06.08.2013 Views

Inverse Trigonometric Functions

Inverse Trigonometric Functions

Inverse Trigonometric Functions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Inverse</strong> <strong>Trigonometric</strong> <strong>Functions</strong><br />

The trigonometric functions are not one-to-one. By restricting their domains, we can construct oneto-one<br />

functions from them. For example, if we restrict the domain of sin x to the interval − π<br />

<br />

π<br />

,<br />

2 2<br />

we have a one-to-one function which has an inverse denoted by arcsin x or sin −1 x or sin inv x .<br />

y<br />

−π − π π<br />

0 π −<br />

2 2<br />

π π<br />

0<br />

2 2<br />

Similarly if we restrict the domain of cos x to the interval [0,π]we have a one-to-one function which<br />

has an inverse denoted by arccos x or cos−1 x or cosinv x .<br />

y<br />

−π − π π<br />

0 π −<br />

2 2<br />

π<br />

x<br />

π<br />

0<br />

2 2<br />

If we restrict the domain of tan x to the interval − π<br />

<br />

π<br />

, we have a one-to-one function which has<br />

2 2<br />

an inverse denoted by arctan x or tan−1 x or taninv x .<br />

−π − π<br />

2<br />

y<br />

0 π<br />

2<br />

x<br />

x<br />

x<br />

π −π<br />

2<br />

1<br />

y<br />

y<br />

y<br />

0 π<br />

2<br />

x<br />

x<br />

x<br />

y<br />

y<br />

y<br />

x<br />

x


The inverses of the other three trigonometric functions are not often used, but are defined similarly.<br />

We always have the Cancellation Laws, which only hold on the appropriate domains:<br />

sin(sin −1 x) = x, sin −1 (sin x) = x<br />

cos(cos −1 x) = x, cos −1 (cos x) = x<br />

tan(tan −1 x) = x, tan −1 (tan x) = x<br />

sec(sec −1 x) = x, sec −1 (sec x) = x<br />

csc(csc −1 x) = x, csc −1 (csc x) = x<br />

cot(cot −1 x) = x, cot −1 (cot x) = x<br />

Derivatives of <strong>Inverse</strong> <strong>Trigonometric</strong> <strong>Functions</strong><br />

By differentiating the first Cancellation Law for each trig function, and using trigonometric identities<br />

we get a differentiation rule for its inverse:<br />

For example:<br />

d<br />

dx<br />

<br />

sin<br />

<br />

sin −1 x<br />

<br />

= d(x)<br />

dx<br />

so, by the Chain Rule,<br />

<br />

cos sin −1 d <br />

x sin<br />

dx<br />

−1 <br />

x = 1 and therefore<br />

d <br />

sin<br />

dx<br />

−1 <br />

x =<br />

1<br />

<br />

cos sin −1 x<br />

=<br />

1<br />

√ 1 − x 2<br />

<br />

(Remember that cos sin −1 <br />

<br />

<br />

x = 1 − sin sin −1 2 x = √ 1 − x2 )<br />

2


We list the standard differentiation rules for the six inverse trig functions. The first three should be<br />

memorized, and the student should practice deriving them all from first principles as done above.<br />

d <br />

sin<br />

dx<br />

−1 <br />

x =<br />

1<br />

√ 1 − x 2<br />

d sec−1 x <br />

1<br />

=<br />

dx x √ x2 − 1<br />

d cos−1 x <br />

1<br />

=−√<br />

dx<br />

1 − x2 d csc−1 x <br />

1<br />

=−<br />

dx x √ x2 − 1<br />

d tan−1 x <br />

1<br />

=<br />

dx 1 + x2 d cot−1 x <br />

=−<br />

dx<br />

1<br />

1 + x2 Remember that these formulas are only valid when the domains are as in the definition of the inverse.<br />

Since arcsin x + arccos x ≡ π<br />

, we alternatively get<br />

2<br />

d<br />

d <br />

arccos x = cos<br />

dx dx<br />

−1 <br />

x = d <br />

cos<br />

dx<br />

inv 1<br />

x =−√<br />

1 − x2 Also arctan x + arccot x ≡ π<br />

2 gives<br />

d<br />

d <br />

arccot x = cot<br />

dx dx<br />

−1 x<br />

<br />

= d<br />

dx<br />

and arcsec x + arccsc x ≡ π<br />

2 gives<br />

d<br />

d <br />

arccsc x = csc<br />

dx dx<br />

−1 x<br />

<br />

= d<br />

dx<br />

<br />

cot inv <br />

x =− 1<br />

1 + x2 <br />

csc inv <br />

x<br />

1<br />

=−<br />

x √ x2 − 1<br />

3


Examples<br />

Example: Problem 4.7-54(p.338 of the<br />

Green Stewart<br />

A painting in an art gallery has height<br />

h and is hung so that its lower edge<br />

is a distance d above the eye of an<br />

observer. How far from the wall should<br />

the observer stand so as to maximize<br />

the angle θ subtended at his eye by the<br />

painting?<br />

Solution 1: (Using <strong>Inverse</strong> Trig <strong>Functions</strong>)<br />

Variables:<br />

x = observer’s distance from the wall<br />

α = angle between the horizontal and the bottom of<br />

the painting<br />

θ = angle between the top and bottom of the painting<br />

α<br />

θ<br />

x<br />

Relations:<br />

α = arctan d<br />

x<br />

d + h<br />

θ + α = arctan<br />

x<br />

d + h d<br />

θ(x) = arctan − arctan<br />

x x<br />

We have to find the value of x that will make θ as large as possible, so we differentiate:<br />

1<br />

<br />

d + h<br />

−<br />

x2 <br />

−<br />

1<br />

<br />

− d<br />

x2 <br />

=<br />

θ ′ (x) = 2 2 d+h<br />

d<br />

1 +<br />

1 +<br />

x<br />

x<br />

d + h<br />

−<br />

x2 d<br />

2 +<br />

+ (d + h) x2 + d2 =−−(d + h)(x2 + d2 <br />

) + d x2 + (d + h) 2<br />

<br />

x2 + (d + h) 2<br />

(x2 + d2 )<br />

−dx2 − d3 − hx2 − hd2 + dx2 + d3 + 2d2h + dh2 <br />

x2 + (d + h) 2<br />

(x2 + d2 =<br />

)<br />

h(d2 + dh − x2 )<br />

<br />

x2 + (d + h) 2<br />

(x2 + d2 ) = 0ifx = d(d + h), which gives a maximum by the First Derivative test.<br />

4<br />

=<br />

h<br />

d


Solution 2: (Not Using <strong>Inverse</strong> Trig <strong>Functions</strong>)<br />

We use the same variables, but different relations:<br />

Relations:<br />

tan α = d<br />

x<br />

tan(θ + α) =<br />

Then we have<br />

tan(θ + α) =<br />

d + h<br />

x<br />

tan α + tan θ<br />

1 − tan α tan θ =<br />

d<br />

+ tan θ<br />

x<br />

1 − d<br />

x<br />

x(d + x tan θ) = (h + d)(x − d tan θ) or<br />

xd + x 2 tan θ = (h + d)x − (h + d)d tan θ or<br />

x 2 tan θ + (h + d)d tan θ = (h + d)x − xd or<br />

<br />

tan θ x 2 <br />

+ (h + d)d = xh or<br />

x<br />

tan θ = h<br />

x2 + (h + d)d<br />

tan θ = d + x tan θ<br />

x − d tan θ<br />

= h + d<br />

x or<br />

We must find the value of x which will make tan θ a maximum. Let f(x) =<br />

tan θ = hf (x)<br />

Then<br />

f ′ <br />

x<br />

(x) =<br />

x2 ′<br />

+ (h + d)d<br />

(x 2 + (h + d)d) − x(2x)<br />

(x 2 + (h + d)d) 2<br />

(h + d)d − x 2 = 0orx = (h + d)d<br />

= (h + d)d − x2<br />

= (x2 + (h + d)d)(x) ′ − x(x 2 + (h + d)d) ′<br />

(x 2 + (h + d)d) 2<br />

(x2 = 0if<br />

+ (h + d)d) 2<br />

This value is known as the geometric mean of d and h + d .<br />

5<br />

=<br />

x<br />

x2 , so that<br />

+ (h + d)d


Example: Problem 3.10-32(p.259) of<br />

the green Stewart<br />

A lighthouse is on a small island 3 km<br />

away from the nearest point P on a<br />

straight shoreline and its light makes<br />

four revolutions per minute. How fast θ<br />

is the beam of light moving along the<br />

shoreline when it is 1 km from P? 3<br />

Solution 1: (Using <strong>Inverse</strong> Trig <strong>Functions</strong>)<br />

Variables:<br />

x = beam’s distance from P<br />

θ = angle between beam of light and line through the<br />

lighthouse and P<br />

Differentiating, we get<br />

θ ′ 1 x<br />

= 2 1 +<br />

′<br />

3 =<br />

3<br />

9 + x2 x′ ,so<br />

x ′ =<br />

x<br />

3<br />

9 + x2<br />

θ<br />

3<br />

′ 9 + 12<br />

=<br />

3 θ′ = 10<br />

3 θ′ = 10<br />

3<br />

8π = 80<br />

3 π.<br />

Solution 2: (Not Using <strong>Inverse</strong> Trig <strong>Functions</strong>)<br />

We use the relation:<br />

tan θ(t) = x(t)<br />

, so differentiation gives<br />

3<br />

sec 2 θ(t)θ ′ (t) = x′ (t)<br />

3 .<br />

We have θ ′ (t) = 4(2π) radians<br />

min<br />

= 8π radians<br />

min ,so<br />

x ′ (t) = 3 sec 2 θ(t)θ ′ (t) = 24π sec 2 θ(t) km<br />

min .<br />

Relations:<br />

θ = arctan x<br />

3<br />

When x = 1, tan θ(t) = 1<br />

3 , and since sec2 α ≡ tan2 α + 1, we have sec2 θ(t) = 1<br />

9<br />

x ′ (t) = 24π 10 km 80π km<br />

km<br />

= = 1600π<br />

9 min 3 min hour .<br />

6<br />

x<br />

P<br />

+ 1 = 10<br />

9 ,so


Example: Problem 4.7-50(p.337) of the<br />

green Stewart<br />

A steel pipe is being carried down a<br />

hallway 9 feet wide. At the end of the<br />

hall there is a right-angled turn into<br />

a narrower hallway 6 feet wide. What<br />

is the length of the longest pipe that<br />

can be carried horizontally around the<br />

corner?<br />

Solution:<br />

θ<br />

A<br />

9<br />

L1<br />

9<br />

B<br />

6<br />

L2<br />

6<br />

θ<br />

C<br />

From the diagram, we have sin θ = 9<br />

, and cos θ =<br />

L1<br />

6<br />

, so that we have L1 =<br />

L2<br />

9<br />

= 9 csc θ and<br />

sin θ<br />

L2 = 6<br />

cos θ = 6 sec θ. Thus we wish to find the minimum value of f(θ) = L1 + L2 = 9 csc θ + 6 sec θ.<br />

we then have f ′ (θ) = 9(− csc θ cot θ) + 6(sec θ tan θ) = 0if<br />

9 csc θ cot θ = 6 sec θ tan θ or 9 1 cos θ<br />

sin θ sin θ<br />

3<br />

2 = sin3 θ<br />

cos 3 θ<br />

3<br />

or<br />

2 = tan3 θ or tan θ = 3<br />

<br />

3<br />

2 .<br />

<br />

For this value of θ we have csc θ =<br />

so f(θ) = 9<br />

<br />

1 +<br />

<br />

2<br />

2 3<br />

+ 6 1 +<br />

3<br />

2<br />

3 3<br />

2<br />

1 +<br />

1 sin θ<br />

= 6<br />

cos θ cos θ or<br />

2<br />

2 3<br />

3<br />

≐ 21.07<br />

and sec θ =<br />

7<br />

<br />

1 +<br />

3<br />

2<br />

2<br />

3<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!