06.08.2013 Views

2 - BACTERIOWEB

2 - BACTERIOWEB

2 - BACTERIOWEB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Role of the Efflux Pumps in<br />

Antimicrobial Resistance<br />

Patrick Plésiat<br />

Bacteriology Department<br />

Teaching Hospital<br />

Besançon, France<br />

1


ANTIBIOTIC<br />

[C int ]<br />

TARGET<br />

[n]<br />

affinity<br />

2


Cell wall<br />

Bacterial targets for antibiotics<br />

Chromosome<br />

Cytoplasmic membrane<br />

Ribosomes<br />

3


Main resistance mechanisms to drugs<br />

Inactivation<br />

Modification<br />

Cleaning<br />

Protection<br />

ANTIBIOTIC<br />

TARGET<br />

Substitution<br />

Amplification<br />

Efflux<br />

Impermeability<br />

Reduced affinity<br />

- mutations<br />

- recombinaisons<br />

- enzymatic modification<br />

4


Drug inactivation<br />

Target alteration<br />

Decreased mb permeability<br />

Active efflux<br />

Drug resistance mechanisms<br />

+++<br />

+++<br />

+<br />

+<br />

ß-lactams<br />

+++<br />

+<br />

+<br />

+<br />

Aminoglycosides<br />

Quinolones<br />

+/-<br />

+++<br />

+<br />

+<br />

+/-<br />

+++<br />

+<br />

+<br />

Macrolides<br />

+/-<br />

++<br />

+<br />

+++<br />

5<br />

Tetracyclines<br />

Tetracyclines


First description<br />

Antibiotic efflux<br />

60’: E. coli strains resistant to nalidixic acid (K. Arima)<br />

80’: Tet determinants (S. Levy)<br />

Since early 90’<br />

Several hundreds of characterized or putative efflux systems<br />

reported in the literature…<br />

Definition of efflux systems<br />

Transmembrane proteins able to actively transport diverse<br />

substrate molecules from the cell interior to the external medium<br />

Pumps : functional export systems<br />

6


Intracellular accumulation<br />

Drug accumulation experiments<br />

S<br />

R<br />

CCCP<br />

Time<br />

ATP<br />

glucose<br />

7


8<br />

Gram-negative species with known efflux systems<br />

−Escherichia coli<br />

−Salmonella Typhimurium<br />

−Shigella dysenteriae<br />

−Klebsiella pneumoniae<br />

−Enterobacter aerogenes<br />

−Serratia marcescens<br />

−Proteus sp.<br />

−Citrobacter freundii...<br />

−Bacteroides fragilis...<br />

−Pseudomonas aeruginosa<br />

−Pseudomonas putida<br />

−Burkholderia cepacia<br />

−Burkholderia pseudomallei<br />

−Stenotrophomonas maltophilia<br />

−Alcaligenes eutrophus<br />

−Acinetobacter baumannii...<br />

−Neisseria gonorrhoeae<br />

−Haemophilus influenzae<br />

−Campylobacter coli, jejuni<br />

−Helicobacter pylori<br />

−Vibrio parahaemolyticus<br />

−Vibrio cholerae<br />

−Yersinia pestis...


9<br />

Other bacterial species with known efflux systems<br />

−Staphylococcus aureus<br />

−Staphylococcus sp.<br />

−Streptococcus pneumoniae<br />

−Streptococcus pyogenes<br />

−Streptococcus agalactiae<br />

−Enterococcus sp…<br />

−Mycoplasma hominis...<br />

−Bacillus subtilis<br />

−Listeria monocytogenes<br />

−Corynebacterium sp<br />

−Lactococcus lactis<br />

−Lactobacillus brevis...<br />

-Mycobacterium smegmatis<br />

-Mycobacterium tuberculosis...


Efflux mechanisms: practical implications<br />

Do efflux systems produce clinically relevant levels of resistance ?<br />

Does the expression of drug transporters impair the virulence of<br />

bacterial pathogens ?<br />

What is the prevalence of efflux systems relative to other resistance<br />

mechanisms among the clinical isolates ?<br />

How to recognize efflux mutants in laboratory practice ?<br />

What recommendations can be made to the physician for the<br />

treatment of patients infected with mdr strains ?<br />

10


Structure of bacterial efflux systems<br />

One component systems<br />

– Mostly in Gram positive species (except Tet...)<br />

– A single transporter protein in the cytoplasmic membrane<br />

– Determines the substrate specificity and resistance<br />

Three component (tripartite) systems<br />

– Exclusively in Gram negative species (GNB)<br />

♦ A transporter protein<br />

♦ A periplasmic adaptor lipoprotein<br />

♦ A outer membrane channel protein<br />

11


ABC transporters<br />

Energy sources<br />

– ATP binding cassette pumps<br />

– Hydrolysis of ATP into ADP + Pi<br />

– Mostly in Gram positive species<br />

Secondary transporters<br />

– H + /substrate antiporters (proton motive force)<br />

– Na + /substrate antiporters<br />

12


PMF secondary transporters<br />

Major Facilitator Superfamily (MFS)<br />

– Drug efflux<br />

♦ 12 TMS transporters<br />

♦ 14 TMS transporters<br />

– Active uptake/export<br />

♦ sugars...<br />

♦ amino acids, secondary metabolites...<br />

Small Multidrug Resistance Family (SMR)<br />

♦ 4 TMS transporters<br />

Resistance/Nodulation Cell Division Family (RND)<br />

♦ 12 TMS transporters<br />

Multi Antimicrobial Extrusion Family (MATE)<br />

♦ 12 TMS transporters<br />

13


H +<br />

Structure of drug efflux systems<br />

Na +<br />

antibiotic<br />

ATP ADP<br />

antibiotic<br />

MFS, SMR MATE ABC RND (MFS, ABC)<br />

H +<br />

14


Efflux-based resistance in Staphylococci<br />

Species System Family Substrates Genes Fqcy r<br />

S. coagulase - MsrA ABC 14,15-M, strept.B P ++<br />

S. aureus MsrA-like ABC 14,15-M, strept.B P +/-<br />

S. epidermidis ErpA ABC ? 14,15-M P ?<br />

S. aureus NorA MFS Fq, Cmp, Org. Ch ?<br />

S. aureus QacA/B MFS Antisept. P +<br />

S. aureus TetK MFS Tc P +++<br />

14,15-M: 14 et 15-macrolides ; Strept.B: streptogramin B ; Fq: fluoroquinolones ; Cmp: chloramphenicol;<br />

Organic cations.: acriflavin, cetyltrimethylammonium, Ethidium bromide, triphenylphosphonium, rhodamine ;<br />

Antisept.: chlorhexidin, benzalkonium, cetyltrimethylammonium, pentamidine...; Tc: tetracycline.<br />

15


Expression<br />

System NorA in S. aureus<br />

– Constitutive or slightly inducible by FQs in wild-type strains<br />

– Increased by mutations in the promoter region of norA or in<br />

other loci<br />

Substrates<br />

– Identical to those of pump Bmr in Bacillus subtilis<br />

– Specificity related to C-7 residue and hydrophobicity of C-8<br />

residue<br />

Inhibitors<br />

– CCCP, nigericin, nigericin,<br />

reserpin, reserpin,<br />

verapamil, verapamil,<br />

omprazole, omprazole<br />

lanzoprazole<br />

16


System NorA in S. aureus<br />

Antibiotics Wild-type NorA+++ NorA-<br />

Nalidixic acid 25 - 125 100 - >1000 nd<br />

Norfloxacin 0.8 - 1.6 50 - 80 0.2 - 0.3<br />

Ciprofloxacin 0.25 - 0.7 6 0.1 - 0.2<br />

Ofloxacin 0.2 - 0.5 1.5 - 3 0.4<br />

Pefloxacin 0.5 12.5 nd<br />

Sparfloxacin 0.1 0.2 0.1<br />

Cetrimide 0.4 6.5 nd<br />

Benzalkonium 1 3 nd<br />

Ethidium bromide 5 - 6.5 25 0.5<br />

17<br />

(CMI µg/mL


Interplays between resistance mechanisms<br />

Membrane<br />

permeability<br />

Active efflux<br />

Other mechanisms<br />

18


Combination of mechanisms in S. aureus<br />

Strains GyrA ParC NorA+ Cip Sparflo<br />

1 - - - 0.5 0.1<br />

2 - S80Y - 8 1<br />

3 - E84K - 8 1<br />

4 - E84K efflux 64 2<br />

5 E88K S80Y - 128 32<br />

6 E88K S80Y efflux >128 64<br />

7 S84L E84K efflux >128 64<br />

19<br />

(CMI µg/mL<br />

I. Guillemin, thesis Paris XI


Efflux mechanisms in Streptococci<br />

Species System Family Substrates Genes Fqcy<br />

S. pyogenes MefA MFS ? 14,15-M Tn +++<br />

S. pneumoniae MefE MFS ? 14,15-M Tn ++<br />

S. pneumoniae ? MFS ? 14,15-M, strept.B Ch ? ?<br />

S. pneumoniae PmrA MFS ? Cip, Nor, BET Ch ?<br />

14,15-M: 14 et 15-macrolides ; Strept.B: streptogramin B ; Cip: ciprofloxacin; Nor: norfloxacin; BET: Ethidium<br />

20


PmrA-mediated resistance in S. pneumoniae<br />

Antibiotics Wild type PmrA++<br />

Norfloxacin 2 16<br />

Norfloxacin + reserpin 2 4<br />

Ciprofloxacin 0.5 2<br />

Moxifloxacin 0.12 0.12<br />

Sparfloxacin 0.25 0.25<br />

Acriflavin 4 16<br />

Ethidium bromide 2 16<br />

21<br />

Gill, M. J. Antimicrob. Agents Chemother. 1999, 43: 187


Combinaison of mechanisms in S. pneumoniae<br />

Strains GyrA ParC ParE Efflux Cip Levo Trova Moxi<br />

S10B4 - - - + 1 1 0.25 0.25<br />

S10A6 - - I460V - 1 1 0.25 0.125<br />

S7A2 - - I460V + 2 1 0.25 0.125<br />

S7B7 - K137N - + 2 1 0.5 0.25<br />

S7C2 - S79F I460V + 4 2 0.5 0.25<br />

S9E9 - K137N I460V + 16 4 0.5 0.25<br />

S10D9 S81F K137N D435N + 16 16 1 1<br />

I460V<br />

S7E1 S81F K137N I460V + 32 16 32 4<br />

22<br />

Ho, P. L. J. Antimicrob. Chemother. 2001, 47: 655


Other Gram positives<br />

Species System Family Substrates Genes Fqcy<br />

B. subtilis Bmr MFS Cmp, Fq, Org. Ch ?<br />

B. subtilis Blt MFS Cmp, Fq, Org. Ch ?<br />

B. subtilis Bmr3 MFS Oflox, lévo, Org. Ch ? ?<br />

Streptomyces sp Cml MFS Cmp Ch +++<br />

Streptomyces sp Ptr MFS Pristina, Rif Ch +++<br />

Cmp: chloramphenicol ; Fq: fluoroquinolones ; Organic cations: acriflavine, cetyltrimethylammonium,<br />

ethidium, triphenylphosphonium, rhodamine ; Oflox.: ofloxacin ; Levo.: levofloxacin ; Pristina: pristinamycins I-<br />

II ; Rif: rifampicin.<br />

23


Chromosomal genes<br />

Efflux systems in E. coli<br />

– 37 putative drug transporters: 19 MFS, 3 SMR, 7 RND, 7 ABC,<br />

1 MATE<br />

– 20 pumps are able to transport toxic/antibiotic molecules<br />

– 15-17 pumps may provide with some resistance to antibiotics when<br />

overproduced from cloned genes (Nishino K et al. J. Bacteriol. 2001)<br />

– Most of these intrinsic systems are not expressed in standard<br />

laboratory growth conditions<br />

– Spontaneous mutations may result in stable overproduction of a<br />

single pump and resistance<br />

Foreign genes<br />

– Genes carried by mobile elements (plasmids, transposons)<br />

24


25<br />

Efflux pumps coded by mobile genetic elements<br />

Species System Family Substrates<br />

E. coli TetA/B/E MFS Tc, Min Tig<br />

E. coli CmlA MFS Cmp<br />

E. coli Flo MFS Cmp, Flo<br />

E. coli OqxAB-TolC RND Olaquindox, Cmp<br />

Tc: tetracycline; Min: minocycline; Cmp: chloramphenicol; Flo: florfenicol ; Tig: tigecycline


26<br />

Efflux pumps of MFS, MATE, SMR, or ABC family<br />

Species System Family Substrates Genes<br />

E. coli EmrAB-TolC MFS Nal C<br />

E. coli Bcr MFS Tc, Km, Fos C<br />

E. coli MdfA MFS Tc, Rif, Cmp, Ery, Neo, Fq... C<br />

E. coli MdtG MFS Fos C<br />

E. coli MdtH MFS Fq C<br />

E. coli MdtL MFS Cmp C<br />

E. coli MdtM MFS Cmp, Fq C<br />

E. coli NorE MATE Cmp, Fq, Fos, Tmp C<br />

E. coli EmrE SMR Tc C<br />

E. coli MdtJK SMR Nal, Fos C<br />

E. coli MacAB-TolC ABC Ery C<br />

Nal: nalidixic acid; Tc: tetracycline + glycylcyclines; Km: kanamycin; Fos: fosfomycin; Rif: rifampicin;<br />

Cmp: chloramphenicol; Ery: erythromycin; Neo: neomycin; Fq: fluoroquinolones; Tmp: trimethoprim


Efflux pumps of the RND family<br />

Bacteria System Substrates<br />

E. coli AcrAB-TolC 1 Fq, ß-lactams 3 , Tc, Cmp, Nov, Ery, Fus, Rif…<br />

E. coli AcrEF-TolC 2 Fq, ß-lactams 3 , Tc, Cmp, Nov, Ery, Fus, Rif…<br />

E. coli AcrD 2 -AcrA-TolC AGs, Ery, PolyB<br />

E. coli CusAB-? 2 Fos<br />

E. coli MdtABC-TolC 2 Fq<br />

E. coli MdtEF-TolC 2 Ery<br />

P. aeruginosa MexAB-OprM 1 Fq, ß-lactams 1 , Tc, Cmp, Nov, Ery, Fus, Tm...<br />

N. gonorrhoeae MtrCDE 1 Tc, Cmp, ß-lactams 1 , Ery, Fus, Rif...<br />

Fq: (fluoro)quinolones; Tc: tetracycline; Cmp: chloramphenicol; Nov: novobiocin; Ery: erythromycin; Fus:<br />

fusidic acid; Rif: rifampicin; AGs: aminoglycosides; PolyB: polymyxin B; Fos: fosfomycin; Tmp: trimethoprim;<br />

3 rd GC: cefepime, cefpirome. 1 expressed constitutively in wild type cells, 2 inducible expression, 3 except imipenem.<br />

27


28<br />

Overexpression of acrAB and mtrCDE operons<br />

E. coli<br />

N. gonorrhoeae<br />

acrR<br />

mtrR<br />

-<br />

-<br />

acrA<br />

+<br />

+<br />

MarA<br />

acrB<br />

MtrA<br />

mtrC mtrD<br />

mtrE<br />

_ (MppA)<br />

MarR<br />

_<br />

SoxS SoxR<br />

mutations mdr


System AcrAB-TolC in E. coli<br />

Antibiotics wild type AcrAB ++ AcrAB -<br />

Nalidixic acid 4 - 6 8.5 - 32 0.6<br />

Norfloxacin 0.025 - 0.1 0.3 - 1.25 nd<br />

Ofloxacin 0.06 - 0.07 0.25 - 0.3 nd<br />

Ciprofloxacin 0.02 0.15 nd<br />

Ampicillin 2 - 4 5 - 6 0.6 - 2<br />

Erythromycin 128 - 256 > 512 < 2 - 8<br />

Tetracycline 1.25 - 3 5 - 16 0.25 - 0.3<br />

Chloramphenicol 4 - 7.5 10 - 28 0.6<br />

contribution to intrinsic resistance : CMI x 2-64<br />

acquired resistance : CMI x 2-12<br />

29<br />

(CMI mg/l)


Efflux/target double mutants of E. coli<br />

Genotype/Phenotype Oflo Cipro<br />

wild type AG100 0.03 ≤0.015<br />

AcrAB ++ 0.125 0.06<br />

gyrA (Asp87->Gly) 0.25 0.25<br />

gyrA (Asp87->Gly; Ser83->Leu) 4 2<br />

gyrA (Asp87->Gly), AcrAB ++ 8 4<br />

gyrA (Asp87->Gly), AcrAB - 0.06 0.03<br />

Oethinger et al. Antimicrob. Agents Chemother. 2000, 44: 10-13<br />

30


Induction of acrAB-tolC expression<br />

tetracycline<br />

chloramphenicol<br />

(acetyl)salicylate<br />

benzoate<br />

stress...<br />

marROAB<br />

Mar regulon :<br />

∇ Porin OmpF<br />

Δ TolC<br />

Δ AcrAB<br />

Δ EmrAB<br />

Δ∇Other proteins<br />

SoxSR oxidative stress<br />

Rob bile salts<br />

31


Systems MtrCDE and FarAB in N. gonorrhoeae<br />

Antibiotics wild type CDE ++ CDE - FarAB -<br />

Penicillin G 0.008 0.032 0.008 nd<br />

Erythromycin 0.25 1 - 2 0.06 0.25<br />

Tetracycline 0.25 0.5 nd nd<br />

Rifampicin 0.06 0.25 0.015 nd<br />

Linoleic acid 1600 nd 25 - 50 50<br />

Palmitic acid 100 nd 12.5 12.5<br />

contribution to intrinsic resistance : CMI x 4-64<br />

acquired resistance : CMI x 4-8<br />

32<br />

(CMI mg/l)


RND efflux systems in P. aeruginosa<br />

System Operon Substrates<br />

MexAB-OprM mexAB,oprM FQ, ß-lactam, Tmp, Cmp, Tet, Nov, Ery...<br />

MexXY (OprM) mexXY FQ, AG, Fep, Cpo, Tet, Ery...<br />

MexCD-OprJ mexCD,oprJ FQ, Cpo ,Fep, Tmp, Cmp, Tet, Ery...<br />

MexEF-OprN mexEF,oprN FQ, (Ipm), Tmp, Cmp...<br />

MexGHI-OpmD mexGHI,opmD FQ...<br />

MexJK (OprM) mexJK Tet, Ery...<br />

MexVW (OprM) mexVW FQ, Cmp, Tet, Ery...<br />

Fq: fluoroquinolones; ß-lactam (except imipenem); Tmp: trimethoprime; Cmp: chloramphenicol; Tet: tetracycline;<br />

Nov: novobiocin; Ery: erythromycin; AG: aminoglycosides; Fep: cefepime; Cpo: cefpirome; Ipm: imipenem.<br />

33


Contribution to intrinsic resistance in P. aeruginosa<br />

Antibiotcs Wild type MexAB/M - MexXY/M -<br />

Norfloxacin 0.125 - 1 0.05 - 0.25 -<br />

Ciprofloxacin 0.03 - 0.25 0.012 - 0.03 -<br />

Carbenicillin 12.5 - 64 0.4 - 1 -<br />

Ceftazidime 0.4 - 2 0.2 - 0.4 -<br />

Cefepime 0.8 - 2 0.1 - 0.5 -<br />

Meropenem 0.2 - 0.5 0.1 - 0.2 -<br />

Tetracycline 6.25 - 16 2 2 - 4<br />

Chloramphenicol 12.5 - 32 0.8 - 2 -<br />

Erythromycin 256 64 - 128 32 - 64<br />

Tobramycin 0.5 - 0.125<br />

Amikacin 2 - 0.5<br />

CMI x 2-64<br />

CMI x 2-8<br />

34<br />

(CMI mg/l)


Acquired resistance in P. aeruginosa<br />

Antibiotics Wild type MexAB/M MexCD/J MexEF/N MexXY/M<br />

Carbenicillin 8 - 32 64 - 256<br />

Aztreonam 2 - 4 12.5 - 32<br />

Ceftazidime 0.4 - 2 1.6 - 8<br />

Cefepime 1 3 - 4 12.5 8<br />

Cefpirom 1 - 2 4 - 8 8 - 16<br />

Imipenem 0.8 - 1 6.25 - 8<br />

Meropenem 0.2 - 0.5 0.8 - 2<br />

Ciprofloxacin 0.03 - 0.125 0.4 - 1 0.8 - 1.6 0.8 - 1.6 0.5 - 1<br />

Amikacin 2 4 - 16<br />

Tobramycin 0.25 - 0.5 1 - 2<br />

35<br />

(CMI mg/l)


Genetic events leading to increased efflux<br />

IS<br />

mdr mutations<br />

mexR<br />

mexZ<br />

PA3721<br />

nalC<br />

-<br />

-<br />

nalB<br />

-<br />

agrZ<br />

PA3720 PA3719<br />

_<br />

-<br />

mexA mexB oprM<br />

+<br />

mexX<br />

mexY<br />

PA5471<br />

_<br />

PA3574<br />

nalD<br />

MexXY<br />

MexAB-OprM<br />

agrW<br />

C. Vogne et al. Antimicrob. Agents Chemother. 2004, 48: 1676<br />

C. Llanes et al. Antimicrob. Agents Chemother. 2004, 48: 1797


MexXY-mediated adaptive resistance to AGs<br />

MIC (mg / L)<br />

50 _<br />

_<br />

40 _<br />

30 _<br />

20 _<br />

10 _<br />

Stain ATCC 27853 exposed to 1 MIC amikacin for 2h every 8h (Karlowsky 1994)<br />

MIC of amikacin; Bacterial killing in log10<br />

_<br />

_<br />

_<br />

_<br />

_<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Inoculum (log10 CFU)<br />

D. Hocquet et al. Antimicrob. Agents Chemother. 2003, 47: 1371


Target/efflux double mutants in P. aeruginosa<br />

MIC levofloxacin (mg/L)<br />

Target mutations Wild-type MexAB ++ MexAB ++<br />

+ inh. 10 mg/l<br />

Aucune 0.25 2 0.03<br />

gyrA (Thr83->Ile) 2 8 0.5<br />

gyrA (Thr83->Ile) + parC (Ser87->Leu) 4 32 2<br />

gyrA (Thr83->Ile + Asp87->Tyr) + parC (Ser87->Leu) 16 128 8<br />

38<br />

Lomovskaya et al. Antimicrob. Agents Chemother. 1999, 43: 1340<br />

Lomovskaya et al. ICAAC Toronto 1999, abstract F-1264


Therapeutic implications of efflux systems<br />

Resistance levels conferred by intrinsic pumps<br />

– Low to moderate drug resistance (MIC x 2 - 16)<br />

– Clinical significance<br />

♦ Lack of clinical data !<br />

♦ Poor response to treatment when the concentrations of<br />

antibiotics are low at the infection site (insufficient dosage,<br />

inappropriate drug, abcess...)<br />

♦ Increased emergence of target mutants ?<br />

Emergence of efflux mutants under treatment<br />

– Cross resistance to structurally unrelated molecules<br />

– Role of fluoroquinolones<br />

39


How to characterize efflux mechanisms<br />

Plasmid or transposon encoded efflux systems<br />

– Multiresistance phenotype<br />

– Detection of efflux gene(s): PCR, nucleic probes<br />

Upregulation of intrinsic efflux systems<br />

– Protein levels<br />

♦ Western blotting of membrane extracts with specific antibodies<br />

– mRNA levels<br />

♦ Northern blot, MacroArray, MicroArray<br />

♦ Real Time RT-PCR (Light Cycler, Taq Man, I Cycler…)<br />

– Intracellular accumulation of antibiotics<br />

♦ [ 3 H] ou [ 14 C] radiolabeled or fluorescent compounds (BET,<br />

acriflavine…)<br />

– Sequencing of regulatory genes<br />

40


Efflux inhibitors<br />

Phenyl-Arginyl ß N-naphtylamide<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!