06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

74 6. FINITE MODULES<br />

6.1.7. Corollary. Let f : M → N be a homomorphism.<br />

(1) If M is finite, then Im f is finite.<br />

(2) If Ker f, Im f are finite, then M is finite.<br />

(3) If N is finite, then Cok f is finite.<br />

(4) If Im f, Cok f are finite, then N is finite.<br />

Pro<strong>of</strong>. Use 6.1.5 on the exact sequences 3.1.8.<br />

6.1.8. Corollary. Let M, N be modules. Then M ⊕ N is finite if and only if M<br />

and N are finite.<br />

Pro<strong>of</strong>. Use 6.1.6.<br />

6.1.9. Proposition. Let R be a ring and M, N finite modules. Then M ⊗R N is<br />

finite.<br />

Pro<strong>of</strong>. Use 6.1.2 and 6.1.5. Let R m → M and R n → N be surjective. Then<br />

R m ⊗R R n → M ⊗R N is surjective, 3.4.1.<br />

6.1.10. Proposition. Let R be a ring and M a module. The following are equivalent.<br />

(1) M is finite and projective.<br />

(2) M is a direct summand in a finite free module.<br />

Pro<strong>of</strong>. Use 6.1.2 and 6.1.8.<br />

6.1.11. Proposition. Let R be a ring and M, N finite modules.<br />

(1) If M is projective, then HomR(M, N) is finite.<br />

(2) If M, N are projective, then HomR(M, N) is projective.<br />

Pro<strong>of</strong>. Use 6.1.8.<br />

6.1.12. Proposition. Let F be a finite projective module and E an injective module.<br />

(1) F ⊗R E is injective.<br />

(2) HomR(F, E) is injective.<br />

Pro<strong>of</strong>. (1) (2) Both modules become summands in injective modules.<br />

6.1.13. Proposition. Let R be a ring and U a multiplicative subset. For a finite<br />

module M the following h<strong>old</strong>:<br />

(1) U −1 M = 0 if and only if there is a u ∈ U such that uM = 0.<br />

(2) Ann(U −1 M) = U −1 Ann(M) in U −1 R.<br />

Pro<strong>of</strong>. Let x1, . . . , xn generate M. (1) U −1 M = 0 if and only if u1x1 = · · · =<br />

unxn. Put u = u1 . . . un. (2) Ann(M) = Ann(x1) ∩ · · · ∩ Ann(xn). Now use (1)<br />

and 4.3.4.<br />

6.1.14. Proposition. Let R be a ring and Mα a family <strong>of</strong> modules. For any finite<br />

module N there is a natural isomorphism<br />

HomR(N, <br />

Mα) <br />

HomR(N, Mα)<br />

α<br />

Pro<strong>of</strong>. A homomorphism f : N → Mα has an image in a finite sum.<br />

6.1.15. Exercise. (1) Show that <br />

n Z/(n) is not a finite Z-module.<br />

α

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!