06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

9.2. ASS OF MODULES 103<br />

Pro<strong>of</strong>. The module HomR(M, R/P )P HomRP (MP , k(P )) is nonzero 7.1.4.<br />

9.1.13. Proposition. Let R be a noetherian ring and M a finite module. M has<br />

finite length if and only if Supp(M) consists only <strong>of</strong> maximal ideals.<br />

Pro<strong>of</strong>. This is 8.6.7.<br />

9.1.14. Proposition. Let R be a noetherian ring and F a finite module. If R has<br />

only finitely many maximal ideals and FP is free <strong>of</strong> rank n, then F is free <strong>of</strong> rank<br />

n.<br />

Pro<strong>of</strong>. If R is artinian, this is clear from 7.4.5. If P1, . . . , Pk are the maximal<br />

ideals, then choose x1, . . . , xn ∈ F giving a basis for F/P1 · · · PnF . The homomorphism<br />

R n → F, ei ↦→ xi is an isomorphism 6.4.6 and 8.1.5.<br />

9.1.15. Exercise. (1)<br />

9.2. Ass <strong>of</strong> modules<br />

9.2.1. Definition. Let M be an R-module. A prime ideal P ⊂ R is an associated<br />

prime ideal <strong>of</strong> M if P = Ann(x) for some x ∈ M. The set <strong>of</strong> prime ideals<br />

associated to M is Ass(M).<br />

9.2.2. Proposition. Let P ⊂ R be a prime ideal.<br />

(1) P ∈ Ass(M) if and only if there is an injective homomorphism R/P → M.<br />

(2)<br />

Ass(M) ⊂ Supp(M)<br />

(3) Let 0 = N ⊂ R/P be a nonzero submodule, then<br />

Pro<strong>of</strong>. This is clear from the definition.<br />

Ass(N) = {P }<br />

9.2.3. Proposition. Let 0 → N → M → L → 0 be a short exact sequence <strong>of</strong><br />

modules. Then<br />

Ass(N) ⊂ Ass(M) ⊂ Ass(N) ∪ Ass(L)<br />

Pro<strong>of</strong>. The left inclusion is trivial. Next let P ∈ Ass(M) such that P /∈ Ass(N).<br />

Choose a submodule L <strong>of</strong> M such that L R/P . Then Ass(L ∩ N) ⊂ Ass(L) ∩<br />

Ass(N). It follows that L ∩ N = 0, and therefore M/N contains a submodule<br />

isomorphic to R/P .<br />

9.2.4. Corollary. Let 0 → N → M → L → 0 be a split exact sequence <strong>of</strong><br />

modules.<br />

Ass(M) = Ass(N) ∪ Ass(L)<br />

9.2.5. Corollary. (1) Let N ⊂ M be a submodule. Then<br />

(2) Let M, N be modules. Then<br />

Ass(N) ⊂ Ass(M) ⊂ Ass(N) ∪ Ass(M/N)<br />

Ass(M ⊕ N) = Ass(M) ∪ Ass(N)<br />

(3) Given submodules N, L ⊂ M. Then<br />

Ass(M/N ∩ L) ⊂ Ass(M/N) ∪ Ass(M/L) ⊂ Ass(M/N ∩ L) ∪ Ass(M/N + L)<br />

Pro<strong>of</strong>. (3) Use the sequence 3.2.7.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!