06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

30 2. MODULES<br />

2.4.11. Proposition. Let F be a free module with basis yα. For a module M and<br />

a family <strong>of</strong> elements xα ∈ M there is a unique homomorphism g : F → M such<br />

that g(yα) = xα given by g( aαyα) = aαxα.<br />

Pro<strong>of</strong>. The basis yα ∈ F gives the isomorphism 2.4.7 f : <br />

α R → F . The<br />

family 1xα : R → M gives a homomorphism g ′ : <br />

R → M by 2.4.3. Then<br />

g = g ′ ◦ f −1 .<br />

2.4.12. Corollary. Let M be an R-module and <br />

M R the free module with basis<br />

ex indexed by x ∈ M. The homomorphism<br />

<br />

R → M, axex ↦→ ax x<br />

M<br />

is surjective identifying M as a factor module <strong>of</strong> a free module in a natural way.<br />

2.4.13. Definition. A module is indecomposable if it is not isomorphic to a direct<br />

sum <strong>of</strong> two nonzero submodules, otherwise decomposable.<br />

2.4.14. Example. Q is an indecomposable Z-module. Namely if m1<br />

n1<br />

nonzero numbers in two submodules, then n1m2 m1<br />

n1<br />

ber in the intersection.<br />

α<br />

= n2m1 m2<br />

n2<br />

, m2<br />

n2 are<br />

is a nonzero num-<br />

2.4.15. Exercise. (1) Show that if a ring is decomposable as a module, then it is the<br />

product <strong>of</strong> two nonzero rings.<br />

(2) Let Mα be a finite family <strong>of</strong> modules. Show that Mα = Mα,<br />

(3) Let Nα ⊂ Mα be a family <strong>of</strong> submodules modules. Show that<br />

Mα/ Nα Mα/Nα<br />

and that Mα/ Nα Mα/Nα<br />

2.5. Homomorphism modules<br />

2.5.1. Lemma. Let R be a ring and f, g : M → N homomorphisms.<br />

(1) (f + g)(x) = f(x) + g(x) is a homomorphism.<br />

(2) If a ∈ R, then (af)(x) = af(x) is a homomorphism.<br />

Pro<strong>of</strong>. Calculate according to 2.1.1. (1) (f + g)(x + y) = f(x + y) + g(x + y) =<br />

f(x) + f(y) + g(x) + g(y) = (f + g)(x) + (f + g)(y) and (f + g)(ax) =<br />

f(ax) + g(ax) = a(f(x) + g(x)) = a(f + g)(x). (2) (af)(x + y) = af(x + y) =<br />

af(x) + af(y) = (af)(x) + (af)(y) and (af)(bx) = af(bx) = abf(x) =<br />

baf(x) = b(af)(x). The last calculation uses that R is commutative 1.1.2 (4).<br />

2.5.2. Definition. Let R be a ring and M, N modules. By 2.5.1, the homomorphism<br />

module HomR(M, N) is the additive group <strong>of</strong> all homomorphism with<br />

scalar multiplication<br />

R × HomR(M, N) → HomR(M, N), (a, f) ↦→ af = [x ↦→ af(x)]<br />

2.5.3. Definition. Let a ∈ R be a ring and f : M → M ′ , g : N → N ′ , h, k :<br />

M ′ → N homomorphisms <strong>of</strong> modules. By 2.5.1<br />

(1) (h + k) ◦ f = h ◦ f + k ◦ f.<br />

(2) (ah) ◦ f = a(h ◦ f).<br />

(3) g ◦ (h + k) = g ◦ h + g ◦ k.<br />

(4) g ◦ (ah) = a(g ◦ h).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!