang, S.; Liu, J., Raman Spectroscopy and Imaging of Ultralong Carbon Nanotubes. J. Phys. Chem. B 2005, 109 (9), 3751-3758. 112

30. Miyauchi, Y.; Maruyama, S., Identification of an excitonic phonon sideband by<br />

photoluminescence spectroscopy of single-walled carbon-13 nanotubes. Phys. Rev. B 2006, 74<br />

(3), 035415.<br />

31. Scholes, G. D.; Tretiak, S.; McDonald, T. J.; Metzger, W. K.; Engtrakul, C.; Rumbles, G.;<br />

Heben, M. J., Low-Lying Exciton States Determine the Photophysics of Semiconducting Single<br />

Wall <strong>Carbon</strong> <strong>Nanotubes</strong>. J. Phys. Chem. C 2007, 111 (30), 11139-11149.<br />

32. Kilina, S.; Tretiak, S.; Doorn, S. K.; Luo, Z.; Papadimitrakopoulos, F.; Piryatinski, A.;<br />

Saxena, A.; Bishop, A. R., Cross-polarized excitons in carbon nanotubes. Proc. Natl. Acad. Sci.<br />

U. S. A. 2008, 105 (19), 6797-6802.<br />

33. Perebeinos, V.; Tersoff, J.; Avouris, P., Radiative Lifetime of Excitons in <strong>Carbon</strong> <strong>Nanotubes</strong>.<br />

Nano Lett. 2005, 5 (12), 2495-2499.<br />

34. Spataru, C. D.; Ismail-Beigi, S.; Capaz, R. B.; Louie, S. G., Theory and Ab Initio Calculation<br />

of Radiative Lifetime of Excitons in Semiconducting <strong>Carbon</strong> <strong>Nanotubes</strong>. Phys. Rev. Lett. 2005,<br />

95 (24), 247402.<br />

35. Mortimer, I. B.; Nicholas, R. J., Role of Bright and Dark Excitons in the Temperature-<br />

Dependent Photoluminescence of <strong>Carbon</strong> <strong>Nanotubes</strong>. Phys. Rev. Lett. 2007, 98 (2), 027404.<br />

36. Spataru, C. D.; Léonard, F., Tunable Band Gaps and Excitons in Doped Semiconducting<br />

<strong>Carbon</strong> <strong>Nanotubes</strong> Made Possible by Acoustic Plasmons. Phys. Rev. Lett. 2010, 104 (17),<br />

177402.<br />

37. Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.;<br />

Dresselhaus, M. S., Structural ( n, m) Determination of Isolated Single-Wall <strong>Carbon</strong> <strong>Nanotubes</strong><br />

by Resonant Raman Scattering. Phys. Rev. Lett. 2001, 86 (6), 1118.<br />

38. Saito, R.; Fantini, C.; Jiang, J., Excitonic States and Resonance Raman Spectroscopy of<br />

single-Wall <strong>Carbon</strong> <strong>Nanotubes</strong>. In <strong>Carbon</strong> <strong>Nanotubes</strong>: Advanced Topics in the Synthesis,<br />

Structure, Properties and Applications, Jorio, A., Dresselhaus, M. S., Dresselhaus, G., Ed.<br />

Springer-Verlag: Berlin, Heidelberg, 2008; Vol. 111.<br />

39. Perebeinos, V.; Tersoff, J.; Avouris, P., Effect of Exciton-Phonon Coupling in the Calculated<br />

Optical Absorption of <strong>Carbon</strong> <strong>Nanotubes</strong>. Phys. Rev. Lett. 2005, 94 (2), 027402.<br />

40. Piscanec, S.; Lazzeri, M.; Robertson, J.; Ferrari, A. C.; Mauri, F., Optical phonons in carbon<br />

nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 2007, 75 (3),<br />

035427.<br />

41. Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.;<br />

Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; Saito, R., G-band resonant Raman<br />

study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 2002, 65 (15), 155412.<br />

42. Doorn, S. K.; Zheng, L.; O'Connell, M. J.; Zhu, Y.; Huang, S.; Liu, J., Raman Spectroscopy<br />

and Imaging of Ultralong <strong>Carbon</strong> <strong>Nanotubes</strong>. J. Phys. Chem. B 2005, 109 (9), 3751-3758.<br />

112

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!