06.08.2013 Views

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

Commutative algebra - Department of Mathematical Sciences - old ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

102 9. PRIMARY DECOMPOSITION<br />

9.1.5. Proposition. Let R be a ring and M a module.<br />

(1) M = 0 if and only if Supp(M) = ∅.<br />

(2) For any module<br />

Supp(M) ⊂ V (Ann(M))<br />

.<br />

(3) If M is finite, then<br />

Supp(M) = V (Ann(M))<br />

Pro<strong>of</strong>. (1) See 5.4.1. (2) If MP = 0 then for u /∈ P there is x ∈ M such that<br />

ux = 0. So Ann(M) ⊂ P . (3) Let x1, . . . , xn generate M. If Ann(M) =<br />

∩ Ann(xi) ⊂ P then some Ann(xi) ⊂ P , so xi<br />

1 = 0 in MP .<br />

9.1.6. Proposition. Let N1, . . . , Nk ⊂ M be submodules such that Supp(M/Ni)∩<br />

Supp(M/Nj) = ∅, i = j. Then the homomorphism<br />

M/ ∩i Ni → <br />

M/Ni<br />

is an isomorphism.<br />

Pro<strong>of</strong>. By induction on k it is enough to treat the case k = 2. By 9.1.4 the support<br />

<strong>of</strong> the cokernel is empty.<br />

9.1.7. Proposition. Let R be a ring and M, N modules.<br />

(1)<br />

Supp(M ⊗R N) ⊂ Supp(M) ∩ Supp(N)<br />

(2) If M, N are finite, then<br />

Supp(M ⊗R N) = Supp(M) ∩ Supp(N)<br />

Pro<strong>of</strong>. There is an isomorphism (M ⊗R N) MP ⊗RP NP . (1) This is clear. (2)<br />

This follows from 6.4.3.<br />

9.1.8. Corollary. Let φ : R → S be a ring homomorphism and M an R-module.<br />

(1) For the change <strong>of</strong> rings module<br />

(2) If M is finite, then<br />

Supp(M ⊗R S) ⊂ φ ∗−1 (Supp(M))<br />

Supp(M ⊗R S) = φ ∗−1 (Supp(M))<br />

9.1.9. Corollary. Let R be a ring, I an ideal in R and M a finite R-module. Then<br />

Supp(M/IM) = Supp(M) ∩ V (I)<br />

9.1.10. Corollary. Let R be a ring, U a multiplicative subset and M a finite Rmodule.<br />

Then<br />

Supp(U −1 M) = Supp(M) ∩ Spec(U −1 R)<br />

9.1.11. Proposition. Let (R, P ) → (S, Q) be a local homomorphism and M a<br />

finite R-module. If Supp(M) = ∅ then Supp(M ⊗R S) = ∅.<br />

Pro<strong>of</strong>. The homomorphism R → S is faithfully flat 5.5.8.<br />

9.1.12. Proposition. Let M be a finite R-module and P ∈ Supp(M). Then there<br />

is a nonzero homomorphism M → R/P .<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!