06.08.2013 Views

E. coli - BACTERIOWEB

E. coli - BACTERIOWEB

E. coli - BACTERIOWEB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Role of the Efflux Pumps in<br />

Antimicrobial Resistance in E. <strong>coli</strong><br />

Patrick Plésiat<br />

Bacteriology Department<br />

Teaching Hospital<br />

Besançon, France


ANTIBIOTIC<br />

TARGET


Cell wall<br />

Bacterial targets for antibiotics<br />

Chromosome<br />

Cytoplasmic membrane<br />

Ribosomes


Main resistance mechanisms to drugs<br />

Inactivation<br />

Modification<br />

Protection<br />

ANTIBIOTIC<br />

TARGET<br />

Substitution<br />

Amplification<br />

Efflux<br />

Impermeability<br />

Reduced affinity<br />

- mutations<br />

- recombinaisons<br />

- enzymatic modification


Gram-negative species with known efflux systems<br />

♦Escherichia <strong>coli</strong><br />

♦Salmonella Typhimurium<br />

♦Shigella dysenteriae<br />

♦Klebsiella pneumoniae<br />

♦Enterobacter aerogenes<br />

♦Serratia marcescens<br />

♦Proteus vulgaris<br />

♦Citrobacter freundii...<br />

♦Bacteroides fragilis...<br />

♦Pseudomonas aeruginosa<br />

♦Pseudomonas putida<br />

♦Burkholderia cepacia<br />

♦Burkholderia pseudomallei<br />

♦Stenotrophomonas maltophilia<br />

♦Alcaligenes eutrophus...<br />

♦Haemophilus influenzae<br />

♦Campylobacter jejuni<br />

♦Helicobacter pylori<br />

♦Vibrio parahaemolyticus<br />

♦Vibrio cholerae<br />

♦Neisseria gonorrhoeae...


Efflux mechanisms: practical implications<br />

Do efflux systems produce clinically relevant levels of<br />

resistance ?<br />

Does the expression of drug transporters somewhat impair the<br />

virulence of bacterial pathogens ?<br />

What is the prevalence of efflux systems relative to other<br />

resistance mechanisms among the clinical isolates ?<br />

How to recognize efflux mutants in laboratory practice ?<br />

What recommendations can be made to the physician for the<br />

treatment of patients infected with mdr strains ?


Intracellular accumulation<br />

Drug accumulation experiments<br />

S<br />

R<br />

CCCP<br />

Time<br />

ATP<br />

glucose


Structure of bacterial efflux systems<br />

One component systems<br />

– Mostly in Gram positive species (except Tet...)<br />

– A single transporter protein in the cytoplasmic membrane<br />

– Determines the substrate specificity and resistance<br />

Three component (tripartite) systems<br />

– Exclusively in Gram negative species (GNB)<br />

♦ A transporter protein<br />

♦ A periplasmic adaptor lipoprotein<br />

♦ A outer membrane channel protein


Antiporters<br />

Energy sources<br />

– PMF transporters (proton motive force)<br />

– Na + -antibiotic antiporters<br />

ABC transporters<br />

– ATP binding cassette pumps<br />

– Hydrolysis of ATP into ADP + Pi<br />

– Mostly in Gram positive species


PMF transporters<br />

Major Facilitator Superfamily (MFS)<br />

– Drug efflux<br />

♦ 12 TMS transporters<br />

♦ 14 TMS transporters<br />

– Active uptake/export<br />

♦ sugars...<br />

♦ amino acids, secondary metabolites...<br />

Small Multidrug Resistance Family (SMR)<br />

♦ 4 TMS transporters<br />

Resistance/Nodulation Cell Division Family (RND)<br />

♦ 12 TMS transporters<br />

Multi Antimicrobial Extrusion Family (MATE)<br />

♦ 12 TMS transporters


H +<br />

Structure of drug efflux systems<br />

Na +<br />

antibiotic<br />

ATP ADP<br />

MFS, SMR MATE ABC RND, MFS, ABC<br />

H +<br />

antibiotic


Efflux systems in E. <strong>coli</strong><br />

Chromosomally encoded pumps<br />

– 37 putative drug transporters: 19 MFS, 3 SMR, 7 RND, 7 ABC, 1<br />

MATE<br />

– 20 pumps are able to transport toxic/antibiotic molecules<br />

– 15-17 pumps may provide with some resistance to antibiotics when<br />

overproduced from plasmid genes (Nishino K et al. J. Bacteriol. 2001)<br />

– Upregulation of a single pump results in increased drug efflux<br />

Acquisition of exogenous pump encoding genes<br />

– Genes carried by mobile elements (plasmids, transposons,<br />

integrons)


Efflux pumps coded by mobile genetic elements<br />

Species System Family Substrates<br />

E. <strong>coli</strong> TetA/B/E MFS Tc, Min<br />

E. <strong>coli</strong> CmlA MFS Cmp<br />

E. <strong>coli</strong> Flo MFS Cmp, Flo<br />

E. <strong>coli</strong> OqxAB RND Olaquindox<br />

Tc: tetracycline; Min: minocycline; Cmp: chloramphenicol; Flo: florfenicol


Efflux pumps of MFS, MATE, SMR, or ABC family<br />

Species System Family Substrates Genes<br />

E. <strong>coli</strong> EmrAB-TolC MFS Nal C<br />

E. <strong>coli</strong> Bcr MFS Tc, Km, Fos C<br />

E. <strong>coli</strong> MdfA MFS Tc, Rif, Cmp, Ery, Neo, Fq... C<br />

E. <strong>coli</strong> MdtG MFS Fos C<br />

E. <strong>coli</strong> MdtH MFS Fq C<br />

E. <strong>coli</strong> MdtL MFS Cmp C<br />

E. <strong>coli</strong> MdtM MFS Cmp, Fq C<br />

E. <strong>coli</strong> NorE MATE Cmp, Fq, Fos, Tmp C<br />

E. <strong>coli</strong> EmrE SMR Tc C<br />

E. <strong>coli</strong> MdtJK SMR Nal, Fos C<br />

E. <strong>coli</strong> MacAB-TolC ABC Ery C<br />

Nal: nalidixic acid; Tc: tetracycline; Km: kanamycin; Fos: fosfomycin; Rif: rifampicin; Cmp: chloramphenicol; Ery:<br />

erythromycin; Neo: neomycin; Fq: fluoroquinolones; Tmp: trimethoprim


Efflux pumps of the RND family<br />

Bacteria System Substrates<br />

E. <strong>coli</strong> AcrAB-TolC1 Fq, ß-lactams3 , Tc, Cmp, Nov, Ery, Fus, Rif…<br />

E. <strong>coli</strong> AcrEF-TolC2 Fq, ß-lactams3 , Tc, Cmp, Nov, Ery, Fus, Rif…<br />

E. <strong>coli</strong> AcrD2-AcrA-TolC AGs, Ery, PolyB<br />

E. <strong>coli</strong> CusAB-? 2 Fos<br />

E. <strong>coli</strong> MdtABC-TolC2 Fq<br />

E. <strong>coli</strong> MdtEF-TolC2 Ery<br />

P. aeruginosa MexAB-OprM1 Fq, ß-lactams1 , Tc, Cmp, Nov, Ery, Fus, Tm...<br />

P. aeruginosa MexCD-OprJ2 Fq, 3rd GC, Tc, Cmp, Ery, Tmp<br />

P. aeruginosa MexEF-OprN2 Fq, Cmp, Tmp<br />

P. aeruginosa MexXY2-OprM Fq, AGs, 3rdGC, Ery, Tc<br />

N. gonorrhoeae MtrCDE1 Tc, Cmp, ß-lactams1 , Ery, Fus, Rif...<br />

Fq: (fluoro)quinolones; Tc: tetracycline; Cmp: chloramphenicol; Nov: novobiocin; Ery: erythromycin; Fus: fusidic acid; Rif:<br />

rifampicin; AGs: aminoglycosides; PolyB: polymyxin B; Tmp: trimethoprim; Sulf: sulfamethoxazole; 3 rd GC: cefepime, cefpirome.<br />

1 expressed constitutively in wild type cells, 2 inducible expression, 3 except imipenem.


Induction of acrAB-tolC expression<br />

tetracycline<br />

chloramphenicol<br />

salicylate-acetylsalicylate<br />

benzoate<br />

stress...<br />

MarRAB<br />

∇ Porin OmpF<br />

∆ TolC<br />

∆ AcrAB<br />

∆ EmrAB<br />

∆∇Other proteins<br />

Mar regulon<br />

SoxSR oxidative stress<br />

Rob bile salts<br />

tetracycline r<br />

chloramphenicol r<br />

quinolones r<br />

erythromycin r<br />

solvants, pine oil...


Overexpression of acrAB and mtrCDE operons<br />

acrR<br />

mtrR<br />

-<br />

-<br />

+<br />

acrA<br />

+<br />

MarA<br />

acrB<br />

MtrA<br />

mtrC mtrD<br />

mtrE<br />

_ (MppA)<br />

MarR<br />

_<br />

SoxS SoxR<br />

mutations mdr


Systems MtrCDE and FarAB in N.<br />

gonorrhoeae<br />

Antibiotics wild type CDE ++ CDE - FarAB -<br />

Penicillin G 0.008 0.032 0.008 nd<br />

Erythromycin 0.25 1 - 2 0.06 0.25<br />

Tetracycline 0.25 0.5 nd nd<br />

Rifampicin 0.06 0.25 0.015 nd<br />

Linoleic acid 1600 nd 25 - 50 50<br />

Palmitic acid 100 nd 12.5 12.5


System AcrAB-TolC in E. <strong>coli</strong><br />

Antibiotics wild type AcrAB ++ AcrAB -<br />

Nalidixic acid 4 - 6 8.5 - 32 0.6<br />

Norfloxacin 0.025 - 0.1 0.3 - 1.25 nd<br />

Ofloxacin 0.06 - 0.07 0.25 - 0.3 nd<br />

Ciprofloxacin 0.02 0.15 nd<br />

Ampicillin 2 - 4 5 - 6 0.6 - 2<br />

Erythromycin 128 - 256 > 512 < 2 - 8<br />

Tetracycline 1.25 - 3 5 - 16 0.25 - 0.3<br />

Chloramphenicol 4 - 7.5 10 - 28 0.6


System MexAB-OprM in P. aeruginosa<br />

Antibiotics wild type MexAB ++ MexAB -<br />

Norfloxacin 0.25 - 1 2 - 4 0.05 - 0.25<br />

Ofloxacin 0.4 - 1 1.6 - 8 0.025 - 0.05<br />

Ciprofloxacin 0.03 - 0.25 0.4 - 1.6 0.012 - 0.03<br />

Carbenicillin 12.5 - 64 50 - 256 0.4 - 1<br />

Aztreonam 1.6 - 4 12.5 - 32 0.1 - 0.2<br />

Ceftazidime 0.4 - 2 1.6 - 8 0.2 - 0.4<br />

Cefepime 0.8 - 2 3 - 4 0.1 - 0.5<br />

Meropenem 0.2 - 0.5 0.8 - 2 0.1 - 0.2<br />

Tetracycline 6.25 - 16 25 -64 0.2 - 1.2<br />

Chloramphenicol 12.5 - 32 100 - 512 0.8 - 2


Interplays between resistance mechanisms in GNB<br />

Outer membrane<br />

permeability<br />

Active efflux<br />

Other mechanisms


Efflux/target double mutants of E. <strong>coli</strong><br />

Genotype/Phenotype Oflo Cipro<br />

wild type AG100 0.03 ≤0.015<br />

AcrAB ++ 0.125 0.06<br />

gyrA (Asp87->Gly) 0.25 0.25<br />

gyrA (Asp87->Gly; Ser83->Leu) 4 2<br />

gyrA (Asp87->Gly), AcrAB ++ 8 4<br />

gyrA (Asp87->Gly), AcrAB -<br />

0.06 0.03


Therapeutic implications of efflux systems<br />

Resistance levels conferred by intrinsic pumps<br />

– Low to moderate drug resistance (MIC x 2 - 16)<br />

– Clinical significance<br />

♦ Lack of clinical data !<br />

♦ Poor response to treatment when the concentrations of<br />

antibiotics are low at the infection site (insufficient dosage,<br />

inappropriate drug, abcess...)<br />

♦ Increased emergence of target mutants ?<br />

Emergence of gain of efflux mutants under treatment<br />

– Cross resistance to structurally unrelated molecules<br />

– Role of fluoroquinolones


Drug total daily dosage<br />

(mg)<br />

PK/PD Monte Carlo<br />

Treatment MIC (mg/L) Target Attainment Rate (%)<br />

unitary dose interval<br />

(hours)<br />

Cmax/MIC > 10 AUC/MIC > 125<br />

Ciproflox. 1200 8 0.12 66 87<br />

0.25 6 7<br />

1600 6 0.12 66 90<br />

0.25 5 12<br />

2400 8 0.12 98 100<br />

0.25 60 85<br />

0.5 4.2 3.7<br />

Levoflox. 500 24 0.5 70 40<br />

1 4 3<br />

1000 12 0.5 72 72<br />

1 4 5


Efflux mutants, are they virulent ?<br />

Clinical experience<br />

– Many examples of mdr isolates recovered from clinical specimens<br />

(blood, urine, sputums…)<br />

Other considerations<br />

– marA disruption mutants of S. Typhimurium remain fully virulent<br />

in a murine BALB/c infection model (Sulavik, J. Bacteriol. 1997,<br />

179: 1857)<br />

– First step fluoroquinolone resistant mutants with mutations in<br />

gyrA, gyrB or marOR do not display significant loss of fitness (in<br />

vitro competition experiments, experimental urinary tract infection<br />

in mouse) (Komp Lindgren P., AAC 2005, 49: 2343)<br />

– Role of secondary mutations ?


How to characterize efflux mechanisms<br />

Plasmid or transposon encoded efflux systems<br />

– Multiresistance phenotype<br />

– Detection of efflux gene(s): PCR, nucleic probes<br />

Upregulation of intrinsic efflux systems<br />

– Protein levels<br />

♦ Western blotting of membrane extracts with specific antibodies<br />

– mRNA levels<br />

♦ Northern blot, MacroArray, MicroArray<br />

♦ Real Time RT-PCR (Light Cycler, Taq Man, I Cycler…)<br />

– Intracellular accumulation of antibiotics<br />

♦ [ 3 H] ou [ 14 C] radiolabeled or fluorescent compounds (BET,<br />

acriflavine…)<br />

– Sequencing of regulatory genes


Efflux inhibitors<br />

Phenyl-Arginyl ß N-naphtylamide

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!