06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.3. ARTINIAN RINGS 87<br />

7.2.9. Proposition. Given submodules N, L ⊂ M. Then the following are equivalent.<br />

(1) M/N, M/L have finite length.<br />

(2) M/N ∩ L has finite length.<br />

If finite length<br />

ℓR(M/N + L) + ℓR(M/N ∩ L) = ℓR(M/N) + ℓR(M/L)<br />

Pro<strong>of</strong>. Use the sequences 3.2.8.<br />

7.2.10. Proposition. A R-module M <strong>of</strong> finite length is finite and generated by<br />

ℓR(M) or less elements.<br />

Pro<strong>of</strong>. There is a sequence 0 → N → M → L → 0 with L simple. Conclusion<br />

by induction.<br />

7.2.11. Proposition. Let I ⊂ R be an ideal. Suppose an R/I-module M has finite<br />

length. Then M has finite length as R-module and<br />

ℓ R/I(M) = ℓR(M)<br />

Pro<strong>of</strong>. This follows from 7.1.6 and 7.2.2.<br />

7.2.12. Example. Let K be a field. A module M is <strong>of</strong> finite length if it is a finite<br />

dimensional vector space. Then<br />

7.2.13. Exercise. (1) Compute<br />

(2) Compute<br />

ℓZ(Z/(p n1<br />

1<br />

ℓK(M) = rankK M<br />

. . . pnk<br />

k )) = n1 + · · · + nk<br />

ℓ K[X](K[X]/((X − a1) n1 . . . (X − ak) nk )) = n1 + · · · + nk<br />

7.3. Artinian Rings<br />

7.3.1. Lemma. Let M be a module. The following conditions are equivalent.<br />

(1) Any decreasing sequence Mi <strong>of</strong> submodules is stationary, Mn = Mn+1 for<br />

n >> 0.<br />

(2) Any nonempty subset <strong>of</strong> submodules <strong>of</strong> M contains a minimal element.<br />

Pro<strong>of</strong>. (1) ⇒ (2): Suppose a nonempty subset <strong>of</strong> submodules do not contain a<br />

minimal element. Then choose a non stationary sequence. (2) ⇒ (1): A descending<br />

sequence containing a minimal element is stationary.<br />

7.3.2. Definition. A module M which satisfies the conditions <strong>of</strong> 7.3.1 is an artinian<br />

module.<br />

7.3.3. Definition. A ring R is an artinian ring if R is an artinian module over<br />

itself.<br />

7.3.4. Proposition. Let 0 → N → M → L → 0 be an exact sequence <strong>of</strong> modules<br />

over the ring R. Then M is artinian if and only if N and L are artinian.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!