06.08.2013 Views

2 - BACTERIOWEB

2 - BACTERIOWEB

2 - BACTERIOWEB

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Role of the Efflux Pumps in<br />

Antimicrobial Resistance<br />

Patrick Plésiat<br />

Bacteriology Department<br />

Teaching Hospital<br />

Besançon, France<br />

1


ANTIBIOTIC<br />

[C int ]<br />

TARGET<br />

[n]<br />

affinity<br />

2


Cell wall<br />

Bacterial targets for antibiotics<br />

Chromosome<br />

Cytoplasmic membrane<br />

Ribosomes<br />

3


Main resistance mechanisms to drugs<br />

Inactivation<br />

Modification<br />

Cleaning<br />

Protection<br />

ANTIBIOTIC<br />

TARGET<br />

Substitution<br />

Amplification<br />

Efflux<br />

Impermeability<br />

Reduced affinity<br />

- mutations<br />

- recombinaisons<br />

- enzymatic modification<br />

4


Drug inactivation<br />

Target alteration<br />

Decreased mb permeability<br />

Active efflux<br />

Drug resistance mechanisms<br />

+++<br />

+++<br />

+<br />

+<br />

ß-lactams<br />

+++<br />

+<br />

+<br />

+<br />

Aminoglycosides<br />

Quinolones<br />

+/-<br />

+++<br />

+<br />

+<br />

+/-<br />

+++<br />

+<br />

+<br />

Macrolides<br />

+/-<br />

++<br />

+<br />

+++<br />

5<br />

Tetracyclines<br />

Tetracyclines


First description<br />

Antibiotic efflux<br />

60’: E. coli strains resistant to nalidixic acid (K. Arima)<br />

80’: Tet determinants (S. Levy)<br />

Since early 90’<br />

Several hundreds of characterized or putative efflux systems<br />

reported in the literature…<br />

Definition of efflux systems<br />

Transmembrane proteins able to actively transport diverse<br />

substrate molecules from the cell interior to the external medium<br />

Pumps : functional export systems<br />

6


Intracellular accumulation<br />

Drug accumulation experiments<br />

S<br />

R<br />

CCCP<br />

Time<br />

ATP<br />

glucose<br />

7


8<br />

Gram-negative species with known efflux systems<br />

−Escherichia coli<br />

−Salmonella Typhimurium<br />

−Shigella dysenteriae<br />

−Klebsiella pneumoniae<br />

−Enterobacter aerogenes<br />

−Serratia marcescens<br />

−Proteus sp.<br />

−Citrobacter freundii...<br />

−Bacteroides fragilis...<br />

−Pseudomonas aeruginosa<br />

−Pseudomonas putida<br />

−Burkholderia cepacia<br />

−Burkholderia pseudomallei<br />

−Stenotrophomonas maltophilia<br />

−Alcaligenes eutrophus<br />

−Acinetobacter baumannii...<br />

−Neisseria gonorrhoeae<br />

−Haemophilus influenzae<br />

−Campylobacter coli, jejuni<br />

−Helicobacter pylori<br />

−Vibrio parahaemolyticus<br />

−Vibrio cholerae<br />

−Yersinia pestis...


9<br />

Other bacterial species with known efflux systems<br />

−Staphylococcus aureus<br />

−Staphylococcus sp.<br />

−Streptococcus pneumoniae<br />

−Streptococcus pyogenes<br />

−Streptococcus agalactiae<br />

−Enterococcus sp…<br />

−Mycoplasma hominis...<br />

−Bacillus subtilis<br />

−Listeria monocytogenes<br />

−Corynebacterium sp<br />

−Lactococcus lactis<br />

−Lactobacillus brevis...<br />

-Mycobacterium smegmatis<br />

-Mycobacterium tuberculosis...


Efflux mechanisms: practical implications<br />

Do efflux systems produce clinically relevant levels of resistance ?<br />

Does the expression of drug transporters impair the virulence of<br />

bacterial pathogens ?<br />

What is the prevalence of efflux systems relative to other resistance<br />

mechanisms among the clinical isolates ?<br />

How to recognize efflux mutants in laboratory practice ?<br />

What recommendations can be made to the physician for the<br />

treatment of patients infected with mdr strains ?<br />

10


Structure of bacterial efflux systems<br />

One component systems<br />

– Mostly in Gram positive species (except Tet...)<br />

– A single transporter protein in the cytoplasmic membrane<br />

– Determines the substrate specificity and resistance<br />

Three component (tripartite) systems<br />

– Exclusively in Gram negative species (GNB)<br />

♦ A transporter protein<br />

♦ A periplasmic adaptor lipoprotein<br />

♦ A outer membrane channel protein<br />

11


ABC transporters<br />

Energy sources<br />

– ATP binding cassette pumps<br />

– Hydrolysis of ATP into ADP + Pi<br />

– Mostly in Gram positive species<br />

Secondary transporters<br />

– H + /substrate antiporters (proton motive force)<br />

– Na + /substrate antiporters<br />

12


PMF secondary transporters<br />

Major Facilitator Superfamily (MFS)<br />

– Drug efflux<br />

♦ 12 TMS transporters<br />

♦ 14 TMS transporters<br />

– Active uptake/export<br />

♦ sugars...<br />

♦ amino acids, secondary metabolites...<br />

Small Multidrug Resistance Family (SMR)<br />

♦ 4 TMS transporters<br />

Resistance/Nodulation Cell Division Family (RND)<br />

♦ 12 TMS transporters<br />

Multi Antimicrobial Extrusion Family (MATE)<br />

♦ 12 TMS transporters<br />

13


H +<br />

Structure of drug efflux systems<br />

Na +<br />

antibiotic<br />

ATP ADP<br />

antibiotic<br />

MFS, SMR MATE ABC RND (MFS, ABC)<br />

H +<br />

14


Efflux-based resistance in Staphylococci<br />

Species System Family Substrates Genes Fqcy r<br />

S. coagulase - MsrA ABC 14,15-M, strept.B P ++<br />

S. aureus MsrA-like ABC 14,15-M, strept.B P +/-<br />

S. epidermidis ErpA ABC ? 14,15-M P ?<br />

S. aureus NorA MFS Fq, Cmp, Org. Ch ?<br />

S. aureus QacA/B MFS Antisept. P +<br />

S. aureus TetK MFS Tc P +++<br />

14,15-M: 14 et 15-macrolides ; Strept.B: streptogramin B ; Fq: fluoroquinolones ; Cmp: chloramphenicol;<br />

Organic cations.: acriflavin, cetyltrimethylammonium, Ethidium bromide, triphenylphosphonium, rhodamine ;<br />

Antisept.: chlorhexidin, benzalkonium, cetyltrimethylammonium, pentamidine...; Tc: tetracycline.<br />

15


Expression<br />

System NorA in S. aureus<br />

– Constitutive or slightly inducible by FQs in wild-type strains<br />

– Increased by mutations in the promoter region of norA or in<br />

other loci<br />

Substrates<br />

– Identical to those of pump Bmr in Bacillus subtilis<br />

– Specificity related to C-7 residue and hydrophobicity of C-8<br />

residue<br />

Inhibitors<br />

– CCCP, nigericin, nigericin,<br />

reserpin, reserpin,<br />

verapamil, verapamil,<br />

omprazole, omprazole<br />

lanzoprazole<br />

16


System NorA in S. aureus<br />

Antibiotics Wild-type NorA+++ NorA-<br />

Nalidixic acid 25 - 125 100 - >1000 nd<br />

Norfloxacin 0.8 - 1.6 50 - 80 0.2 - 0.3<br />

Ciprofloxacin 0.25 - 0.7 6 0.1 - 0.2<br />

Ofloxacin 0.2 - 0.5 1.5 - 3 0.4<br />

Pefloxacin 0.5 12.5 nd<br />

Sparfloxacin 0.1 0.2 0.1<br />

Cetrimide 0.4 6.5 nd<br />

Benzalkonium 1 3 nd<br />

Ethidium bromide 5 - 6.5 25 0.5<br />

17<br />

(CMI µg/mL


Interplays between resistance mechanisms<br />

Membrane<br />

permeability<br />

Active efflux<br />

Other mechanisms<br />

18


Combination of mechanisms in S. aureus<br />

Strains GyrA ParC NorA+ Cip Sparflo<br />

1 - - - 0.5 0.1<br />

2 - S80Y - 8 1<br />

3 - E84K - 8 1<br />

4 - E84K efflux 64 2<br />

5 E88K S80Y - 128 32<br />

6 E88K S80Y efflux >128 64<br />

7 S84L E84K efflux >128 64<br />

19<br />

(CMI µg/mL<br />

I. Guillemin, thesis Paris XI


Efflux mechanisms in Streptococci<br />

Species System Family Substrates Genes Fqcy<br />

S. pyogenes MefA MFS ? 14,15-M Tn +++<br />

S. pneumoniae MefE MFS ? 14,15-M Tn ++<br />

S. pneumoniae ? MFS ? 14,15-M, strept.B Ch ? ?<br />

S. pneumoniae PmrA MFS ? Cip, Nor, BET Ch ?<br />

14,15-M: 14 et 15-macrolides ; Strept.B: streptogramin B ; Cip: ciprofloxacin; Nor: norfloxacin; BET: Ethidium<br />

20


PmrA-mediated resistance in S. pneumoniae<br />

Antibiotics Wild type PmrA++<br />

Norfloxacin 2 16<br />

Norfloxacin + reserpin 2 4<br />

Ciprofloxacin 0.5 2<br />

Moxifloxacin 0.12 0.12<br />

Sparfloxacin 0.25 0.25<br />

Acriflavin 4 16<br />

Ethidium bromide 2 16<br />

21<br />

Gill, M. J. Antimicrob. Agents Chemother. 1999, 43: 187


Combinaison of mechanisms in S. pneumoniae<br />

Strains GyrA ParC ParE Efflux Cip Levo Trova Moxi<br />

S10B4 - - - + 1 1 0.25 0.25<br />

S10A6 - - I460V - 1 1 0.25 0.125<br />

S7A2 - - I460V + 2 1 0.25 0.125<br />

S7B7 - K137N - + 2 1 0.5 0.25<br />

S7C2 - S79F I460V + 4 2 0.5 0.25<br />

S9E9 - K137N I460V + 16 4 0.5 0.25<br />

S10D9 S81F K137N D435N + 16 16 1 1<br />

I460V<br />

S7E1 S81F K137N I460V + 32 16 32 4<br />

22<br />

Ho, P. L. J. Antimicrob. Chemother. 2001, 47: 655


Other Gram positives<br />

Species System Family Substrates Genes Fqcy<br />

B. subtilis Bmr MFS Cmp, Fq, Org. Ch ?<br />

B. subtilis Blt MFS Cmp, Fq, Org. Ch ?<br />

B. subtilis Bmr3 MFS Oflox, lévo, Org. Ch ? ?<br />

Streptomyces sp Cml MFS Cmp Ch +++<br />

Streptomyces sp Ptr MFS Pristina, Rif Ch +++<br />

Cmp: chloramphenicol ; Fq: fluoroquinolones ; Organic cations: acriflavine, cetyltrimethylammonium,<br />

ethidium, triphenylphosphonium, rhodamine ; Oflox.: ofloxacin ; Levo.: levofloxacin ; Pristina: pristinamycins I-<br />

II ; Rif: rifampicin.<br />

23


Chromosomal genes<br />

Efflux systems in E. coli<br />

– 37 putative drug transporters: 19 MFS, 3 SMR, 7 RND, 7 ABC,<br />

1 MATE<br />

– 20 pumps are able to transport toxic/antibiotic molecules<br />

– 15-17 pumps may provide with some resistance to antibiotics when<br />

overproduced from cloned genes (Nishino K et al. J. Bacteriol. 2001)<br />

– Most of these intrinsic systems are not expressed in standard<br />

laboratory growth conditions<br />

– Spontaneous mutations may result in stable overproduction of a<br />

single pump and resistance<br />

Foreign genes<br />

– Genes carried by mobile elements (plasmids, transposons)<br />

24


25<br />

Efflux pumps coded by mobile genetic elements<br />

Species System Family Substrates<br />

E. coli TetA/B/E MFS Tc, Min Tig<br />

E. coli CmlA MFS Cmp<br />

E. coli Flo MFS Cmp, Flo<br />

E. coli OqxAB-TolC RND Olaquindox, Cmp<br />

Tc: tetracycline; Min: minocycline; Cmp: chloramphenicol; Flo: florfenicol ; Tig: tigecycline


26<br />

Efflux pumps of MFS, MATE, SMR, or ABC family<br />

Species System Family Substrates Genes<br />

E. coli EmrAB-TolC MFS Nal C<br />

E. coli Bcr MFS Tc, Km, Fos C<br />

E. coli MdfA MFS Tc, Rif, Cmp, Ery, Neo, Fq... C<br />

E. coli MdtG MFS Fos C<br />

E. coli MdtH MFS Fq C<br />

E. coli MdtL MFS Cmp C<br />

E. coli MdtM MFS Cmp, Fq C<br />

E. coli NorE MATE Cmp, Fq, Fos, Tmp C<br />

E. coli EmrE SMR Tc C<br />

E. coli MdtJK SMR Nal, Fos C<br />

E. coli MacAB-TolC ABC Ery C<br />

Nal: nalidixic acid; Tc: tetracycline + glycylcyclines; Km: kanamycin; Fos: fosfomycin; Rif: rifampicin;<br />

Cmp: chloramphenicol; Ery: erythromycin; Neo: neomycin; Fq: fluoroquinolones; Tmp: trimethoprim


Efflux pumps of the RND family<br />

Bacteria System Substrates<br />

E. coli AcrAB-TolC 1 Fq, ß-lactams 3 , Tc, Cmp, Nov, Ery, Fus, Rif…<br />

E. coli AcrEF-TolC 2 Fq, ß-lactams 3 , Tc, Cmp, Nov, Ery, Fus, Rif…<br />

E. coli AcrD 2 -AcrA-TolC AGs, Ery, PolyB<br />

E. coli CusAB-? 2 Fos<br />

E. coli MdtABC-TolC 2 Fq<br />

E. coli MdtEF-TolC 2 Ery<br />

P. aeruginosa MexAB-OprM 1 Fq, ß-lactams 1 , Tc, Cmp, Nov, Ery, Fus, Tm...<br />

N. gonorrhoeae MtrCDE 1 Tc, Cmp, ß-lactams 1 , Ery, Fus, Rif...<br />

Fq: (fluoro)quinolones; Tc: tetracycline; Cmp: chloramphenicol; Nov: novobiocin; Ery: erythromycin; Fus:<br />

fusidic acid; Rif: rifampicin; AGs: aminoglycosides; PolyB: polymyxin B; Fos: fosfomycin; Tmp: trimethoprim;<br />

3 rd GC: cefepime, cefpirome. 1 expressed constitutively in wild type cells, 2 inducible expression, 3 except imipenem.<br />

27


28<br />

Overexpression of acrAB and mtrCDE operons<br />

E. coli<br />

N. gonorrhoeae<br />

acrR<br />

mtrR<br />

-<br />

-<br />

acrA<br />

+<br />

+<br />

MarA<br />

acrB<br />

MtrA<br />

mtrC mtrD<br />

mtrE<br />

_ (MppA)<br />

MarR<br />

_<br />

SoxS SoxR<br />

mutations mdr


System AcrAB-TolC in E. coli<br />

Antibiotics wild type AcrAB ++ AcrAB -<br />

Nalidixic acid 4 - 6 8.5 - 32 0.6<br />

Norfloxacin 0.025 - 0.1 0.3 - 1.25 nd<br />

Ofloxacin 0.06 - 0.07 0.25 - 0.3 nd<br />

Ciprofloxacin 0.02 0.15 nd<br />

Ampicillin 2 - 4 5 - 6 0.6 - 2<br />

Erythromycin 128 - 256 > 512 < 2 - 8<br />

Tetracycline 1.25 - 3 5 - 16 0.25 - 0.3<br />

Chloramphenicol 4 - 7.5 10 - 28 0.6<br />

contribution to intrinsic resistance : CMI x 2-64<br />

acquired resistance : CMI x 2-12<br />

29<br />

(CMI mg/l)


Efflux/target double mutants of E. coli<br />

Genotype/Phenotype Oflo Cipro<br />

wild type AG100 0.03 ≤0.015<br />

AcrAB ++ 0.125 0.06<br />

gyrA (Asp87->Gly) 0.25 0.25<br />

gyrA (Asp87->Gly; Ser83->Leu) 4 2<br />

gyrA (Asp87->Gly), AcrAB ++ 8 4<br />

gyrA (Asp87->Gly), AcrAB - 0.06 0.03<br />

Oethinger et al. Antimicrob. Agents Chemother. 2000, 44: 10-13<br />

30


Induction of acrAB-tolC expression<br />

tetracycline<br />

chloramphenicol<br />

(acetyl)salicylate<br />

benzoate<br />

stress...<br />

marROAB<br />

Mar regulon :<br />

∇ Porin OmpF<br />

Δ TolC<br />

Δ AcrAB<br />

Δ EmrAB<br />

Δ∇Other proteins<br />

SoxSR oxidative stress<br />

Rob bile salts<br />

31


Systems MtrCDE and FarAB in N. gonorrhoeae<br />

Antibiotics wild type CDE ++ CDE - FarAB -<br />

Penicillin G 0.008 0.032 0.008 nd<br />

Erythromycin 0.25 1 - 2 0.06 0.25<br />

Tetracycline 0.25 0.5 nd nd<br />

Rifampicin 0.06 0.25 0.015 nd<br />

Linoleic acid 1600 nd 25 - 50 50<br />

Palmitic acid 100 nd 12.5 12.5<br />

contribution to intrinsic resistance : CMI x 4-64<br />

acquired resistance : CMI x 4-8<br />

32<br />

(CMI mg/l)


RND efflux systems in P. aeruginosa<br />

System Operon Substrates<br />

MexAB-OprM mexAB,oprM FQ, ß-lactam, Tmp, Cmp, Tet, Nov, Ery...<br />

MexXY (OprM) mexXY FQ, AG, Fep, Cpo, Tet, Ery...<br />

MexCD-OprJ mexCD,oprJ FQ, Cpo ,Fep, Tmp, Cmp, Tet, Ery...<br />

MexEF-OprN mexEF,oprN FQ, (Ipm), Tmp, Cmp...<br />

MexGHI-OpmD mexGHI,opmD FQ...<br />

MexJK (OprM) mexJK Tet, Ery...<br />

MexVW (OprM) mexVW FQ, Cmp, Tet, Ery...<br />

Fq: fluoroquinolones; ß-lactam (except imipenem); Tmp: trimethoprime; Cmp: chloramphenicol; Tet: tetracycline;<br />

Nov: novobiocin; Ery: erythromycin; AG: aminoglycosides; Fep: cefepime; Cpo: cefpirome; Ipm: imipenem.<br />

33


Contribution to intrinsic resistance in P. aeruginosa<br />

Antibiotcs Wild type MexAB/M - MexXY/M -<br />

Norfloxacin 0.125 - 1 0.05 - 0.25 -<br />

Ciprofloxacin 0.03 - 0.25 0.012 - 0.03 -<br />

Carbenicillin 12.5 - 64 0.4 - 1 -<br />

Ceftazidime 0.4 - 2 0.2 - 0.4 -<br />

Cefepime 0.8 - 2 0.1 - 0.5 -<br />

Meropenem 0.2 - 0.5 0.1 - 0.2 -<br />

Tetracycline 6.25 - 16 2 2 - 4<br />

Chloramphenicol 12.5 - 32 0.8 - 2 -<br />

Erythromycin 256 64 - 128 32 - 64<br />

Tobramycin 0.5 - 0.125<br />

Amikacin 2 - 0.5<br />

CMI x 2-64<br />

CMI x 2-8<br />

34<br />

(CMI mg/l)


Acquired resistance in P. aeruginosa<br />

Antibiotics Wild type MexAB/M MexCD/J MexEF/N MexXY/M<br />

Carbenicillin 8 - 32 64 - 256<br />

Aztreonam 2 - 4 12.5 - 32<br />

Ceftazidime 0.4 - 2 1.6 - 8<br />

Cefepime 1 3 - 4 12.5 8<br />

Cefpirom 1 - 2 4 - 8 8 - 16<br />

Imipenem 0.8 - 1 6.25 - 8<br />

Meropenem 0.2 - 0.5 0.8 - 2<br />

Ciprofloxacin 0.03 - 0.125 0.4 - 1 0.8 - 1.6 0.8 - 1.6 0.5 - 1<br />

Amikacin 2 4 - 16<br />

Tobramycin 0.25 - 0.5 1 - 2<br />

35<br />

(CMI mg/l)


Genetic events leading to increased efflux<br />

IS<br />

mdr mutations<br />

mexR<br />

mexZ<br />

PA3721<br />

nalC<br />

-<br />

-<br />

nalB<br />

-<br />

agrZ<br />

PA3720 PA3719<br />

_<br />

-<br />

mexA mexB oprM<br />

+<br />

mexX<br />

mexY<br />

PA5471<br />

_<br />

PA3574<br />

nalD<br />

MexXY<br />

MexAB-OprM<br />

agrW<br />

C. Vogne et al. Antimicrob. Agents Chemother. 2004, 48: 1676<br />

C. Llanes et al. Antimicrob. Agents Chemother. 2004, 48: 1797


MexXY-mediated adaptive resistance to AGs<br />

MIC (mg / L)<br />

50 _<br />

_<br />

40 _<br />

30 _<br />

20 _<br />

10 _<br />

Stain ATCC 27853 exposed to 1 MIC amikacin for 2h every 8h (Karlowsky 1994)<br />

MIC of amikacin; Bacterial killing in log10<br />

_<br />

_<br />

_<br />

_<br />

_<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Inoculum (log10 CFU)<br />

D. Hocquet et al. Antimicrob. Agents Chemother. 2003, 47: 1371


Target/efflux double mutants in P. aeruginosa<br />

MIC levofloxacin (mg/L)<br />

Target mutations Wild-type MexAB ++ MexAB ++<br />

+ inh. 10 mg/l<br />

Aucune 0.25 2 0.03<br />

gyrA (Thr83->Ile) 2 8 0.5<br />

gyrA (Thr83->Ile) + parC (Ser87->Leu) 4 32 2<br />

gyrA (Thr83->Ile + Asp87->Tyr) + parC (Ser87->Leu) 16 128 8<br />

38<br />

Lomovskaya et al. Antimicrob. Agents Chemother. 1999, 43: 1340<br />

Lomovskaya et al. ICAAC Toronto 1999, abstract F-1264


Therapeutic implications of efflux systems<br />

Resistance levels conferred by intrinsic pumps<br />

– Low to moderate drug resistance (MIC x 2 - 16)<br />

– Clinical significance<br />

♦ Lack of clinical data !<br />

♦ Poor response to treatment when the concentrations of<br />

antibiotics are low at the infection site (insufficient dosage,<br />

inappropriate drug, abcess...)<br />

♦ Increased emergence of target mutants ?<br />

Emergence of efflux mutants under treatment<br />

– Cross resistance to structurally unrelated molecules<br />

– Role of fluoroquinolones<br />

39


How to characterize efflux mechanisms<br />

Plasmid or transposon encoded efflux systems<br />

– Multiresistance phenotype<br />

– Detection of efflux gene(s): PCR, nucleic probes<br />

Upregulation of intrinsic efflux systems<br />

– Protein levels<br />

♦ Western blotting of membrane extracts with specific antibodies<br />

– mRNA levels<br />

♦ Northern blot, MacroArray, MicroArray<br />

♦ Real Time RT-PCR (Light Cycler, Taq Man, I Cycler…)<br />

– Intracellular accumulation of antibiotics<br />

♦ [ 3 H] ou [ 14 C] radiolabeled or fluorescent compounds (BET,<br />

acriflavine…)<br />

– Sequencing of regulatory genes<br />

40


Efflux inhibitors<br />

Phenyl-Arginyl ß N-naphtylamide<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!