06.08.2013 Views

Hyperbolic Functions

Hyperbolic Functions

Hyperbolic Functions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Hyperbolic</strong> <strong>Functions</strong><br />

The trigonometric functions cos α and cos α are defined using the unit circle x2 +y 2 = 1<br />

by measuring the distance α in the counter-clockwise direction along the circumference<br />

of the circle. The area of the sector so determined is α<br />

, so we can equivalently say that<br />

2<br />

cos α and cos α are derived from the unit circle x2 + y 2 = 1 by measuring off a sector<br />

(shaded red )of area α<br />

. The other four trigonometric functions can then be defined in<br />

2<br />

terms of cos and sin.<br />

Similarly, we may define hyperbolic functions cosh α and sinh α from the “unit hyperbola”<br />

x2 −y 2 = 1 by measuring off a sector (shaded red )of area α<br />

to obtain a point P whose<br />

2<br />

x- and y- coordinates are defined to be cosh α and sinh α.<br />

y<br />

x<br />

y<br />

(cosh α, sinh α)<br />

Since at this point we do not yet know how to compute the areas of most curved regions,<br />

we must take it on faith that the six hyperbolic functions may be expressed simply in<br />

terms of the exponential function:<br />

sinh α = eα − e−α cosh α =<br />

2<br />

eα + e−α 2<br />

tanh α =<br />

sech α =<br />

sinh α<br />

cosh α = eα − e−α eα + e−α 1<br />

cosh α =<br />

2<br />

e α + e −α<br />

cotanh α =<br />

cosech α =<br />

cosh α<br />

sinh α = eα + e−α eα − e−α 1<br />

sinh α =<br />

2<br />

e α − e −α<br />

Note that the domains of sinh, cosh, tanh, and sech are (−∞, ∞) and the domains of<br />

cotanh and cosech are (−∞, 0) ∪ (0, ∞).<br />

1<br />

x<br />

University of<br />

DEO PAT-<br />

ET RIE<br />

Saskatchewan


α −α e + e<br />

We can check that the point<br />

,<br />

2<br />

eα − e−α <br />

lies on the unit hyperbola:<br />

2<br />

α −α 2 α −α 2 e + e e − e<br />

−<br />

=<br />

2<br />

2<br />

e2α + 2 + e−2α −<br />

4<br />

e2α − 2 + e−2α =<br />

4<br />

4<br />

= 1<br />

4<br />

“Pythagorean” Identities<br />

This gives us the first important hyperbolic function identity:<br />

cosh 2 α − sinh 2 α ≡ 1<br />

This may be used to derive two other identities relating the two other pairs of hyperbolic<br />

functions:<br />

1 − tanh 2 α = sech 2 α and cotanh 2 α − 1 = cosech 2 α<br />

Odd and Even Identities<br />

It is clear that sinh, tanh, cotanh xand cosech are odd functions, while cosh, cotanh ,<br />

and sech are even, so we have the corresponding identities:<br />

sinh(−x) =−sinh x, tanh(−x) =−tanh x,<br />

cotanh (−x) =−cotanh x, cosech (−x) =−cosech x<br />

cosh(−x) = cosh x, sech (−x) = sech x.<br />

Sum and Difference Identities<br />

We can use the above formulas for the hyperbolic functions in terms of e x to derive<br />

analogs of the identities for the trigonometric functions:<br />

sinh α cosh β = eα − e −α<br />

e α+β + e α−β − e −α+β − e −α−β<br />

4<br />

2<br />

sinh β cosh α = eβ − e −β<br />

2<br />

e β + e −β<br />

2<br />

e α + e −α<br />

2<br />

= (eα − e −α )(e β + e −β )<br />

4<br />

= (eβ − e −β )(e α + e −α )<br />

4<br />

2<br />

=<br />

=


e β+α + e β−α − e −β+α − e −β−α<br />

4<br />

Adding these two products gives:<br />

sinh α cosh β + sinh β cosh α =<br />

e α+β + e α−β − e −α+β − e −α−β<br />

4<br />

2e α+β − 2e −α−β<br />

4<br />

= eα+β − e −α−β<br />

2<br />

+ eβ+α + e β−α + e −β+α − e −β−α<br />

4<br />

= e(α+β) − e −(α+β)<br />

2<br />

and subtracting these two products gives:<br />

sinh α cosh β − sinh β cosh α =<br />

e α+β + e α−β − e −α+β − e −α−β<br />

4<br />

2e α−β − 2e −(α−β)<br />

4<br />

Similarly,<br />

cosh α cosh β = eα + e −α<br />

= eα−β − e −(α−β)<br />

2<br />

e α+β + e α−β + e β−α + e −α−β<br />

4<br />

2<br />

sinh α sinh β = eα − e −α<br />

e α+β − e α−β − e β−α + e −α−β<br />

4<br />

2<br />

=<br />

= sinh(α + β)<br />

− eβ+α + e β−α + e −β+α − e −β−α<br />

4<br />

e β + e −β<br />

2<br />

e β − e −β<br />

Adding these two products gives<br />

cosh α cosh β + sinh α sinh β =<br />

e α+β + e α−β + e β−α + e −α−β<br />

4<br />

2<br />

= sinh(α − β)<br />

= (eα + e −α )(e β + e −β )<br />

4<br />

= (eα − e −α )(e β − e −β )<br />

4<br />

+ eα+β − e α−β − e β−α + e −α−β<br />

4<br />

3<br />

=<br />

=<br />

=<br />

=


2e α+β + 2e −α−β<br />

4<br />

= eα+β + e −(α+β)<br />

2<br />

and subtracting them gives:<br />

cosh α cosh β − sinh α sinh β =<br />

e α+β + e α−β + e β−α + e −α−β<br />

4<br />

2e α−β + 2e −α+β<br />

4<br />

= eα−β + e −(α−β)<br />

2<br />

Summarizing, we have four identities:<br />

= cosh(α + β)<br />

− eα+β − e α−β − e β−α + e −α−β<br />

4<br />

= cosh(α − β)<br />

sinh(α + β) ≡ sinh α cosh β + sinh β cosh α<br />

sinh(α − β) ≡ sinh α cosh β − sinh β cosh α<br />

cosh(α + β) ≡ cosh α cosh β + sinh α sinh β<br />

cosh(α − β) ≡ cosh α cosh β − sinh α sinh β<br />

which are almost exactly parallel to those for the trigonometric functions and may be<br />

used to derive sum and difference formulas for the other four hyperbolic functions.<br />

Letting β = α, we get:<br />

sinh 2α ≡ 2 sinh α cosh α,<br />

Double and Half-“Angle” Identities<br />

cosh 2α ≡ cosh 2 α + sinh 2 α ≡ 1 + 2 sinh 2 α ≡ 2 cosh 2 α − 1, so<br />

cosh 2 cosh 2α + 1<br />

α = and sinh<br />

2<br />

2 cosh 2α − 1<br />

α = , and thus:<br />

2<br />

<br />

<br />

cosh α =<br />

cosh 2α + 1<br />

and sinh α =<br />

2<br />

cosh 2α − 1<br />

2<br />

4<br />

=


cosh α<br />

2 =<br />

<br />

cosh α + 1<br />

2<br />

d<br />

d<br />

(sinh x) =<br />

dx dx<br />

d<br />

d<br />

(cosh x) =<br />

dx dx<br />

and sinh α<br />

2 =<br />

<br />

cosh α − 1<br />

2<br />

Derivatives<br />

x −x <br />

e − e<br />

2<br />

x −x <br />

e + e<br />

<br />

d<br />

d sinh x<br />

(tanh x) = =<br />

dx dx cosh x<br />

cosh x(sinh x) ′ − sinh x(cosh x) ′<br />

cosh 2 x<br />

cosh 2 x − sinh 2 x<br />

cosh 2 x<br />

=<br />

d<br />

d<br />

(cotanh x) =<br />

dx dx<br />

2<br />

= ex − (−e −x )<br />

2<br />

= ex + (−e −x )<br />

2<br />

= cosh x cosh x − sinh x sinh x<br />

1<br />

cosh 2 x = sech 2 x<br />

<br />

cosh x<br />

=<br />

sinh x<br />

sinh x(cosh x) ′ − cosh x(sinh x) ′<br />

sinh 2 x<br />

sinh 2 x − cosh 2 x<br />

sinh 2 x<br />

= sinh x sinh x − cosh x cosh x<br />

= −1<br />

sinh 2 x =−cosech 2 x<br />

d<br />

d<br />

(sech x) =<br />

dx dx (cosh x)−1 =<br />

= ex + e −x<br />

2<br />

= ex − e −x<br />

2<br />

= cosh x<br />

= sinh x<br />

cosh 2 x<br />

sinh 2 x<br />

(−1) (cosh x) −2 (cosh x) ′ = (−1) (cosh x) −2 sinh x =−sech x tanh x<br />

d<br />

d<br />

(cosech x) =<br />

dx dx (sinh x)−1 =<br />

5<br />

=<br />

=


(−1) (sinh x) −2 (sinh x) ′ = (−1) (sinh x) −2 cosh x =−cosech xcotanh x<br />

d<br />

(sinh x) = cosh x<br />

dx<br />

d<br />

dx (tanh x) = sech 2 x<br />

d<br />

(sech x) =−sech x tanh x<br />

dx<br />

Summary:<br />

d<br />

(cosh x) = sinh x<br />

dx<br />

d<br />

dx (cotanh x) =−cosech 2 x<br />

d<br />

(cosech x) =−cosech xcotanh x<br />

dx<br />

Graphs ofthe <strong>Hyperbolic</strong> <strong>Functions</strong><br />

y<br />

y = sinh x<br />

y = cosech x<br />

x<br />

y = cosh x<br />

y = sech x<br />

The domains and ranges are summarized in the next table:<br />

6<br />

y<br />

x<br />

y<br />

y = tanh x<br />

y = cotanh x<br />

x


function domain Range<br />

sinh (−∞, ∞) (−∞, ∞)<br />

cosh (−∞, ∞) [1, ∞)<br />

tanh (−∞, ∞) (−1, 1)<br />

cotanh (−∞, 0) ∪ (0, ∞) (−∞, −1) ∪ (1, ∞)<br />

sech (−∞, ∞) (0, 1])<br />

cosech (−∞, 0) ∪ (0, ∞) (−∞, 0) ∪ (0, ∞)<br />

Inverse <strong>Hyperbolic</strong> <strong>Functions</strong><br />

sinh, tanh, cotanh and cosech are one-to-one, but cosh and sech are not. For the<br />

purpose of defining the inverse of cosh and sech we will restrict their domains to<br />

[0, ∞).<br />

We will denote the inverse hyperbolic functions by<br />

sinh −1 , cosh −1 , tanh −1 , cotanh −1 , sech −1 , and cosech −1<br />

or:<br />

sinh inv , cosh inv , tanh inv , cotanh inv , sech inv , and cosech inv<br />

or even:<br />

arcsinh , arccosch , arctanh , arccothh , arcsech , and arccosech .<br />

The usual Cancellation Laws hold in the appropriate domains:<br />

sinh(sinh −1 x) ≡ x sinh −1 (sinh x) ≡ x<br />

cosh(cosh −1 x) ≡ x cosh −1 (cosh x) ≡ x<br />

tanh(tanh −1 x) ≡ x tanh −1 (tanh x) ≡ x<br />

cotanh (cotanh −1 x) ≡ x cotanh −1 (cotanh x) ≡ x<br />

sech (sech −1 x) ≡ x sech −1 (sech x) ≡ x<br />

cosech (cosech −1 x) ≡ x cosech −1 (cosech x) ≡ x<br />

The derivatives of the inverse hyperbolic functions may be found the same way the<br />

derivatives of the inverse trigonometric functions were found: by differentiating the<br />

left-hand Cancellation Laws above:<br />

Example:<br />

Differentiating sinh(sinh −1 x) ≡ x we get<br />

7


cosh(sinh −1 <br />

x) sinh −1 ′<br />

x = 1, so<br />

<br />

sinh −1 ′ 1<br />

x =<br />

cosh(sinh −1 x) .<br />

Using the identity cosh 2 x − sinh 2 x ≡ 1weget<br />

cosh 2 x ≡ 1 + sinh 2 x,so<br />

<br />

cosh x ≡ 1 + sinh 2 x and therefore<br />

cosh(sinh −1 x) =<br />

=<br />

<br />

1 + x 2<br />

Thus we have<br />

<br />

1 + sinh 2 (sinh −1 <br />

<br />

x) = 1 + sinh(sinh −1 2 x)<br />

<br />

sinh −1 ′<br />

x =<br />

1<br />

√ 1 + x 2<br />

One may similarly derive the derivatives of the other hyperbolic functions:<br />

<br />

cosh −1 ′<br />

x =<br />

1<br />

√ x − 1 2<br />

<br />

tanh −1 ′ <br />

x = cotanh −1 ′<br />

x =<br />

<br />

sech −1 ′<br />

x<br />

<br />

cosech −1 ′<br />

x =<br />

1<br />

=−<br />

x √ 1 − x2 −1<br />

|x| √ 1 + x 2<br />

1<br />

1 − x 2<br />

Explicit Computation ofInverse <strong>Hyperbolic</strong>s<br />

The inverse hyperbolic functions have the unusual property that they can be explicity<br />

computed:<br />

Example: Solve the equation sinh y = x for y in terms of x.<br />

(The solution will be sinh −1 x!)<br />

We have sinh y = ey − e−y = x, so<br />

2<br />

ey −e−y = 2x or ey −2x −e−y = 0. Multiplying both sides of this equation by e y we get:<br />

8


(e y ) 2 − 2xe y − 1 = 0, a quadratic equation in e y which has solution<br />

e y = −(−2x) ± (−2x) 2 − 4(1)(−1)<br />

2<br />

= 2x ± √ 4x 2 + 4<br />

2<br />

Since x − √ x2 + 1 < 0 and we must have ey > 0, we get<br />

e y <br />

= x + x2 + 1.<br />

Taking logarithms of both sides of this equation, we get<br />

y = ln(x + √ x2 + 1), so we have<br />

sinh −1 <br />

x = ln(x + x2 + 1)<br />

<br />

= x ± x2 + 1<br />

Similarly,<br />

cosh −1 <br />

x = ln(x + x2 − 1) and tanh −1 x = 1<br />

2 ln<br />

<br />

1 + x<br />

1 − x<br />

We then have<br />

cosech −1 x = sinh −1 1<br />

x<br />

ln<br />

1<br />

x +<br />

√ <br />

1 + x2 |x|<br />

= ln<br />

Similarly<br />

cotanh −1 x = 1<br />

2 ln<br />

<br />

x + 1<br />

x − 1<br />

⎛<br />

⎝ 1<br />

x +<br />

<br />

2 1<br />

x<br />

⎞ ⎛<br />

+ 1⎠<br />

= ln ⎝ 1<br />

x +<br />

<br />

1 + x2 x2 ⎞<br />

⎠ =<br />

and sech −1 √ <br />

1 + 1 − x2 x = ln<br />

x<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!