06.08.2013 Views

2. Topological vector spaces - Aarhus Universitet

2. Topological vector spaces - Aarhus Universitet

2. Topological vector spaces - Aarhus Universitet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong><br />

Klaus Thomsen matkt@imf.au.dk<br />

Institut for Matematiske Fag<br />

Det Naturvidenskabelige Fakultet<br />

<strong>Aarhus</strong> <strong>Universitet</strong><br />

September 2005<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


We read in W. Rudin: Functional Analysis<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


We read in W. Rudin: Functional Analysis<br />

Chapter 1, from Definition 1.4 to Theorem 1.1<strong>2.</strong><br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


Bases and the product topology<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


Bases and the product topology<br />

Let S be a topological space with open sets τ.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


Bases and the product topology<br />

Let S be a topological space with open sets τ.<br />

A base B for the topology of S is a collection of open sets in S<br />

such that every open set is the union of sets from B.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


Bases and the product topology<br />

Let S be a topological space with open sets τ.<br />

A base B for the topology of S is a collection of open sets in S<br />

such that every open set is the union of sets from B.<br />

Example: In a metric space (X,d) the open balls<br />

{y ∈ X : d(y,x) < ǫ} , x ∈ X, ǫ > 0,<br />

is a base for the topology defined from the metric d.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


Bases and the product topology<br />

Let S be a topological space with open sets τ.<br />

A base B for the topology of S is a collection of open sets in S<br />

such that every open set is the union of sets from B.<br />

Example: In a metric space (X,d) the open balls<br />

{y ∈ X : d(y,x) < ǫ} , x ∈ X, ǫ > 0,<br />

is a base for the topology defined from the metric d.<br />

Let X and Y be topological <strong>spaces</strong>. The product topology of the<br />

product space X × Y is the topology with a base consisting of ’the<br />

open rectangles’,<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


Bases and the product topology<br />

Let S be a topological space with open sets τ.<br />

A base B for the topology of S is a collection of open sets in S<br />

such that every open set is the union of sets from B.<br />

Example: In a metric space (X,d) the open balls<br />

{y ∈ X : d(y,x) < ǫ} , x ∈ X, ǫ > 0,<br />

is a base for the topology defined from the metric d.<br />

Let X and Y be topological <strong>spaces</strong>. The product topology of the<br />

product space X × Y is the topology with a base consisting of ’the<br />

open rectangles’,<br />

i.e. the sets U × V = {(x,y) ∈ X × Y : x ∈ U, y ∈ V }, where<br />

U ⊆ X and V ⊆ Y are open in X and Y , respectively.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


Bases and the product topology<br />

Let S be a topological space with open sets τ.<br />

A base B for the topology of S is a collection of open sets in S<br />

such that every open set is the union of sets from B.<br />

Example: In a metric space (X,d) the open balls<br />

{y ∈ X : d(y,x) < ǫ} , x ∈ X, ǫ > 0,<br />

is a base for the topology defined from the metric d.<br />

Let X and Y be topological <strong>spaces</strong>. The product topology of the<br />

product space X × Y is the topology with a base consisting of ’the<br />

open rectangles’,<br />

i.e. the sets U × V = {(x,y) ∈ X × Y : x ∈ U, y ∈ V }, where<br />

U ⊆ X and V ⊆ Y are open in X and Y , respectively.<br />

Exercise: Show that the product topology is a topology!<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - the definition<br />

Let Φ be either the real numbers R or the complex numbers C. Let<br />

X be a <strong>vector</strong> space over Φ,<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - the definition<br />

Let Φ be either the real numbers R or the complex numbers C. Let<br />

X be a <strong>vector</strong> space over Φ,<br />

i.e. there are maps X × X ∋ (x,y) ↦→ x + y and<br />

Φ × X ∋ (λ,x) ↦→ λx ∈ X such that the usual conditions<br />

((x + y) + z = x + (y + z) etc. ) are all satisfied.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - the definition<br />

Let Φ be either the real numbers R or the complex numbers C. Let<br />

X be a <strong>vector</strong> space over Φ,<br />

i.e. there are maps X × X ∋ (x,y) ↦→ x + y and<br />

Φ × X ∋ (λ,x) ↦→ λx ∈ X such that the usual conditions<br />

((x + y) + z = x + (y + z) etc. ) are all satisfied.<br />

<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong><br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - the definition<br />

Let Φ be either the real numbers R or the complex numbers C. Let<br />

X be a <strong>vector</strong> space over Φ,<br />

i.e. there are maps X × X ∋ (x,y) ↦→ x + y and<br />

Φ × X ∋ (λ,x) ↦→ λx ∈ X such that the usual conditions<br />

((x + y) + z = x + (y + z) etc. ) are all satisfied.<br />

<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong><br />

The <strong>vector</strong> space X is a topological <strong>vector</strong> space when it has a<br />

topology τ such that<br />

(a) every point of X is a closed set, and<br />

(b) the <strong>vector</strong> space operations are continuous.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - the definition<br />

Let Φ be either the real numbers R or the complex numbers C. Let<br />

X be a <strong>vector</strong> space over Φ,<br />

i.e. there are maps X × X ∋ (x,y) ↦→ x + y and<br />

Φ × X ∋ (λ,x) ↦→ λx ∈ X such that the usual conditions<br />

((x + y) + z = x + (y + z) etc. ) are all satisfied.<br />

<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong><br />

The <strong>vector</strong> space X is a topological <strong>vector</strong> space when it has a<br />

topology τ such that<br />

(a) every point of X is a closed set, and<br />

(b) the <strong>vector</strong> space operations are continuous.<br />

NOTE : (b) means that the maps X × X ∋ (x,y) ↦→ x + y and<br />

Φ × X ∋ (λ,x) ↦→ λx ∈ X are continuous when X × X and Φ × X<br />

are equipped with the product topology.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - the definition<br />

Thus when x,y ∈ X and V ∈ τ is an open neighborhood V of<br />

x + y there must be open neighborhoods Vx,Vy ∈ τ of x and y,<br />

respectively, such that<br />

Vx + Vy ⊆ V.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - the definition<br />

Thus when x,y ∈ X and V ∈ τ is an open neighborhood V of<br />

x + y there must be open neighborhoods Vx,Vy ∈ τ of x and y,<br />

respectively, such that<br />

Vx + Vy ⊆ V.<br />

Similarly, when λ ∈ Φ,x ∈ X, and W ∈ τ is an open neighborhood<br />

of λx there should be open neighborhoods Uλ of λ in Φ and<br />

Vx ∈ τ of x in X such that<br />

UλVx ⊆ W.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

The following are all examples of topological <strong>vector</strong> <strong>spaces</strong>:<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

The following are all examples of topological <strong>vector</strong> <strong>spaces</strong>:<br />

R n<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

The following are all examples of topological <strong>vector</strong> <strong>spaces</strong>:<br />

R n<br />

C n<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

The following are all examples of topological <strong>vector</strong> <strong>spaces</strong>:<br />

R n<br />

C n<br />

C[0,1] in the topology given by the metric<br />

d(f ,g) = sup t∈[0,1] |f (t) − g(t)|<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

The following are all examples of topological <strong>vector</strong> <strong>spaces</strong>:<br />

R n<br />

C n<br />

C[0,1] in the topology given by the metric<br />

d(f ,g) = sup t∈[0,1] |f (t) − g(t)|<br />

L2 [0,1] in<br />

<br />

the topology given by the metric<br />

1<br />

d(f ,g) = 0 |f (t)|2 dt<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

The following are all examples of topological <strong>vector</strong> <strong>spaces</strong>:<br />

R n<br />

C n<br />

C[0,1] in the topology given by the metric<br />

d(f ,g) = sup t∈[0,1] |f (t) − g(t)|<br />

L2 [0,1] in<br />

<br />

the topology given by the metric<br />

1<br />

d(f ,g) = 0 |f (t)|2 dt<br />

Do you know more examples?<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

Exercise: Let X be the <strong>vector</strong> space of convergent real sequences.<br />

Show that there is a metric d defined on X such that<br />

d ((xi) ∞ ∞<br />

i=0 ,(yi) i=0<br />

) = sup |xi − yi|,<br />

and verify that X is a topological <strong>vector</strong> space with the topology τ1<br />

defined by d.<br />

i∈N<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

Exercise: Let X be the <strong>vector</strong> space of convergent real sequences.<br />

Show that there is a metric d defined on X such that<br />

d ((xi) ∞ ∞<br />

i=0 ,(yi) i=0<br />

) = sup |xi − yi|,<br />

and verify that X is a topological <strong>vector</strong> space with the topology τ1<br />

defined by d.<br />

Define another topology τ2 on X such that sets of the following<br />

form is a base:<br />

i∈N<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

Exercise: Let X be the <strong>vector</strong> space of convergent real sequences.<br />

Show that there is a metric d defined on X such that<br />

d ((xi) ∞ ∞<br />

i=0 ,(yi) i=0<br />

) = sup |xi − yi|,<br />

and verify that X is a topological <strong>vector</strong> space with the topology τ1<br />

defined by d.<br />

Define another topology τ2 on X such that sets of the following<br />

form is a base:<br />

For F ⊆ N a finite set, ǫ > 0 a positive number, and x = (xi) ∞<br />

i=0 an<br />

element of X, the set<br />

is an element of the base.<br />

i∈N<br />

{(yi) ∞<br />

i=1 : |xi − yi| < ǫ, i ∈ F }<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

Exercise: Let X be the <strong>vector</strong> space of convergent real sequences.<br />

Show that there is a metric d defined on X such that<br />

d ((xi) ∞ ∞<br />

i=0 ,(yi) i=0<br />

) = sup |xi − yi|,<br />

and verify that X is a topological <strong>vector</strong> space with the topology τ1<br />

defined by d.<br />

Define another topology τ2 on X such that sets of the following<br />

form is a base:<br />

For F ⊆ N a finite set, ǫ > 0 a positive number, and x = (xi) ∞<br />

i=0 an<br />

element of X, the set<br />

is an element of the base.<br />

i∈N<br />

{(yi) ∞<br />

i=1 : |xi − yi| < ǫ, i ∈ F }<br />

Show that X is a topological <strong>vector</strong> space in the τ2-topology and<br />

that the τ2-topology is not the same as the τ1-topology.<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>


<strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong> - examples<br />

(Possible approach to the last assertion: For each n ∈ N, let<br />

x n ∈ X be the sequence 0,0,0,... ,0,1,1,1,1,... . Then 0 is in<br />

the τ2-closure of {x n : n = 1,2,3,... }, but not in the τ1-closure.)<br />

Klaus Thomsen <strong>2.</strong> <strong>Topological</strong> <strong>vector</strong> <strong>spaces</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!