Optoelectronics with Carbon Nanotubes

Optoelectronics with Carbon Nanotubes Optoelectronics with Carbon Nanotubes

dspace.sunyconnect.suny.edu
from dspace.sunyconnect.suny.edu More from this publisher
07.08.2013 Views

diameters. Such CNTs, aligned and contacted so that each channel is comprised of just one tube instead of a series of tubes, could combine the benefits of the single-tube and film diodes and create efficient nano-scale light sources with high output in the near-infrared that would prove useful in many technological applications. 109

Bibliography 1. Avouris, P.; Chen, Z.; Perebeinos, V., Carbon-based electronics. Nat. Nanotechnol. 2007, 2 (10), 605-615. 2. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354 (6348), 56-58. 3. Iijima, S.; Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363 (6430), 603-605. 4. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P., Carbon Nanotubes : Synthesis, Structure, Properties, and Applications. Springer: Berlin ; New York, 2001; Vol. 80, p xv, 447 p. 5. Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer: Berlin / Heidelberg, 2001; Vol. 80. 6. Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer: Berlin / Heidelberg, 2008; Vol. 111. 7. Tans, S. J.; Verschueren, A. R. M.; Dekker, C., Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393 (6680), 49-52. 8. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P., Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73 (17), 2447-2449. 9. Avouris, P.; Appenzeller, J.; Martel, R.; Wind, S. J., Carbon Nanotube Electronics. Proc. IEEE 2003, 91 (11), 1772-1784. 10. Zaumseil, J.; Ho, X.; Guest, J. R.; Wiederrecht, G. P.; Rogers, J. A., Electroluminescence from Electrolyte-Gated Carbon Nanotube Field-Effect Transistors. ACS Nano 2009, 3 (8), 2225- 2234. 11. Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P., Efficient narrow-band light emission from a single carbon nanotube p-n diode. Nat. Nanotechnol. 2009, 5 (1), 27-31. 12. Wallace, P. R., The Band Theory of Graphite. Phys. Rev. 1947, 71 (9), 622. 13. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Trigonal warping effect of carbon nanotubes. Phys. Rev. B 2000, 61 (4), 2981. 14. Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y., Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555-2558. 15. Weisman, R. B.; Bachilo, S. M., Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot. Nano Lett. 2003, 3 (9), 1235-1238. 110

diameters. Such CNTs, aligned and contacted so that each channel is comprised of just one tube<br />

instead of a series of tubes, could combine the benefits of the single-tube and film diodes and<br />

create efficient nano-scale light sources <strong>with</strong> high output in the near-infrared that would prove<br />

useful in many technological applications.<br />

109

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!